
TRLE – An Efficient Data Compression Scheme for
Image Composition of Parallel Volume Rendering Systems

Chin-Feng Lin, Yeh-Ching Chung, and Don-Lin Yang

Department of Information Engineering
Feng Chia University, Taichung, Taiwan 407, R.O.C.

E-mail: {cflin, ychung, dlyang}@iecs.fcu.edu.tw

Abstract

In this paper, we present an efficient data compression
scheme, the template run-length encoding (TRLE) scheme,
for image composition of parallel volume rendering
systems. Given an image with 2n×2n pixels, in the TRLE
scheme, the image is treated as n×n blocks and each block
has 2×2 pixels. Since a pixel can be a blank or
non-blank pixel, there are 16 templates in a block. To
compress an image, the TRLE scheme uses the templates
to encode blocks row by row. Blocks in the same row are
encoded as a TRLE_sequence. By packing all
TRLE_sequences in a packet, the packet is the compressed
partial image that can be sent/received among processors.
To evaluate the performance of the TRLE scheme, we
compare the proposed scheme with the BR, the RLE, and
the BRLC schemes. Since a data compression scheme
needs to cooperate with some data communication
schemes, in the implementation, the binary-swap (BS), the
parallel-pipelined (PP), and the rotate-tiling (RT) data
communication schemes are used. By combining the
four data compression schemes with the three data
communication schemes, we have twelve image
composition methods. These twelve methods are
implemented on a PC cluster. The data computation time
and the data communication time are measured. The
experimental results show that the TRLE data
compression scheme with the RT data communication
scheme outperforms other eleven image composition
methods.

Keyword: image composition, bounding rectangle,
run-length encoding, template run-length encoding,
parallel volume rendering systems.

1. Introduction

Volume rendering [2] can be used to analyze the shape
and volumetric property of three-dimensional objects in
research areas such as medical imaging and scientific
visualizing. However, most volume rendering methods
that produce effective visualizations are computation

intensive. It is difficult for them to achieve interactive
rendering rates for large datasets. In addition, volume
datasets are too large to be stored in the memory of a
single processor. One way to solve the above problems
is to parallelize the serial volume rendering methods [12].

A parallel volume rendering system [8], in general,
consists of three stages; the data partition stage, the data
render stage, and the image composition stage. In the
data partition stage, the volume dataset is partitioned into
sub-volumes by an efficient data partitioning method and
the sub-volumes are distributed to processors. In the
data render stage, each processor uses a volume rendering
algorithm on the assigned sub-volume to generate a partial
image. In the image composition stage, the partial
images generated by processors are composited to form a
final image [11]. When the number of processors is large,
the image composition stage becomes a bottleneck of a
parallel volume rendering system. Hence, a good image
composition method is very important to the performance
of a parallel volume rendering system.

In general, there are two ways to improve the
performance of image composition of parallel volume
rendering systems [1]. One is to use an efficient data
communication scheme to minimize the data
communication overheads in sending and receiving the
partial images of processors. The other is to use an
efficient data compression scheme to reduce the
communication sizes of partial images. The reasons for
using a data compression scheme are two-folds. First, a
partial image may contain many blank pixels. These
blank pixels are useless in image composition. If we can
filter out these blank pixels in some ways, the size of a
partial image can be reduced, that is, the data transmission
time among processors can be reduced. Second, if we
can filter out blank pixels of a partial image, the number
of over operations spent on these blank pixels for
composition can be eliminated. By reducing the data
communication size of a partial image, the overall image
composition time can be improved. In this paper, we
focus on finding an efficient data compression scheme for
image composition.

The bounding rectangle (BR) and the run-length
encoding (RLE) are two well-known data compression
schemes used in computer graphics [3]. They are also
used in the image composition of a parallel volume

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

rendering system [9] [13]. Ma et al. [9] used the BR
scheme for data compression. In [9], the BR scheme
uses a bounding rectangle to embrace the non-blank pixels
of the partial image of a processor. The image
composition using the BR scheme consists of three steps.
Assume that processor Pj needs to composite the partial
images of Pi and Pj. In the first step, the bounding
rectangle to embrace the non-blank pixels of the partial
image of Pi is formed. Pi then sends pixels in the
bounding rectangle to Pj by a data communication scheme
in the second step. In the third step, Pj uses the over
operation to composite the pixels in the sent bounding
rectangle with the pixels of its partial image. An
example of the image composition using the BR scheme is
given in Figure 1.

Pi Pj

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

Pi Pj�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�������������������
�������������������
�������������������
�������������������

(a) Partial images (b) Pi sends its BR to Pj

Figure 1. An example of the BR scheme

If there are many blank pixels in a bounding rectangle
of a partial image, the BR scheme may not have good
performance. An example of this case is given in Figure
2. In Figure 2, the bounding rectangle of Pi is the whole
partial image of Pi. Pi needs to send the whole partial
image to Pj. However, only the black portion of the
triangle contains non-blank pixels. Most of pixels in the
bounding rectangle that contains the triangle are blank
pixels. In this case, the BR scheme neither reduces the
data communication size for Pi nor reduces the number of
over operations for Pj.

