

Efficient Data Compression Methods for
Multi-Dimensional Sparse Array Operations

Chun-Yuan Lin, Yeh-Ching Chung, and Jen-Shiuh Liu
Department of Information Engineering

Feng Chia University, Taichung, Taiwan 407, ROC
Email: {cylin, ychung, liuj}@iecs.fcu.edu.tw

Abstract

For sparse array operations, in general, the sparse
arrays are compressed by some data compression schemes
in order to obtain better performance. The Compressed
Row/Column Storage (CRS/CCS) schemes are the two
common used data compression schemes for sparse arrays
in the traditional matrix representation (TMR). When
extended to higher dimensional sparse arrays, array
operations used the CRS/CCS schemes usually do not
perform well. In this paper, we propose two data
compression schemes, extended Karnaugh map
representation-Compressed Row/Column Storage (ECRS/
ECCS) for multi-dimensional sparse arrays based on the
EKMR scheme. To evaluate the proposed schemes, both
theoretical analysis and experimental test are conducted.
In theoretical analysis, we analyze CRS/CCS and
ECRS/ECCS schemes in terms of the time complexity, the
space complexity, and the range of their usability for
practical applications. In experimental test, we compare
the performance of matrix-matrix addition and matrix-
matrix multiplication sparse array operations that use the
CRS/CCS and ECRS/ECCS schemes. The experimental
results show that sparse array operations based on the
ECRS/ECCS schemes outperform those based on the
CRS/CCS schemes for all test samples.

Index Terms�Data compression scheme, Sparse array
operation, Multi-dimensional sparse array, Karnaugh Map.

1. Introduction

Array operations are useful in a large number of

important scientific codes, such as molecular dynamics [5],
finite-element methods [8], climate modeling [16], etc.
For sparse array operations, in general, the sparse arrays
are compressed by some data compression schemes in

order to obtain better performance. Many data
compression schemes have been proposed, such as
Compressed Column Storage (CCS) [1], Compressed Row
Storage (CRS) [1], Jagged Diagonal format (JAD) [1],
and Symmetric Sparse Skyline format (SSS) [1], etc.
Among them, the CRS/CCS schemes are the two common
used data compression schemes due to their simplicity and
pure with weak dependence relationship between array
elements in a sparse array.

A multi-dimensional array can be viewed as a
collection of the two-dimensional arrays. For example,
one can use 5 separate 4×3 two-dimensional arrays to
represent a three-dimensional array of size 5×4×3. This
scheme is called traditional matrix representation (TMR)
that is also known as canonical data layouts [4]. The
compression schemes mentioned above are based on the
TMR scheme. For the CRS/CCS schemes, a two-
dimensional sparse array based on the TMR scheme can
be compressed into three one-dimensional arrays.
Therefore, for a sparse array operation, we only operate
these non-zero array elements to obtain better
performance and use less memory space. However, for
higher dimensional sparse arrays, array operations based
on CRS/CCS schemes usually do not perform well. The
reasons are two-fold. First, the number of one-
dimensional arrays increases as the dimension increases
because more one-dimensional arrays are needed to store
extra indices of non-zero array elements for higher
dimensional sparse array. This increases the time and the
memory space of compressing a multi-dimensional sparse
array. Second, the costs of indirect data access and index
comparisons for multi-dimensional sparse array
operations increase as the dimension increases.

In our previous work [13-14], we have proposed a new
scheme called extended Karnaugh map representation
(EKMR) for the multi-dimensional array representation.
This scheme is suitable for the multi-dimensional dense or
sparse array without using the data compression scheme.

In this paper, we propose two new data compression
schemes, extended Karnaugh map representation-
Compressed Row/Column Storage (ECRS/ECCS) for

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

multi-dimensional sparse array based on the EKMR
scheme. Given a k-dimensional sparse array with a size
of m along each dimension, the EKMR(k) can be
represented by mk-4 EKMR(4). If k = 3 or 4, the ECRS/
ECCS schemes use two one-dimensional integer arrays
and one one-dimensional floating-point array to compress
the sparse array. If k > 4, the ECRS/ECCS schemes first
use two one-dimensional integer arrays and an one-
dimensional floating-point array to compress the mk-4

EKMR(4) sparse arrays individually. Then, an abstract
pointer array with a size of mk-4 is used to link these three
one-dimensional arrays of each EKMR(4).

