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Abstract 
 
 

In this paper, we present an efficient data compression 
scheme, the template run-length encoding (TRLE) scheme, 
for image composition of parallel volume rendering 
systems.  Given an image with 2n×2n pixels, in the TRLE 
scheme, the image is treated as n×n blocks and each block 
has 2×2 pixels.  Since a pixel can be a blank or 
non-blank pixel, there are 16 templates in a block.  To 
compress an image, the TRLE scheme uses the templates 
to encode blocks row by row.  Blocks in the same row are 
encoded as a TRLE_sequence.  By packing all 
TRLE_sequences in a packet, the packet is the compressed 
partial image that can be sent/received among processors.  
To evaluate the performance of the TRLE scheme, we 
compare the proposed scheme with the BR, the RLE, and 
the BRLC schemes.  Since a data compression scheme 
needs to cooperate with some data communication 
schemes, in the implementation, the binary-swap (BS), the 
parallel-pipelined (PP), and the rotate-tiling (RT) data 
communication schemes are used.  By combining the 
four data compression schemes with the three data 
communication schemes, we have twelve image 
composition methods.  These twelve methods are 
implemented on a PC cluster.  The data computation time 
and the data communication time are measured.  The 
experimental results show that the TRLE data 
compression scheme with the RT data communication 
scheme outperforms other eleven image composition 
methods. 
 
Keyword: image composition, bounding rectangle, 
run-length encoding, template run-length encoding, 
parallel volume rendering systems. 
 
 
1. Introduction 
 

Volume rendering [2] can be used to analyze the shape 
and volumetric property of three-dimensional objects in 
research areas such as medical imaging and scientific 
visualizing.  However, most volume rendering methods 
that produce effective visualizations are computation 

intensive.  It is difficult for them to achieve interactive 
rendering rates for large datasets.  In addition, volume 
datasets are too large to be stored in the memory of a 
single processor.  One way to solve the above problems 
is to parallelize the serial volume rendering methods [12]. 

A parallel volume rendering system [8], in general, 
consists of three stages; the data partition stage, the data 
render stage, and the image composition stage.  In the 
data partition stage, the volume dataset is partitioned into 
sub-volumes by an efficient data partitioning method and 
the sub-volumes are distributed to processors.  In the 
data render stage, each processor uses a volume rendering 
algorithm on the assigned sub-volume to generate a partial 
image.  In the image composition stage, the partial 
images generated by processors are composited to form a 
final image [11]. When the number of processors is large, 
the image composition stage becomes a bottleneck of a 
parallel volume rendering system.  Hence, a good image 
composition method is very important to the performance 
of a parallel volume rendering system. 

In general, there are two ways to improve the 
performance of image composition of parallel volume 
rendering systems [1].  One is to use an efficient data 
communication scheme to minimize the data 
communication overheads in sending and receiving the 
partial images of processors.  The other is to use an 
efficient data compression scheme to reduce the 
communication sizes of partial images.  The reasons for 
using a data compression scheme are two-folds.  First, a 
partial image may contain many blank pixels.  These 
blank pixels are useless in image composition.  If we can 
filter out these blank pixels in some ways, the size of a 
partial image can be reduced, that is, the data transmission 
time among processors can be reduced.  Second, if we 
can filter out blank pixels of a partial image, the number 
of over operations spent on these blank pixels for 
composition can be eliminated.  By reducing the data 
communication size of a partial image, the overall image 
composition time can be improved.  In this paper, we 
focus on finding an efficient data compression scheme for 
image composition. 

The bounding rectangle (BR) and the run-length 
encoding (RLE) are two well-known data compression 
schemes used in computer graphics [3].  They are also 
used in the image composition of a parallel volume 

Proceedings of the First International Symposium on Cyber Worlds (CW�02) 
0-7695-1862-1/02 $17.00 © 2002 IEEE 



rendering system [9] [13].  Ma et al. [9] used the BR 
scheme for data compression.  In [9], the BR scheme 
uses a bounding rectangle to embrace the non-blank pixels 
of the partial image of a processor.  The image 
composition using the BR scheme consists of three steps.  
Assume that processor Pj needs to composite the partial 
images of Pi and Pj.  In the first step, the bounding 
rectangle to embrace the non-blank pixels of the partial 
image of Pi is formed.  Pi then sends pixels in the 
bounding rectangle to Pj by a data communication scheme 
in the second step.  In the third step, Pj uses the over 
operation to composite the pixels in the sent bounding 
rectangle with the pixels of its partial image.  An 
example of the image composition using the BR scheme is 
given in Figure 1. 
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(a) Partial images   (b) Pi sends its BR to Pj 