Pi Pj�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

Pi Pj

�������������������
�������������������
�������������������
�������������������

(a) Partial images (b) Pi sends its BR to Pj

Figure 2. An example of the worst case of the BR
scheme

Yang et al. [13] used the RLE scheme for data

compression. In [13], the RLE scheme encodes each
scanline of a partial image. The image composition
using the RLE scheme consists of four steps. Assume
that processor Pj needs to composite the partial images of
Pi and Pj. In the first step, pixels of the partial image in
Pi are encoded by using the RLE scheme and the
corresponding RLE codes are formed. Pi then sends the
RLE codes and the corresponding non-blank pixels to Pj
by a data communication scheme in the second step. In
the third step, Pj decodes the RLE codes to get the partial
image of Pi. Pj then uses the over operation to composite
the partial images of Pi and Pj in the forth step. An
example of the image composition using the RLE scheme

is given in Figure 3.

Pi Pj
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

0 15 2 15 XX

0 14 4 14 XXXX

0 13 6 13 XXXXXX

0 12 8 12 XXXXXXXX

0 11 10 11 XXXXXXXXXX

0 10 12 10 XXXXXXXXXXXX

0 9 14 9 XXXXXXXXXXXXXX

0 32

RLE codes
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

(1) RLE encoding (2) Send RLE codes (3) RLE decoding (4) compositing

Intermediate image

Figure 3. An example of the RLE scheme

If the non-blank and blank pixels of the partial image

are interlaced, the RLE scheme is not efficient since the
RLE codes are too large. An example of this case is
given in Figure 4. In Figure 4, the RLE codes are larger
than the values of the non-blank pixels, that is, the data
size of the RLE codes is large than that of the partial
image. The data transmission overhead is increased.

1 1 1 1 1 1 1 1 1 X X X X

Pi RLE encoding

0 1 1 1 1 1 1 1 1 X X X X
1 1 1 1 1 1 1 1 1 X X X X
0 1 1 1 1 1 1 1 1 X X X X
1 1 1 1 1 1 1 1 1 X X X X
0 1 1 1 1 1 1 1 1 X X X X
1 1 1 1 1 1 1 1 1 X X X X
0 1 1 1 1 1 1 1 1 X X X X

Figure 4. An example of the worst case of the
RLE scheme

Yang et al. [13] combined the BR and the RLE

schemes, denoted as the BRLC scheme, to reduce the data
communication sizes. The BRLC scheme first uses the
BR scheme to find a bounding rectangle with non-blank
pixels of a partial image. The scheme then applies the
RLE scheme to encode the pixels in the bounding
rectangle. For many cases, the BRLC scheme performs
better than the BR and the RLE schemes. However, the
BRLC scheme cannot solve the problems presented in
Figure 4 either.

To overcome the disadvantages of the BR, the RLE,
and the BRLC schemes, we propose an efficient data
compression scheme, the template run-length encoding
(TRLE) scheme, for image composition of a parallel
volume rendering system. Given an image with 2n×2n
pixels, in the TRLE scheme, the image consists of n×n
blocks and each block has 2×2 pixels. Since each pixel
is either a blank or a non-blank pixel, there are sixteen
blank/non-blank pixel combinations in a block. We call
these sixteen blank/non-blank pixel combinations as
templates. With these templates, the TRLE scheme
encodes a partial image block by block similar to the RLE
scheme. However, the TRLE scheme can filter out or
use small space to encode blocks whose four pixels are
blank pixels, that is, the TRLE scheme can encode a
partial image according to the shape of non-blank pixels.
In the TRLE scheme, the bit operations, and, or, and xor,
are used to encode and decode a partial image. Hence,
the TRLE scheme is easy to be implemented and the time

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

spent on encoding and decoding is small compared to the
overall image composition time. An example of the
TRLE scheme is given in Figure 5. Since the TRLE
scheme can encode a partial image according to the shape
of non-blank pixels, it can solve the problems of the BR,
the RLE, and the BRLC schemes efficiently. For
example, for the image shown in Figure 5, the data size
compressed by using the BR, the RLE, the BRLC, and the
TRLE schemes is 64×16 = 1024, 32×16 + 72×12 = 1376,
32×16 + 72×12 = 1376, and 32×16 + 16 = 528 bytes,
respectively (assume that each pixel requires 16 bytes to
store values). The data size compressed by the TRLE
scheme is the smallest among these four data compressed
schemes.

1 1 49 X X X X X X X X 00

Pi TRLE encoding

1 2 49 X X X X X X X X 00

1 3 49 X X X X X X X X 00

1 4 49 X X X X X X X X 00

Figure 5. An example of the TRLE scheme

To evaluate the performance of the TRLE scheme, we
compare the proposed scheme with the BR, the RLE, and
the BRLC schemes. Both theoretical and experimental
analyses are conducted. In theoretical analysis, we
analyze the ranges of data compression ratio of these four
schemes. By combining the four data compression
schemes and three data communication schemes (the
binary-swap (BS) [9], the parallel-pipelined (PP) [5], and
the rotate-tiling (RT) [7] methods), we have twelve image
composition methods. In the experimental, for each
method, the data computation time and the data
communication time are measured on a PC cluster. The
experimental results show that the TRLE data
compression scheme with the RT data communication
scheme outperforms other image composition methods.