To evaluate the proposed schemes, both theoretical
analysis and experimental test are conducted. In
theoretical analysis, we analyze CRS/CCS and ECRS/
ECCS schemes in terms of the time complexity, the space
complexity, and the range of their usability for practical
applications. From the theoretical analysis, we can see
that the time and the space complexities for compressing a
multi-dimensional sparse array based on the ECRS/ECCS
schemes are less than those based on the CRS/CCS
schemes. The range of usability of the ECRS/ECCS
schemes is wider than that of the CRS/CCS schemes for
practical applications. In experimental test, we compare
the execution time of matrix-matrix addition and matrix-
matrix multiplication sparse array operations for both
CRS/CCS and ECRS/ECCS schemes. The experimental
results show that sparse array operations based on the
ECRS/ECCS schemes outperform those based on the
CRS/CCS schemes. There are two reasons. First, for
the ECRS/ECCS schemes, the number of one-dimensional
arrays does not increase as the dimension increases since a
multi-dimensional sparse array based on the EKMR
scheme is represented by a set of two-dimensional sparse
array. The time and the memory space required to
compress a sparse array can be reduced. Second, the
costs to perform the indirect data access and index
comparisons of sparse array operations for the ECRS/
ECCS schemes are less than those of the CRS/CCS
schemes.

This paper is organized as follows. In Section 2, a
brief survey of related work will be presented. Section 3
will describe the ECRS/ECCS schemes and analyze their
theoretical performance along with the CRS/CCS schemes
for compressing a multi-dimensional sparse array. The
efficient algorithms of multi-dimensional sparse array
operations based on the ECRS/ECCS schemes will be
given in Section 4. The performance comparisons of
these algorithms will be given in Section 5.

2. Related Work

Many methods for improving sparse array

computation have been proposed in the literature. We
briefly describe the related researches. Kotlyar et al.
[11-12] presented a relational algebra based framework

for compiling efficient sparse array code from dense
DO-Any loops and a specified sparse array. Sularycke
and Ghose [15] showed a simple sequential loop
interchange algorithm that can produce a better
performance than existing algorithms for sparse array
multiplication. Zapata et al. [6-7] analyzed the cache
effects for the array operations. They established the
cache probabilistic modeling and modeled the cache
behavior for sparse array operations. Kebler and Smith
[10] described a system, SPARAMAT, for concept
comprehension that is particularly suitable for sparse array
codes. Lee et al. [2-3] presented an efficient library for
parallel sparse computations with Fortran 90 array
intrinsic operations. They provide a new data
compression scheme, which is obtained by extending the
CRS/CCS schemes for two-dimensional sparse arrays, for
multi-dimensional sparse arrays based on the TMR
scheme. Kandemir et al. [9] proposed a compiler
technique to perform loop and data layout transformations
to solve the global optimization problem on sequential and
multiprocessor machines. They used one data layout for
the entire program and improved the performance by
using the loop transformation scheme. However, their
method may be difficult to extend to sparse array
programs. The reason is that sparse array programs, in
general, use the data compression scheme, which heavily
use of indirect addressing through index stored in index
arrays. Since these index arrays are read at run-time,
compiler cannot analyze which non-zero array element
will actually be accessed in a given loop.

3. The ECRS/ECCS Schemes

Before presenting the ECRS/ECCS schemes, we

briefly describe the EKMR scheme for three-dimensional
arrays. Details of the EKMR scheme for four- or higher
dimensional arrays can be found in [13]. In the
following, we describe the EKMR scheme based on the
row-major storage scheme, such as C language. The
idea of the EKMR scheme is based on the Karnaugh map.
Let A[k][i][j] denote a three-dimensional array in the
TMR(3). The corresponding EKMR(3) of array
A[3][4][5], is shown in Figure 1. The EKMR(3) is
represented by a two-dimensional array with the size of
4×(3×5).

i'

1

i=0

j'

1

2

3

j=0 1 2 3 4

k= 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Figure 1: The EKMR(3) scheme.

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

The difference between the TMR(3) and the EKMR(3)
is the placement of array elements along the direction
indexed by k. In the EKMR(3), we use the index variable
i' to indicate the row direction and the index variable j' to
indicate the column direction. Note that the index i' is
the same as i, whereas the index j' is a combination of the
indices j and k. A more concrete example is given in
Figure 2.

595839381918

523212

46266

40200

575655373635171615

545351503433313014131110

49484745292827259875

44434241242322214321

 (a)

593919583818

523212

46266

40200

573717563616553515

543414533313513111503010

49299482884727745255

44244432334222241211

 (b)

i

 j k

Figure 2: (a) A three-dimensional array in the TMR(3).

(b) The corresponding EKMR(3).