Figure 1. An example of the BR scheme 
 

If there are many blank pixels in a bounding rectangle 
of a partial image, the BR scheme may not have good 
performance.  An example of this case is given in Figure 
2.  In Figure 2, the bounding rectangle of Pi is the whole 
partial image of Pi.  Pi needs to send the whole partial 
image to Pj.   However, only the black portion of the 
triangle contains non-blank pixels.  Most of pixels in the 
bounding rectangle that contains the triangle are blank 
pixels.  In this case, the BR scheme neither reduces the 
data communication size for Pi nor reduces the number of 
over operations for Pj. 
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(a) Partial images   (b) Pi sends its BR to Pj 

Figure 2. An example of the worst case of the BR 
scheme 

 
Yang et al. [13] used the RLE scheme for data 

compression.  In [13], the RLE scheme encodes each 
scanline of a partial image.  The image composition 
using the RLE scheme consists of four steps.  Assume 
that processor Pj needs to composite the partial images of 
Pi and Pj.  In the first step, pixels of the partial image in 
Pi are encoded by using the RLE scheme and the 
corresponding RLE codes are formed.  Pi then sends the 
RLE codes and the corresponding non-blank pixels to Pj 
by a data communication scheme in the second step.  In 
the third step, Pj decodes the RLE codes to get the partial 
image of Pi.  Pj then uses the over operation to composite 
the partial images of Pi and Pj in the forth step.  An 
example of the image composition using the RLE scheme 

is given in Figure 3. 
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Figure 3. An example of the RLE scheme 

 
If the non-blank and blank pixels of the partial image 

are interlaced, the RLE scheme is not efficient since the 
RLE codes are too large.  An example of this case is 
given in Figure 4.  In Figure 4, the RLE codes are larger 
than the values of the non-blank pixels, that is, the data 
size of the RLE codes is large than that of the partial 
image.  The data transmission overhead is increased. 
 

1 1 1 1 1 1 1 1 1 X X X X

Pi RLE encoding

0 1 1 1 1 1 1 1 1 X X X X
1 1 1 1 1 1 1 1 1 X X X X
0 1 1 1 1 1 1 1 1 X X X X
1 1 1 1 1 1 1 1 1 X X X X
0 1 1 1 1 1 1 1 1 X X X X
1 1 1 1 1 1 1 1 1 X X X X
0 1 1 1 1 1 1 1 1 X X X X  

Figure 4. An example of the worst case of the 
RLE scheme 

 
Yang et al. [13] combined the BR and the RLE 

schemes, denoted as the BRLC scheme, to reduce the data 
communication sizes.  The BRLC scheme first uses the 
BR scheme to find a bounding rectangle with non-blank 
pixels of a partial image.  The scheme then applies the 
RLE scheme to encode the pixels in the bounding 
rectangle.  For many cases, the BRLC scheme performs 
better than the BR and the RLE schemes.  However, the 
BRLC scheme cannot solve the problems presented in 
Figure 4 either. 

To overcome the disadvantages of the BR, the RLE, 
and the BRLC schemes, we propose an efficient data 
compression scheme, the template run-length encoding 
(TRLE) scheme, for image composition of a parallel 
volume rendering system.  Given an image with 2n×2n 
pixels, in the TRLE scheme, the image consists of n×n 
blocks and each block has 2×2 pixels.  Since each pixel 
is either a blank or a non-blank pixel, there are sixteen 
blank/non-blank pixel combinations in a block.  We call 
these sixteen blank/non-blank pixel combinations as 
templates.  With these templates, the TRLE scheme 
encodes a partial image block by block similar to the RLE 
scheme.  However, the TRLE scheme can filter out or 
use small space to encode blocks whose four pixels are 
blank pixels, that is, the TRLE scheme can encode a 
partial image according to the shape of non-blank pixels.  
In the TRLE scheme, the bit operations, and, or, and xor, 
are used to encode and decode a partial image.  Hence, 
the TRLE scheme is easy to be implemented and the time 