The rest of the paper is organized as follows. The
TRLE scheme will be presented in Section 2. In Section
3, we analyze the ranges of data compression ratio of the
TRLE, the BR, the RLE, and the BRLC schemes. In
Section 4, we analyze these 12 image composition
algorithms in terms of the communication time and the
computation time. In Section 5, the experimental results
of these 12 image composition methods on a PC cluster
will be discussed.

2. The TRLE data compression scheme

Given an image with 2n×2n pixels, in the TRLE
scheme, the image is treated as n×n blocks and each block
has 2×2 pixels. Pixels in a block are labeled as shown in
Figure 6. A pixel of an image is a blank pixel if its value
is less than a threshold. Otherwise, it is a non-blank

pixel. For a pixel in a block, it is either a blank or a
non-blank pixel. There are sixteen blank and non-blank
pixel combinations in a block. We define these 16 blank
and non-blank pixel combinations as templates. To
represent these templates, 4-bit binary codes are used.
Given a 4-bit binary code b3b2b1b0, b3, b2, b1, and b0
denote the pixel with label 0, 1, 2, and 3 in a block,
respectively. The value of bi in a 4-bit binary code is 0 if
the corresponding pixel is a blank pixel. Otherwise, bi is
1. The 4-bit binary codes of the templates are given in
Figure 7. In Figure 7, white squares represent blank
pixels while black squares represent non-blank pixels.

1

2

0

3

b3 b2 b1 b0

binary code

0 1 2 3 label order

block

Figure 6. The label of pixels in a block

template binary

code

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

template
binary
code

template
binary
code

template
binary
code

Figure 7. The 4-bit binary codes of templates

Given an image consists of n×n blocks and each block

has 2×2 pixels, to compress the image, the TRLE scheme
uses the templates to encode blocks row by row. Blocks
in the same row are encoded as a TRLE_sequence (will be
defined later). By packing all TRLE_sequences in a
packet, the packet is the compressed image that can be
sent/received among processors. We have the following
definitions.

Definition 1: A template_code is an 8-bit long code.
In a template_code, the lower four bits represent the
binary code of a template. The upper four bits represent
the repetition of the template specified in the lower four
bits. A template_code can represent up to 15 replication
of a template.

An example of a template_code is given in Figure 8.
In Figure 8, the template_code is "2A". It means that
two consecutive blocks are the same block and are
encoded by template "1010".

two blocks
template_code b3 b2 b1 b0

1 0 1 0

repetition binary code

One Byte

b7 b6 b5 b4

0 0 1 0

1010

2A

1010
Figure 8. An example of a template_code

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

Definition 2: A TRLE_code consists of a
template_code and the values of non-blank pixels in a
template.

The number of bytes to store the values of a pixel
depends on the volume data used. For the volume data
used in this paper, each pixel is represented by 16 bytes.
An example of TRLE_code is given in Figure 9. In
Figure 9, the template_code of the TRLE_code is "2A".
It means that two consecutive blocks are the same block
and are encoded by template "1010". In template "1010",
pixels with labels 0 and 2 are non-blank pixels. The first
16 bytes followed the template_code in the TRLE_code
store the values of non-blank pixel P1, the next 16 bytes
store the values of non-blank pixel P2 followed by the
values of P3 and P4.

P3

P4

P1

P2

two blocks

1010

2A P1 P2 P3 P4

TRLE_code

template_code
(one byte)

the values of non-blank
pixels (16 * 4 bytes) 1010

Figure 9. An example of a TRLE_code

Definition 3: A TRLE_sequence is an encoded

sequence for blocks in the same row of an image. It
consists of a 2-byte index to store the coordinate of the
first block that contains non-blank pixels in a row, a set of
template_code/TRLE_code for blocks in the same row,
and an end byte "00". In the 2-byte index, the first byte
and the second byte store the row index and the column
index of the block, respectively.

An example of a TRLE_sequence is given in Figure 10.
For the TRLE_sequence shown in Figure 10, the 2-byte
index is "02 01". It means that the TRLE_sequence
encodes the blocks in the first row of an image. The first
block that contains non-blank pixels in the first row is the
second block. Five TRLE_codes are followed the 2-byte
index. They encode the blocks in the first row according
to templates. At the end of the TRLE_sequence is an end
byte with value "00". It indicates the end of row. In the
example, it is possible that there are blocks followed block
8. However, they are blocks whose four pixels are blank
pixels and are eliminated from the TRLE scheme. From
this example, we can see that the purpose of the 2-bype
index and the end byte of a TRLE_sequence is to find the
boundary of an image. In a TRLE_sequence, for the
2-byte index, the TRLE scheme can handle an image with
size up to 512×512 pixels. For an image size over
512×512 pixels, the TRLE scheme uses a 4-byte index (x
and y occupied 2-bye each) that can handle an image with
size up to 65536×65536 blocks.

Definition 4: A TRLE_packet is a one-dimensional
array to store the set of TRLE_sequence of a partial image.
An example of a TRLE_packet is given in Figure 11. In
Figure 11, an image with 8 × 8 pixels that consists of 4 × 4
blocks is given. There are four TRLE_seqences. The

TRLE_packet contains the four TRLE_seqences. Form
the TRLE_seqences shown in Figure 11, we can see that
the TRLE scheme can encode an image according to the
shape of non-blank pixels in the image. For example, the
blank pixels outside the triangle are filtered out in the
TRLE_seqences. For blank pixels inside the triangle,
they are only encoded by template_codes. Therefore, in
general, the TRLE scheme can have better compression
ratio compared with the BR, the RLE, and the BRLC
schemes.