3.1 The CRS/CCS Schemes

Given a two-dimensional sparse array based on the

TMR(2), the CRS (CCS) scheme using two one-
dimensional integer arrays, RO and CO, and an one-
dimensional floating-point array, VL, to compress all of
non-zero array elements along rows (columns for CCS) of
the sparse array. Array RO stores information of
non-zero array elements of each row (column for CCS).
The number of non-zero array elements in the ith row (jth
column for CCS) can be obtained by subtracting the value
of RO[i] from RO[i+1]. Array CO stores the column
(row for CCS) indices of non-zero array elements of each
row (column for CCS). Array VL stores the values of
non-zero array elements of the sparse array. The base of
these three arrays is 0. An example of the CRS/CCS
schemes for a two-dimensional sparse array based on the
TMR(2) is given in Figure 3. Figure 3(a) shows a 3×4
sparse array A with 6 non-zero array elements. Figures
3(b) and 3(C) show the CRS/CCS schemes for the sparse
array, respectively. In Figure 3(b), the number of
non-zero array elements in the second row can be
obtained by ROCRS[3] − ROCRS[2] = 7 − 5 = 2. The
column indices of non-zero array elements of the second
row are stored in COCRS[ROCRS[2]−1], …,
COCRS[ROCRS[3]−2]. The non-zero array elements of the
second row are stored in VLCRS[4:5].

Based on the CRS/CCS schemes for the two-
dimensional sparse array, for a three-dimensional sparse
array based on the TMR(3), it also can be compressed by
the CRS/CCS schemes by adding one one-dimensional
integer array, KO. Array KO stores the indices of all
non-zero array elements in the third dimension of the

sparse array. For a four- or higher dimensional sparse
array based on the TMR scheme, more one-dimensional
integer arrays are added to store indices of all non-zero
array elements in the fourth or higher dimension. An
example of the CRS/CCS schemes for a three-dimensional
sparse array based on the TMR(3) is shown in Figure 4.

















0650

0403

2010

(a) A two-dimensional sparse array
based on the TMR(2)

ROCRS: 1 3 5 7

COCRS: 1 3 0 2 1 2
VLCRS: 1 2 3 4 5 6

(b) The CRS scheme
ROCCS:

COCCS: 1 0 2 1 2 0
VLCCS: 3 1 5 4 6 2

1 2 4 6 7

(c) The CCS scheme
Figure 3: The CRS/CCS schemes for a two-dimensional

sparse array based on the TMR(2).

















1200110650

010900403

08072010

(a) A three-dimensional sparse array based on the TMR(3)

(b) The CRS scheme

(c) The CCS scheme

ROCRS:

COCRS:

1 5 9 13

1 3 0 2 0 2 1 2 1 2 0 3

KOCRS: 0 0 1 1 0 0 1 1 0 0 1 1

VLCRS: 1 2 7 8 3 4 9 10 5 6 11 12

ROCCS:

COCCS: 1 0 2 0 2 1 1 2 0 1 0 3

KOCCS: 0 1 1 0 0 1 0 0 1 1 0 1

VLCCS: 3 7 11 1 5 9 4 6 8 10 2 12

1 4 7 11 13

Figure 4: The CRS/CCS schemes for a three-

dimensional sparse array based on the TMR(3).

3.2 The ECRS/ECCS Schemes

The main idea of the EKMR scheme is to represent a

multi-dimensional array by a set of two-dimensional
arrays. Therefore, the ECRS/ECCS schemes use a set of
two one-dimensional integer arrays, R and CK, and one
one-dimensional floating-point array, V, to compress a
multi-dimensional sparse array.

Given a three-dimensional sparse array based on the
EKMR(3), the ECRS (ECCS) scheme compresses all of
non-zero array elements along the rows (columns for
ECCS) of the sparse array. Array R stores information of
non-zero array elements of each row (column for ECCS).
The number of non-zero array elements in the ith row (jth
column for ECCS) can be obtained by subtracting the
value of R[i] from R[i+1]. Array CK stores the column
(row for ECCS) indices of non-zero array elements of
each row (column for ECCS). Array V stores the values

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

of non-zero array elements of the sparse array. The base
of these three arrays is 0. An example of the
ECRS/ECCS schemes for a three-dimensional sparse array
based on the EKMR(3) is given in Figure 5. Figure 5(a)
shows a 3×8 sparse array A' with 12 non-zero array
elements based on the EKMR(3) whose TMR(3) is shown
in Figure 4(a). Figures 5(b) and 5(c) show the
ECRS/ECCS schemes of the sparse array, respectively.
By the definition of the EKMR scheme, a four-
dimensional sparse array based on the EKMR(4) is also
presented by a two-dimensional sparse array. We can use
two one-dimensional integer arrays and one
one-dimensional floating-point array to compress the
four-dimensional sparse array.

RECRS:

CKECRS:

1 5 9 13

1 2 5 6 0 3 4 5 1 2 5 7
VECRS: 7 1 8 2 3 9 4 10 11 5 6 12

















1206005110

001049003

02800170

RECCS:

CKECCS: 1 0 2 0 2 1 1 0 1 2 0 2
VECCS: 3 7 11 1 5 9 4 8 10 6 2 12

1 2 4 6 7 8 11 12 13

(a) A three-dimensional sparse array based on the EKMR(3)

(b) The ECRS scheme

(c) The ECCS scheme

Figure 5: The ECRS/ECCS schemes for a three-
dimensional sparse array based on the EKMR(3).