Proceedings of the First International Symposium on Cyber Worlds (CW�02) 
0-7695-1862-1/02 $17.00 © 2002 IEEE 



spent on encoding and decoding is small compared to the 
overall image composition time.  An example of the 
TRLE scheme is given in Figure 5.  Since the TRLE 
scheme can encode a partial image according to the shape 
of non-blank pixels, it can solve the problems of the BR, 
the RLE, and the BRLC schemes efficiently.  For 
example, for the image shown in Figure 5, the data size 
compressed by using the BR, the RLE, the BRLC, and the 
TRLE schemes is 64×16 = 1024, 32×16 + 72×12 = 1376, 
32×16 + 72×12 = 1376, and 32×16 + 16 = 528 bytes, 
respectively (assume that each pixel requires 16 bytes to 
store values).  The data size compressed by the TRLE 
scheme is the smallest among these four data compressed 
schemes. 
 

1 1 49 X X X X X X X X 00

Pi TRLE encoding

1 2 49 X X X X X X X X 00

1 3 49 X X X X X X X X 00

1 4 49 X X X X X X X X 00
 

Figure 5. An example of the TRLE scheme 
 

To evaluate the performance of the TRLE scheme, we 
compare the proposed scheme with the BR, the RLE, and 
the BRLC schemes.  Both theoretical and experimental 
analyses are conducted.  In theoretical analysis, we 
analyze the ranges of data compression ratio of these four 
schemes.  By combining the four data compression 
schemes and three data communication schemes (the 
binary-swap (BS) [9], the parallel-pipelined (PP) [5], and 
the rotate-tiling (RT) [7] methods), we have twelve image 
composition methods.  In the experimental, for each 
method, the data computation time and the data 
communication time are measured on a PC cluster.  The 
experimental results show that the TRLE data 
compression scheme with the RT data communication 
scheme outperforms other image composition methods. 

The rest of the paper is organized as follows.  The 
TRLE scheme will be presented in Section 2.  In Section 
3, we analyze the ranges of data compression ratio of the 
TRLE, the BR, the RLE, and the BRLC schemes.  In 
Section 4, we analyze these 12 image composition 
algorithms in terms of the communication time and the 
computation time.  In Section 5, the experimental results 
of these 12 image composition methods on a PC cluster 
will be discussed. 
 
2. The TRLE data compression scheme 
 

Given an image with 2n×2n pixels, in the TRLE 
scheme, the image is treated as n×n blocks and each block 
has 2×2 pixels.  Pixels in a block are labeled as shown in 
Figure 6.  A pixel of an image is a blank pixel if its value 
is less than a threshold.  Otherwise, it is a non-blank 

pixel.  For a pixel in a block, it is either a blank or a 
non-blank pixel.  There are sixteen blank and non-blank 
pixel combinations in a block.  We define these 16 blank 
and non-blank pixel combinations as templates.  To 
represent these templates, 4-bit binary codes are used.  
Given a 4-bit binary code b3b2b1b0, b3, b2, b1, and b0 
denote the pixel with label 0, 1, 2, and 3 in a block, 
respectively.  The value of bi in a 4-bit binary code is 0 if 
the corresponding pixel is a blank pixel.  Otherwise, bi is 
1.  The 4-bit binary codes of the templates are given in 
Figure 7.  In Figure 7, white squares represent blank 
pixels while black squares represent non-blank pixels. 
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Figure 6. The label of pixels in a block 
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Figure 7. The 4-bit binary codes of templates 
 
Given an image consists of n×n blocks and each block 

has 2×2 pixels, to compress the image, the TRLE scheme 
uses the templates to encode blocks row by row.  Blocks 
in the same row are encoded as a TRLE_sequence (will be 
defined later).  By packing all TRLE_sequences in a 
packet, the packet is the compressed image that can be 
sent/received among processors.  We have the following 
definitions. 

Definition 1: A template_code is an 8-bit long code.  
In a template_code, the lower four bits represent the 
binary code of a template.  The upper four bits represent 
the repetition of the template specified in the lower four 
bits.  A template_code can represent up to 15 replication 
of a template. 

An example of a template_code is given in Figure 8.  
In Figure 8, the template_code is "2A".  It means that 
two consecutive blocks are the same block and are 
encoded by template "1010". 
 

two blocks
template_code b3  b2  b1  b0

1   0   1   0

repetition binary code

One Byte

b7  b6  b5  b4

0   0   1   0

1010

2A

1010  
Figure 8. An example of a template_code 
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Definition 2: A TRLE_code consists of a 
template_code and the values of non-blank pixels in a 
template. 