P1 P5 P7 P9 P11 P12

P2 P6 P8 P10 P13

P3

P4

Block 2

Row 1 P14

P15

02 01 15 P1 P2
2A P3 P4 P5 P6 1F P7 P8 P9 P

10
18 P

11
2A P

12
P

13
P

14
P

15
00

TRLE_codeindex endTRLE_code TRLE_code TRLE_code TRLE_code

TRLE_sequence

Block 1 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9
Figure 10. An example of a TRLE_sequence

Figure 11. An example of a TRLE_packet

According to the above definitions, the TRLE scheme

can easily encode a partial image to form a TRLE_packet
or decode a TRLE_packet to get the corresponding image.
In the TLRE scheme, bit operations, and, or, and xor are
used to encode and decode an image. The computation
overheads spent on encoding and decoding of an image
are small.

3. Theoretical analysis of data compression
schemes

One of the reasons to use a data compression scheme
in the image composition stage of a parallel volume
rendering system is to reduce the data transmission time of
partial images. In the following, we analyze the BR, the
RLE, the BRLC and the TRLE data compression schemes
in terms of the data compression ratio. Based on the data
compression ratio of a data compression scheme, we
derive the best and the worst case bounds of a data
compression scheme. A summary of the notations used
in this section is given below. A pixel of a partial image
is represented by 16 bytes in our analysis.
� PA – The number of pixels in a partial image.
� PAnb – The number of non-blank pixels of a partial

image.
� PABR – The number of pixels in a bounding rectangle of

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

the BR scheme.
� CODERLE – The encoding code size of the RLE scheme.
� CODEBRLC – The encoding code size of the BRLC

scheme.
� CODETRLE – The encoding code size of the TRLE

scheme.

The compression ratio of a partial image of method M
is defined as

The total data size per bytes
()

The total compressed data size per bytes
CR M = .

Due to paper limitation, a summary of the ranges of
data compression ratio for these four data compression
schemes is given in Table 1. The range comparison of
the data compression ratio of the four data compression
schemes are shown in Figure 12. In Figure 12, the range
of the BR scheme covers those of other three schemes. It
indicates that the compression ration is heavily influenced
by the shape of an image. The range of the BRLC
scheme also covers that of the RLE scheme. It also
indicates that the BRLC scheme is more sensitive to the
shape of an image than the RLE scheme. The range of
the TRLE scheme overlaps those of the RLE and the
BRLC schemes. However, the average compression
ratio of the TRLE scheme is better than those of the RLE
and the BRLC schemes.

Table 1. The ranges of data compression ratio of
four data compression schemes

Method Ranges

BR
16

16 8

PA

PA

×
× +

 ≤ CR(BR) ≤
16

16 8nb

PA

PA

×
× +

RLE
16

16 4 2nb

PA

PA PA PA

×
× + × + ×

≤ CR(RLE) ≤
16

16 2 2nb nb

PA

PA PA PA

×
× + × + ×

BRLC
16

16 4 2 8nb

PA

PA PA PA

×
× + × + × +

 ≤ CR(BRLC) ≤
16

16 4 8nb nb

PA

PA PA

×
× + × +

TRLE
16

16 2 3nb

PA

PA PA PA

×
× + + ×

 ≤ CR(TRLE) ≤
16

16 4nb nb

PA

PA PA

×
× + ×

16

16 8

PA

PA

×
× +

16

16 8nb

PA

PA

×
× +

16

16 4 2nb

PA

PA PA PA

×
× + × + ×

16

16 2 2nb nb

PA

PA PA PA

×
× + × + ×

16

16 4 2 8nb

PA

PA PA PA

×
× + × + × +

16

16 4 8nb nb

PA

PA PA

×
× + × +

16

16 2 3nb

PA

PA PA PA

×
× + + ×

16

16 4nb nb

PA

PA PA

×
× + ×

CR(BR)

CR(RLE)

CR(BRLC)

CR(TRLE)
Figure 12. The comparison of the ranges of CR of

the four data compression schemes

4. Analysis of image composition methods
with data compression schemes

To use a data compression scheme in the image
composition stage of a parallel volume rendering system,
it needs to combine with some data communication
schemes to send/receive partial images among processors.
The following is a generic image composition algorithm
with a data compression scheme.

−−
Algorithm Comm_Compress_Scheme(P, A) {
/* P is the number of processors. */
/* A is the initial image of each processor. */
1. for k = 1 to communication_step do {
2. for each processor Pr do parallel {
3. Pr sends compress(A) to Pi;
4. Pr receives compress(A) from Pj;
5. Pr uses the over operation to composite the received

compress(A) with its local image;
6. }
7. }
end_of_Comm_Compress_Scheme
−−

In this section, we analyze the theoretical performance
of the BS, the PP, and the RT data communication
schemes with the BR, the RLE, the BRLC, and the TRLE
data compression schemes. The three data
communication schemes and the four data compression
schemes have 12 combinations. A summary of the
notations used in this section is given below.
� P – The number of processors.
� Pi – The processor with rank i.
� A – The image size in pixels.
� S(M) – The number of communication steps of method

M.
� N – The number of initial blocks of a partial image in

the RT method.
� Ts – The startup time of a communication channel.
� Tc – The data transmission time per byte.
� To – The computation time of the over operation per

pixel.
� Tcomm(M) – The total communication time of method M.
� Tcomp(M) – The total computation time of method M.
� k

commT (M, Pi) – The communication time of Pi in the kth

communication step of method M.
� k

compT (M, Pi) – The computation time of Pi in the kth

communication step of method M.
� (,)k

encode iT M P – The data encoding time of Pi in the kth

communication step of method M.
� (,)k

decode iT M P – The data decoding time of Pi in the kth

communication step of method M.
� (,)k

i iA M P – The pixel size for sent/received by Pi in the

kth communication step of method M.
� , ()i kA M – The pixel size of partial image of Pi in the kth

communication step of method M.
� , ()i k

BRA M – The number of pixels of a bounding

rectangle of , ()i kA M .

� , ()i k
nbA M – The number of non-blank pixels of , ()i kA M .

� , ()i k
RLECODE M – The number of the RLE encoding

codes of , ()i kA M .

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

� , ()i k
BRLCCODE M – The number of the BRLC encoding

codes of , ()i kA M .

� , ()i k
TRLECODE M – The number of the TRLE encoding

codes of , ()i kA M .

� BRT – The computation time for finding a bounding

rectangle.
� encodeT – The computation time of encoding a pixel.

� decodeT – The computation time of decoding a pixel.

Table 2. Theoretical time of the 12 image

composition methods
Method Time

Tcomm(M)= ()
log 1

,

0
1

() 16 8
P P

i k
s BR ci

k

T MAX A M T
−

=
=

 + × + × 
 

∑

BS_BR

Tcomp(M)= ()()
log 1

,

0
1

P P
i k

BR BR oi
k

T MAX A M T
−

=
=

 + × 
 

∑

Tcomm(M)= () ()()
log 1

, ,

0
1

16 2
P P

i k i k
s nb RLE ci

k

T MAX A M CODE M T
−

=
=

 + × + × × 
 

∑

BS_RLE

Tcomp(M)= () () ()()
log 1

, , ,

0
1

P P
i k i k i k

encode decode RLE nb oi
k

MAX T A M T CODE M A M T
−

=
=

× + × + ×∑

Tcomm(M)= () ()()
log 1

, ,

0
1

16 2 8
P P

i k i k
s nb BRLC ci

k

T MAX A M CODE M T
−

=
=

 + × + × + × 
 

∑

BS_BRLC

Tcomp(M)= () () ()()
log 1

, , ,

0
1

P P
i k i k i k

BR encode BR decode BRLC nb ci
k

T MAX T A M T CODE M A M T
−

=
=

 + × + × + × 
 
∑

Tcomm(M)= () ()()
log 1

, ,

0
1

16
P P

i k i k
s nb TRLE c

i
k

T MAX A M CODE M T
−

==

 + × + × 
 

∑

BS_TRLE

Tcomp(M)= () () ()()
log 1

, , ,

0
1

P P
i k i k i k

encode decode TRLE nb o
i

k

MAX T A M T CODE M A M T
−

==

× + × + ×∑

Tcomm(M)= ()()
1 1

,

0
1

16 8
P P

i k
s BR c

i
k

T MAX A M T
− −

==

 + × + × 
 

∑

PP_BR

Tcomp(M)= ()()
1 1

,

0
1

P P
i k

BR BR o
i

k

T MAX A M T
− −

==

 + × 
 

∑

Tcomm(M)= () ()()
1 1

, ,

0
1

16 2
P P

i k i k
s nb RLE c

i
k

T MAX A M CODE M T
− −

==

 + × + × × 
 

∑

PP_RLE

Tcomp(M)= () () ()()
1 1

, , ,

0
1

P P
i k i k i k

encode decode RLE nb o
i

k

MAX T A M T CODE M A M T
− −

==

× + × + ×∑

Tcomm(M)= () ()()
1 1

, ,

0
1

16 2 8
P P

i k i k
s nb BRLC c

i
k

T MAX A M CODE M T
− −

==

 + × + × + × 
 

∑

PP_BRLC
Tcomp(M)= () () ()()

1 1
, , ,

0
1

P P
i k i k i k

BR encode BR decode BRLC nb c
i

k

T MAX T A M T CODE M A M T
− −

==

 + × + × + × 
 
∑

Tcomm(M)= () ()()
1 1

, ,

0
1

16
P P

i k i k
s nb TRLE c

i
k

T MAX A M CODE M T
− −

==

 + × + × 
 

∑

PP_TRLE
Tcomp(M)= () () ()()