The number of bytes to store the values of a pixel 
depends on the volume data used. For the volume data 
used in this paper, each pixel is represented by 16 bytes.  
An example of TRLE_code is given in Figure 9.  In 
Figure 9, the template_code of the TRLE_code is "2A".  
It means that two consecutive blocks are the same block 
and are encoded by template "1010".  In template "1010", 
pixels with labels 0 and 2 are non-blank pixels.  The first 
16 bytes followed the template_code in the TRLE_code 
store the values of non-blank pixel P1, the next 16 bytes 
store the values of non-blank pixel P2 followed by the 
values of P3 and P4. 
 

P3

P4

P1

P2

two blocks

1010

2A P1 P2 P3 P4

TRLE_code

template_code
(one byte)

the values of non-blank
pixels (16 * 4 bytes) 1010

 
Figure 9. An example of a TRLE_code 

 
Definition 3: A TRLE_sequence is an encoded 

sequence for blocks in the same row of an image.  It 
consists of a 2-byte index to store the coordinate of the 
first block that contains non-blank pixels in a row, a set of 
template_code/TRLE_code for blocks in the same row, 
and an end byte "00".  In the 2-byte index, the first byte 
and the second byte store the row index and the column 
index of the block, respectively. 

An example of a TRLE_sequence is given in Figure 10.  
For the TRLE_sequence shown in Figure 10, the 2-byte 
index is "02 01".  It means that the TRLE_sequence 
encodes the blocks in the first row of an image.  The first 
block that contains non-blank pixels in the first row is the 
second block.  Five TRLE_codes are followed the 2-byte 
index.  They encode the blocks in the first row according 
to templates.  At the end of the TRLE_sequence is an end 
byte with value "00".  It indicates the end of row.  In the 
example, it is possible that there are blocks followed block 
8.  However, they are blocks whose four pixels are blank 
pixels and are eliminated from the TRLE scheme.  From 
this example, we can see that the purpose of the 2-bype 
index and the end byte of a TRLE_sequence is to find the 
boundary of an image.  In a TRLE_sequence, for the 
2-byte index, the TRLE scheme can handle an image with 
size up to 512×512 pixels.  For an image size over 
512×512 pixels, the TRLE scheme uses a 4-byte index (x 
and y occupied 2-bye each) that can handle an image with 
size up to 65536×65536 blocks. 

Definition 4: A TRLE_packet is a one-dimensional 
array to store the set of TRLE_sequence of a partial image.  
An example of a TRLE_packet is given in Figure 11.  In 
Figure 11, an image with 8 × 8 pixels that consists of 4 × 4 
blocks is given.  There are four TRLE_seqences.  The 

TRLE_packet contains the four TRLE_seqences.  Form 
the TRLE_seqences shown in Figure 11, we can see that 
the TRLE scheme can encode an image according to the 
shape of non-blank pixels in the image.  For example, the 
blank pixels outside the triangle are filtered out in the 
TRLE_seqences.  For blank pixels inside the triangle, 
they are only encoded by template_codes.  Therefore, in 
general, the TRLE scheme can have better compression 
ratio compared with the BR, the RLE, and the BRLC 
schemes. 
 

P1 P5 P7 P9 P11 P12

P2 P6 P8 P10 P13

P3

P4

Block 2

Row 1 P14

P15

02 01 15 P1 P2
2A P3 P4 P5 P6 1F P7 P8 P9 P

10
18 P

11
2A P

12
P

13
P

14
P

15
00

TRLE_codeindex endTRLE_code TRLE_code TRLE_code TRLE_code

TRLE_sequence

Block 1 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9  
Figure 10. An example of a TRLE_sequence 

 

 
Figure 11. An example of a TRLE_packet 

 
According to the above definitions, the TRLE scheme 

can easily encode a partial image to form a TRLE_packet 
or decode a TRLE_packet to get the corresponding image.  
In the TLRE scheme, bit operations, and, or, and xor are 
used to encode and decode an image.  The computation 
overheads spent on encoding and decoding of an image 
are small.  
 