1 1
, , ,

0
1

P P
i k i k i k

encode decode TRLE nb o
i

k

MAX T A M T CODE M A M T
− −

==

× + × + ×∑

Tcomm(M)= ()()
log 1

,

0
1

log
log 16 8

P P
i k

s BR ci
k

N
N T MAX A M T

N

   −

==

   + × × + ×   
 

∑

RT_BR

Tcomp(M)= ()()
log 1

,

0
1

logP P
i k

BR BR oi
k

N
T MAX A M T

N

   −

==

   + × × 
 

∑

Tcomm(M)= () ()()
log 1

, ,

0
1

log
log 16 2

P P
i k i k

s nb RLE ci
k

N
N T MAX A M CODE M T

N

   −

==

   + × × + × ×   
 

∑

RT_RLE

Tcomp(M)= () () ()()
log 1

, , ,

0
1

logP P
i k i k i k

encode decode RLE nb o
i

k

N
MAX T A M T CODE M A M T

N

   −

==

  × × + × + ×∑

Tcomm(M)= () ()()
log 1

, ,

0
1

log
log 16 2 8

P P
i k i k

s nb BRLC ci
k

N
N T MAX A M CODE M T

N

   −

==

   + × × + × + ×   
 

∑

RT_BRLC

Tcomp(M)= () () ()()
log 1

, , ,

0
1

logP P
i k i k i k

BR encode BR decode BRLC nb ci
k

N
T MAX T A M T CODE M A M T

N

   −

==

   + × × + × + × 
 

∑

Tcomm(M)= () ()()
log 1

, ,

0
1

log
log 16

P P
i k i k

s nb TRLE ci
k

N
N T MAX A M CODE M T

N

   −

==

   + × × + ×   
 

∑

RT_TRLE

Tcomp(M)= () () ()()
log 1

, , ,

0
1

logP P
i k i k i k

encode decode TRLE nb oi
k

N
MAX T A M T CODE M A M T

N

   −

=
=

  × × + × + ×∑

To analyze the theoretical performance of the image
composition methods, in the cost model, a synchronous
communication mode is used. In this model, all
processors start their computation after each processor
completes its communication. In real situation, an
asynchronous communication mode can be applied as well.
However, it is difficult to analyze the theoretical

performance if an asynchronous communication mode is
used. According to above notations, the cost model of an
image composition method M is defined as

Ttotal(M) =
()

1

max{ (,) (,)}
S M

k k
comm i comp i

k

T M P T M P
=

+∑ . (1)

In our communication model, we assume that each
processor can communicate with all other processors in
one communication step. k

commT (M, Pi) is defined as
k

commT (M, Pi) = (,)k k
i s i i pT A M P Tδ × + × , (2)

where k
iδ is the number of processors that Pi sends data

to in the kth communication step. In our computation
model, we assume that the partial image in each processor
is first encoded by method M. Each pixel of a
compressed block then received from another processor is
decoded and composited using the over operation.
Therefore, k

compT (M) is defined as

(,) (,) (,) (,)k k k k
comp i encode i dncode i i i oT M P T M P T M P A M P T= + + (3)

According to Equations (2) and (3), we can see that
(,)k

i iA M P affects the performance of the image

composition methods. A good data compression scheme
can reduce the value of (,)k

i iA M P and is important to an

image composition method. Due to paper limitation, the
data communication time and the data computation time
of the 12 image composition methods are shown in Table
2.

5. Experimental results

To evaluate the performance of the TRLE scheme, we
compare the TRLE scheme with the BR, the RLE, and the
BRLC schemes on a PC cluster. The PC cluster is
located at Parallel and Distributed Processing Laboratory
of Feng Chia University in Taiwan. Each node in the PC
cluster uses an INTEL Pentium III CPU with a clock rate
of 800 MHz. There are 32 CPUs in this PC cluster, and
each node has 512KB first-level data cache and 256MB of
memory space. Each node is fully connected by Myrinet,
and the network bandwidth of the PC cluster is 650
MB/sec.

A parallel volume rendering system consists of three
main stages: the data partition stage, the volume render
stage, and the image composition stage. To implement
the data compression schemes, in the data partition stage,
we use the efficient 1-D and 2-D partitioning schemes [6]
to distribute a volume dataset to processors. In the data
render stage, each processor uses the shear-warp
factorization [4] volume rendering method to generate a
partial image. In the image composition stage, the
twelve image composition methods are used to composite
partial images. In the PC cluster, we use C and
MPICH_GM [10] message passing libraries to implement
the data compression schemes.

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

Three volume dataset are used to evaluate the
performance of these data compression schemes. The
first test sample is a "brain" dataset, which generated from
the MR scan of a human brain, and the dimensions of the
dataset is 256× 256 × 225. The second test sample is an
"Engine_low" dataset, which is the CT scan of an engine
block and the dimensions of the dataset is 256× 256 × 110.
The third is an "Engine_high" dataset, which is the CT
scan of an engine block. The density of each voxels is
larger than 180, and the dimensions of the dataset is 256×
256 × 110. Figure 13 shows the final images of the test
samples. Each image is grayscale color and contains 512
× 512 pixels.

(a)Brain (b) Engine_low (c) Engine_high

Figure 13. Test samples for the data compression
schemes

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

0

20

40

60

80

100

120

2 4 8 16 32P =

Time(ms) Tcomm(BS_BR)�����������
Tcomp(BS_BR)
Tcomm(BS_RLE)

�����������
�����������Tcomp(BS_RLE)

Tcomm(BS_BRLC)�����������
Tcomp(BS_BRLC)
Tcomm(BS_TRLE)�����������
Tcomp(BS_TRLE)
Ttotal(BS_BR)
Ttotal(BS_RLE)
Ttotal(BS_BRLC)
Ttotal(BS_TRLE)

(a) The BS scheme

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����

����
����
����

���
���
���

����
����
����

����
����
����
����

����
����
����

����
����
����

����
����

���
���
���

0

20

40

60

80

100

120

2 4 8 16 32P =

Time(ms) Tcomm(PP_BR)����������
Tcomp(PP_BR)
Tcomm(PP_RLE)

����������
����������

Tcomp(PP_RLE)
Tcomm(PP_BRLC)����������

���������� Tcomp(PP_BRLC)
Tcomm(PP_TRLE)����������
Tcomp(PP_TRLE)
Ttotal(PP_BR)
Ttotal(PP_RLE)
Ttotal(PP_BRLC)
Ttotal(PP_TRLE)

(b) The PP scheme

���
���
���
���
���

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���0

10
20
30
40
50
60
70
80
90

2 4 8 16 32P =

Time(ms) Tcomm(RT_BR)����������
Tcomp(RT_BR)
Tcomm(RT_RLE)����������
Tcomp(RT_RLE)
Tcomm(RT_BRC)

����������
���������� Tcomp(RT_BRC)

Tcomm(RT_TRLE)����������
Tcomp(RT_TRLE)
Ttotal(BT_BR)
Ttotal(RT_RLE)
Ttotal(RT_BRLC)
Ttotal(RT_TRLE)

(c) The RT scheme

Figure 14. The image composition time for
"Brain"

Figure 14 shows the data communication time and the

data computation time of the 12 image composition
methods for test sample "Engine_low" dataset on a PC
cluster, respectively. From Figure 14, we have the
following observations.
1. The RT scheme with the TRLE scheme has the best

performance of the 12 image composition methods for
different numbers of processors.

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

0
10
20
30
40
50
60
70
80
90

2 4 8 16 32P =

Time(ms) Tcomm(BS_BR)�����������
Tcomp(BS_BR)
Tcomm(BS_RLE)�����������

�����������Tcomp(BS_RLE)
Tcomm(BS_BRLC)�����������
Tcomp(BS_BRLC)
Tcomm(BS_TRLE)

�����������
�����������Tcomp(BS_TRLE)

Ttotal(BS_BR)
Ttotal(BS_RLE)
Ttotal(BS_BRLC)
Ttotal(BS_TRLE)

(a) The BS scheme

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

����
����
����
����

����
����
����
����

���
���
���
���
���

����
����
����
����
����
����

����
����
����

���
���
���

����
����
����

����
����
����

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

0

20

40

60

80

100

2 4 8 16 32P =

Time(ms) Tcomm(PP_BR)����������
Tcomp(PP_BR)
Tcomm(PP_RLE)

����������
���������� Tcomp(PP_RLE)

Tcomm(PP_BRLC)����������
Tcomp(PP_BRLC)
Tcomm(PP_TRLE)����������
Tcomp(PP_TRLE)
Ttotal(PP_BR)
Ttotal(PP_RLE)
Ttotal(PP_BRLC)
Ttotal(PP_TRLE)

(b) The PP scheme

����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

���
���
���

����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���

����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����0

10

20

30

40

50

60

70

2 4 8 16 32P =

Time(ms) Tcomm(RT_BR)�����������
Tcomp(RT_BR)
Tcomm(RT_RLE)�����������
Tcomp(RT_RLE)
Tcomm(RT_BRC)�����������

�����������Tcomp(RT_BRC)
Tcomm(RT_TRLE)�����������
Tcomp(RT_TRLE)
Ttotal(BT_BR)
Ttotal(RT_RLE)
Ttotal(RT_BRLC)
Ttotal(RT_TRLE)

(c) The RT scheme

Figure 15. The image composition time for
"Engine_low"

����
����

����
����
����

���
���
���

����
����
����

����
����
����

����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����

����
����
����

����
����
����

���
���
���

����
����
����

����
����

����
����
����

����
����
����

����
����
����

����
����
����

0
10
20
30
40
50
60
70
80
90

2 4 8 16 32P =

Time(ms) Tcomm(BS_BR)����������
Tcomp(BS_BR)
Tcomm(BS_RLE)����������
Tcomp(BS_RLE)
Tcomm(BS_BRLC)����������

���������� Tcomp(BS_BRLC)
Tcomm(BS_TRLE)����������
Tcomp(BS_TRLE)
Ttotal(BS_BR)
Ttotal(BS_RLE)
Ttotal(BS_BRLC)
Ttotal(BS_TRLE)

(a) The BS scheme

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����0

20

40

60

80

100

2 4 8 16 32P =

Time(ms) Tcomm(PP_BR)�����������
�����������Tcomp(PP_BR)

Tcomm(PP_RLE)�����������
Tcomp(PP_RLE)
Tcomm(PP_BRLC)

�����������
�����������Tcomp(PP_BRLC)

Tcomm(PP_TRLE)�����������
Tcomp(PP_TRLE)
Ttotal(PP_BR)
Ttotal(PP_RLE)
Ttotal(PP_BRLC)
Ttotal(PP_TRLE)

(b) The PP scheme

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

���
���
���

����
����
����

0

10

20

30

40

50

60

70

2 4 8 16 32P =

Time(ms) Tcomm(RT_BR)
�����������
�����������Tcomp(RT_BR)

Tcomm(RT_RLE)�����������
Tcomp(RT_RLE)
Tcomm(RT_BRC)�����������
Tcomp(RT_BRC)
Tcomm(RT_TRLE)�����������

�����������Tcomp(RT_TRLE)
Ttotal(BT_BR)
Ttotal(RT_RLE)
Ttotal(RT_BRLC)
Ttotal(RT_TRLE)

(c) The RT scheme

Figure 16. The image composition time for
"Engine_high"

2. The BS, the PP, and the RT schemes with the TRLE

scheme have better performance than those with the BR,
the RLE, and the BRLC schemes.