3. Theoretical analysis of data compression 
schemes 
 

One of the reasons to use a data compression scheme 
in the image composition stage of a parallel volume 
rendering system is to reduce the data transmission time of 
partial images.  In the following, we analyze the BR, the 
RLE, the BRLC and the TRLE data compression schemes 
in terms of the data compression ratio.  Based on the data 
compression ratio of a data compression scheme, we 
derive the best and the worst case bounds of a data 
compression scheme.  A summary of the notations used 
in this section is given below.  A pixel of a partial image 
is represented by 16 bytes in our analysis. 
� PA – The number of pixels in a partial image. 
� PAnb – The number of non-blank pixels of a partial 

image. 
� PABR – The number of pixels in a bounding rectangle of 
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the BR scheme. 
� CODERLE – The encoding code size of the RLE scheme. 
� CODEBRLC – The encoding code size of the BRLC 

scheme. 
� CODETRLE – The encoding code size of the TRLE 

scheme. 
 

The compression ratio of a partial image of method M 
is defined as 

The total data size per bytes
( )

The total compressed data size per bytes
CR M = . 

Due to paper limitation, a summary of the ranges of 
data compression ratio for these four data compression 
schemes is given in Table 1.  The range comparison of 
the data compression ratio of the four data compression 
schemes are shown in Figure 12.  In Figure 12, the range 
of the BR scheme covers those of other three schemes.  It 
indicates that the compression ration is heavily influenced 
by the shape of an image.  The range of the BRLC 
scheme also covers that of the RLE scheme.  It also 
indicates that the BRLC scheme is more sensitive to the 
shape of an image than the RLE scheme.  The range of 
the TRLE scheme overlaps those of the RLE and the 
BRLC schemes.  However, the average compression 
ratio of the TRLE scheme is better than those of the RLE 
and the BRLC schemes. 
 
Table 1. The ranges of data compression ratio of 
four data compression schemes 

Method Ranges 

BR 
16

16 8

PA

PA

×
× +

 ≤ CR(BR) ≤ 
16

16 8nb

PA

PA

×
× +

 

RLE 
16

16 4 2nb

PA

PA PA PA

×
× + × + ×

≤ CR(RLE) ≤ 
16

16 2 2nb nb

PA

PA PA PA

×
× + × + ×

 

BRLC 
16

16 4 2 8nb

PA

PA PA PA

×
× + × + × +

 ≤ CR(BRLC) ≤ 
16

16 4 8nb nb

PA

PA PA

×
× + × +

 

TRLE 
16

16 2 3nb

PA

PA PA PA

×
× + + ×

 ≤ CR(TRLE) ≤ 
16

16 4nb nb

PA

PA PA

×
× + ×

 

  
16

16 8

PA

PA

×
× +

16

16 8nb

PA

PA

×
× +

16

16 4 2nb

PA

PA PA PA

×
× + × + ×

16

16 2 2nb nb

PA

PA PA PA

×
× + × + ×

16

16 4 2 8nb

PA

PA PA PA

×
× + × + × +

16

16 4 8nb nb

PA

PA PA

×
× + × +

16

16 2 3nb

PA

PA PA PA

×
× + + ×

16

16 4nb nb

PA

PA PA

×
× + ×

CR(BR)

CR(RLE)

CR(BRLC)

CR(TRLE)  
Figure 12. The comparison of the ranges of CR of 

the four data compression schemes 
 
4. Analysis of image composition methods 
with data compression schemes 
 
To use a data compression scheme in the image 
composition stage of a parallel volume rendering system, 
it needs to combine with some data communication 
schemes to send/receive partial images among processors.  
The following is a generic image composition algorithm 
with a data compression scheme. 

 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Algorithm Comm_Compress_Scheme(P, A) { 
/* P is the number of processors. */ 
/* A is the initial image of each processor. */ 
1. for k = 1 to communication_step do { 
2.  for each processor Pr do parallel { 
3.   Pr sends compress(A) to Pi; 
4.   Pr receives compress(A) from Pj; 
5.   Pr uses the over operation to composite the received 

compress(A) with its local image; 
6.   } 
7. } 
end_of_Comm_Compress_Scheme 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

In this section, we analyze the theoretical performance 
of the BS, the PP, and the RT data communication 
schemes with the BR, the RLE, the BRLC, and the TRLE 
data compression schemes.  The three data 
communication schemes and the four data compression 
schemes have 12 combinations.  A summary of the 
notations used in this section is given below. 
� P – The number of processors. 
� Pi – The processor with rank i. 
� A – The image size in pixels. 
� S(M) – The number of communication steps of method 