3. When the number of processor increases, the image
composition time of any data communication scheme
with the TRLE scheme is slightly increased or
decreased compared to other data compression schemes,
that is, the time is in a horizontal line.

Figures 15 and 16 show the data communication time
and the data computation time of the 12 image
composition schemes for test samples "Engine_low" and

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

"Engine_high" dataset on a PC cluster, respectively.
From Figures 15 and 16, we have similar observations as
those of Figure 14.

6. Conclusions

In this paper, we have proposed an efficient data
compression scheme, the template run-length encoding
(TRLE) scheme, for image composition of parallel
volume rendering systems. To evaluate the performance
of the TRLE scheme, we compare the proposed scheme
with the BR, the RLE, and the BRLC schemes. Both
theoretical and experimental analyses are conducted. For
the theoretical analysis, we compare the ranges of the
compression ratio of these four data compression schemes.
For the experimental analysis, the BR, the RLE, the
BRLC, and the TRLE data compression schemes have
implemented with the binary-swap (BS), the
parallel-pipelined (PP), and the rotate-tiling (RT) data
communication schemes. The data computation time
and the data communication time are measured on a PC
cluster. From the experimental results, we have the
following remarks.
Remark 1: The RT scheme with the TRLE scheme has the

best performance of the 12 image composition
methods for different numbers of processors.

Remark 2: The BS, the PP, and the RT schemes with the
TRLE scheme have better performance than
those with the BR, the RLE, and the BRLC
schemes.

Remark 3: When the number of processor increases, the
image composition time of any data
communication scheme with the TRLE scheme
is almost the same.

7. Acknowledgement

This work was partially supported by the National
Science Council of Republic of China under contract
NSC90-2213-E-035-021.

References

[1] J. Ahrens and J. Painter, "Efficient Soft-Last Rendering

Using Compression-Based Image Compositing,"
Proceedings of the second Eurographics Workshop on
Parallel Graphics and Visualization, 1998.

[2] R.A. Drebin, L. Carpenter, and P. Hanrahan, "Volume
Rendering," Computer Graphics (In Proceedings of
SIGGRAPH'88), vol. 22, no. 4, Atlanta, 1988, pp. 65-74.

[3] J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes,
Computer Graphics: Principles and Practice Second
Edition in C, Mass.: Addison-Wesley, 1990.

[4] P. Lacroute, "Analysis of a Parallel Volume Rendering
System Based on the Shear-Warp Factorization," IEEE
Transactions on Visualization and Computer Graphics, vol.
2, no. 3, 1996, pp. 218-231.

[5] T.Y. Lee, "Image Composition Schemes for Soft-Last
Polygon Rendering on 2D Mesh Multicomputers," IEEE
Transactions on Visualization and Computer Graphics, vol.
2, no. 3, Sep. 1996, pp. 202-217.

[6] C.F. Lin, Y.C. Chung, and D.L. Yang, "Parallel Shear-Warp
Factorization Volume Rendering Using Efficient 1-D and
2-D Partitioning Schemes on Distributed Memory
Multicomputers," The Journal of Supercomputing, vol. 22,
no. 3, Jul. 2002, pp. 277-302.

[7] C.F. Lin, D.L. Yang, and Y.C. Chung, "A Rotate-Tiling
Image Composition Scheme for Parallel Volume Rendering
on Distributed Memory Multicomputers," Proceedings of
IEEE International Parallel and Distributed Processing
Symposiums (CD-ROM), San Francisco, USA, Apr. 2001.

[8] K.L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh, "A
Data Distributed, Parallel Algorithm for Ray-Traced Volume
Rendering," Proceedings of 1993 Parallel Rendering
Symposium (PRS’93), San Jose, Oct. 1993, pp. 15-22.

[9] K.L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh,
"Parallel Volume Rendering Using Binary-Swap
Composition," IEEE Computer Graphics and Applications,
vol. 14, no. 4, Jul. 1994, pp. 59-68.

[10] MPI Forum, MPI: A Message-Passing Interface Standard,
May 1994.

[11] T. Porter and T. Duff, "Composition Digital Images,"
Computer Graphics (In Proceedings of SIGGRAPH'84), vol.
18, Jul. 1984, pp. 253-259.

[12] J.P. Singh, A. Gupta, and M. Levoy, "Parallel Visualization
Algorithms: Performance and Architectural Implications,"
Computer, vol. 27, no. 7, Jul. 1994, pp. 45-55.

[13] D.L. Yang, J.C. Yu, and Y.C. Chung, "Efficient Compositing
Schemes for the Sort-Last-Sparse Parallel Volume
Rendering System on Distributed Memory
Multicomputers," The Journal of Supercomputing, vol. 18,
no. 2, Feb. 2001, pp. 201-220.

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