M. 
� N – The number of initial blocks of a partial image in 

the RT method. 
� Ts – The startup time of a communication channel. 
� Tc – The data transmission time per byte. 
� To – The computation time of the over operation per 

pixel. 
� Tcomm(M) – The total communication time of method M. 
� Tcomp(M) – The total computation time of method M. 
� k

commT  (M, Pi) – The communication time of Pi in the kth 

communication step of method M. 
� k

compT  (M, Pi) – The computation time of Pi in the kth 

communication step of method M. 
� ( , )k

encode iT M P – The data encoding time of Pi in the kth 

communication step of method M. 
� ( , )k

decode iT M P – The data decoding time of Pi in the kth 

communication step of method M.  
� ( , )k

i iA M P – The pixel size for sent/received by Pi in the 

kth communication step of method M. 
� , ( )i kA M – The pixel size of partial image of Pi in the kth 

communication step of method M. 
� , ( )i k

BRA M – The number of pixels of a bounding 

rectangle of , ( )i kA M . 

� , ( )i k
nbA M – The number of non-blank pixels of , ( )i kA M . 

� , ( )i k
RLECODE M – The number of the RLE encoding 

codes of , ( )i kA M . 
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� , ( )i k
BRLCCODE M – The number of the BRLC encoding 

codes of , ( )i kA M . 

� , ( )i k
TRLECODE M – The number of the TRLE encoding 

codes of , ( )i kA M . 

� BRT – The computation time for finding a bounding 

rectangle. 
� encodeT – The computation time of encoding a pixel. 

� decodeT – The computation time of decoding a pixel. 

 
Table 2. Theoretical time of the 12 image 

composition methods 
Method Time 
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To analyze the theoretical performance of the image 
composition methods, in the cost model, a synchronous 
communication mode is used.  In this model, all 
processors start their computation after each processor 
completes its communication.  In real situation, an 
asynchronous communication mode can be applied as well.  
However, it is difficult to analyze the theoretical 

performance if an asynchronous communication mode is 
used.  According to above notations, the cost model of an 
image composition method M is defined as  

Ttotal(M) =
( )

1

max{ ( , ) ( , )}
S M

k k
comm i comp i

k

T M P T M P
=

+∑ .   (1) 

In our communication model, we assume that each 
processor can communicate with all other processors in 
one communication step.  k

commT (M, Pi) is defined as  
k

commT (M, Pi) = ( , )k k
i s i i pT A M P Tδ × + × ,      (2) 

where k
iδ  is the number of processors that Pi sends data 

to in the kth communication step.  In our computation 
model, we assume that the partial image in each processor 
is first encoded by method M.  Each pixel of a 
compressed block then received from another processor is 
decoded and composited using the over operation.  
Therefore, k

compT (M) is defined as 

( , ) ( , ) ( , ) ( , )k k k k
comp i encode i dncode i i i oT M P T M P T M P A M P T= + +   (3) 

According to Equations (2) and (3), we can see that 
( , )k

i iA M P  affects the performance of the image 

composition methods.  A good data compression scheme 
can reduce the value of ( , )k

i iA M P  and is important to an 

image composition method.  Due to paper limitation, the 
data communication time and the data computation time 
of the 12 image composition methods are shown in Table 
2.   
 
5. Experimental results 
 

To evaluate the performance of the TRLE scheme, we 
compare the TRLE scheme with the BR, the RLE, and the 
BRLC schemes on a PC cluster.  The PC cluster is 
located at Parallel and Distributed Processing Laboratory 
of Feng Chia University in Taiwan.  Each node in the PC 
cluster uses an INTEL Pentium III CPU with a clock rate 
of 800 MHz.  There are 32 CPUs in this PC cluster, and 
each node has 512KB first-level data cache and 256MB of 
memory space.  Each node is fully connected by Myrinet, 
and the network bandwidth of the PC cluster is 650 
MB/sec.  

A parallel volume rendering system consists of three 
main stages: the data partition stage, the volume render 
stage, and the image composition stage.  To implement 
the data compression schemes, in the data partition stage, 
we use the efficient 1-D and 2-D partitioning schemes [6] 
to distribute a volume dataset to processors.  In the data 
render stage, each processor uses the shear-warp 
factorization [4] volume rendering method to generate a 
partial image.  In the image composition stage, the 
twelve image composition methods are used to composite 
partial images.  In the PC cluster, we use C and 
MPICH_GM [10] message passing libraries to implement 
the data compression schemes. 
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Three volume dataset are used to evaluate the 
performance of these data compression schemes.  The 
first test sample is a "brain" dataset, which generated from 
the MR scan of a human brain, and the dimensions of the 
dataset is 256× 256 × 225.  The second test sample is an 
"Engine_low" dataset, which is the CT scan of an engine 
block and the dimensions of the dataset is 256× 256 × 110.  
The third is an "Engine_high" dataset, which is the CT 
scan of an engine block.  The density of each voxels is 
larger than 180, and the dimensions of the dataset is 256× 
256 × 110.  Figure 13 shows the final images of the test 
samples.  Each image is grayscale color and contains 512 
× 512 pixels. 
 

   
(a)Brain       (b) Engine_low   (c) Engine_high 

Figure 13. Test samples for the data compression 
schemes 
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(a) The BS scheme 
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(b) The PP scheme 
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(c) The RT scheme 

Figure 14. The image composition time for 
"Brain" 

 
Figure 14 shows the data communication time and the 

data computation time of the 12 image composition 
methods for test sample "Engine_low" dataset on a PC 
cluster, respectively.  From Figure 14, we have the 
following observations. 
1. The RT scheme with the TRLE scheme has the best 

performance of the 12 image composition methods for 
different numbers of processors. 
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(a) The BS scheme 
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(b) The PP scheme 
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(c) The RT scheme 

Figure 15. The image composition time for 
"Engine_low" 
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(a) The BS scheme 

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����0

20

40

60

80

100

2 4 8 16 32P  =

Time(ms) Tcomm(PP_BR)�����������
�����������Tcomp(PP_BR)

Tcomm(PP_RLE)�����������
Tcomp(PP_RLE)
Tcomm(PP_BRLC)

�����������
�����������Tcomp(PP_BRLC)

Tcomm(PP_TRLE)�����������
Tcomp(PP_TRLE)
Ttotal(PP_BR)
Ttotal(PP_RLE)
Ttotal(PP_BRLC)
Ttotal(PP_TRLE)

 
(b) The PP scheme 

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

���
���
���

����
����
����

0

10

20

30

40

50

60

70

2 4 8 16 32P  =

Time(ms) Tcomm(RT_BR)
�����������
�����������Tcomp(RT_BR)

Tcomm(RT_RLE)�����������
Tcomp(RT_RLE)
Tcomm(RT_BRC)�����������
Tcomp(RT_BRC)
Tcomm(RT_TRLE)�����������

�����������Tcomp(RT_TRLE)
Ttotal(BT_BR)
Ttotal(RT_RLE)
Ttotal(RT_BRLC)
Ttotal(RT_TRLE)

 
(c) The RT scheme 

Figure 16. The image composition time for 
"Engine_high" 

 
2. The BS, the PP, and the RT schemes with the TRLE 

scheme have better performance than those with the BR, 
the RLE, and the BRLC schemes.   

3. When the number of processor increases, the image 
composition time of any data communication scheme 
with the TRLE scheme is slightly increased or 
decreased compared to other data compression schemes, 
that is, the time is in a horizontal line. 

Figures 15 and 16 show the data communication time 
and the data computation time of the 12 image 
composition schemes for test samples "Engine_low" and 
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"Engine_high" dataset on a PC cluster, respectively.  
From Figures 15 and 16, we have similar observations as 
those of Figure 14. 
 
6. Conclusions 
 

In this paper, we have proposed an efficient data 
compression scheme, the template run-length encoding 
(TRLE) scheme, for image composition of parallel 
volume rendering systems.  To evaluate the performance 
of the TRLE scheme, we compare the proposed scheme 
with the BR, the RLE, and the BRLC schemes.  Both 
theoretical and experimental analyses are conducted.  For 
the theoretical analysis, we compare the ranges of the 
compression ratio of these four data compression schemes.  
For the experimental analysis, the BR, the RLE, the 
BRLC, and the TRLE data compression schemes have 
implemented with the binary-swap (BS), the 
parallel-pipelined (PP), and the rotate-tiling (RT) data 
communication schemes.  The data computation time 
and the data communication time are measured on a PC 
cluster.  From the experimental results, we have the 
following remarks. 
Remark 1: The RT scheme with the TRLE scheme has the 

best performance of the 12 image composition 
methods for different numbers of processors. 

Remark 2: The BS, the PP, and the RT schemes with the 
TRLE scheme have better performance than 
those with the BR, the RLE, and the BRLC 
schemes.   

Remark 3: When the number of processor increases, the 
image composition time of any data 
communication scheme with the TRLE scheme 
is almost the same. 
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