0 1 2 3 4 5

An abstract array

RECRS of 0
CKECRS of 0
VECRS of 0

RECRS of 1
CKECRS of 1
VECRS of 1

RERS of 2
CKECRS of 2
VECRS of 2

RECRS of 3
CKECRS of 3
VECRS of 3

RECRS of 4
CKECRS of 4
VECRS of 4

RECRS of 5
CKECRS of 5
VECRS of 5

EKMR(4)

ECRS

EKMR(4)

ECRS

EKMR(4)

ECRS

EKMR(4)

ECRS

EKMR(4)

ECRS

EKMR(4)

ECRS

Figure 6: The ECRS scheme for a six-dimensional

sparse array based on the EKMR(6).

Given a k-dimensional sparse array with a size of m
along each dimension based on the EKMR(k), the
EKMR(k) can be represented by mk-4 EKMR(4). Since we
use an abstract one-dimensional array to link all the sparse
arrays in the EKMR(4), to compress this k- dimensional
sparse array, the ECRS/ECCS schemes first compress each
EKMR(4) sparse array by using two one-dimensional
integer arrays and one one-dimensional floating-point
array. Then, an abstract array with a size of mk-4 is used
to link these three one-dimensional arrays of each
EKMR(4). For example, assume that there is a
six-dimensional sparse array A with a size of 3×2×2×3×
4×5 in the TMR(6). The array A' in the EKMR(6) can be

represented by six (3×2) arrays in the EKMR(4) with a
size of (2×4)×(3×5). If we compress the sparse array
based on the ECRS scheme, we first compress each
EKMR(4) to three one-dimensional arrays, R, CK, and V.
Then, we use an abstract array with a size of 6 to link
these three one-dimensional arrays of each EKMR(4).
An example is shown in Figure 6.

3.3 Theoretical Analysis

In the following, we analyze the theoretical
performance for both CRS/CCS and ECRS/ECCS schemes
in terms of the time complexity, the space complexity, and
the range of their usability for practical applications. In
the following analysis, we assume that a k-dimensional
sparse array A has nk array elements and the sparse
probability [7] for each array element is equal.

First, we analyze the time complexity for both
CRS/CCS and ECRS/ECCS schemes. Assume that a
three-dimensional sparse array A based on the TMR(3)
with size n×n×n is given and the sparse ratio of A is S.
The number of non-zero elements of array A is Sn3. Let
sparse array A' be the corresponding array A in the
EKMR(3). In the CRS/CCS schemes, four one-
dimensional arrays, RO, CO, KO, and VL are used for
compression. They first need to scan entire array A to
find all of non-zero array elements. Then, they need to
record the information of each non-zero array element to
these four arrays. Therefore, the time complexity for the
CRS/CCS schemes is n3+4Sn3. Similarly, if we compress
array A' with the ECRS/ECCS schemes by using three
one-dimensional arrays, R, CK, and V, the time
complexity for the ECRS/ECCS schemes is n3+3Sn3. For
four- or higher dimensional sparse arrays, we can obtain
the time complexities of CRS/CCS and ECRS/ECCS
schemes in a similar manner. Table 1 lists the time
complexities for both CRS/CCS and ECRS/ECCS schemes
for k ≥ 2. In Table 1, the improved rate is defined as
follows: Improved Rate (%) =

100
)/(

)/()/(×−
CCSCRSTime

ECCSECRSTimeCCSCRSTime , where

Time(CRS/CCS) and Time(ECRS/ECCS) are the time
required by CRS/CCS and ECRS/ECCS schemes to
perform a compression, respectively. From Table 1, we
can see that the improved rates increase as the dimension
increases. In the CRS/CCS schemes, array A is
compressed by using three one-dimensional integer arrays,
RO, CO, and KO, and one one-dimensional floating-point
array, VL. The size of RO is n+1, the size of CO, KO,
and VL arrays are all Sn3. Assume that an integer is α
bytes long and a floating-point is β bytes long. The
space complexity of the CRS/CCS schemes for A is
(2Sn3+n+1)α + Sn3β. Similarly, the space complexities
of the ECRS/ECCS schemes for A' are (Sn3+n+1)α + Sn3β
and (Sn3+n2+1)α + Sn3β, respectively. Note that for the
ECCS scheme based on the EKMR(3), the size of array R

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

is n2+1.
Table 2 lists the theoretical analysis of the space

complexities for both CRS/CCS and ECRS/ECCS schemes.
If the conditions listed in Table 2 are satisfied, the space
complexity of the ECRS/ECCS schemes is less than that
of the CRS/CCS schemes. In general, the size of sparse
array is large and the conditions can be easily satisfied.

Finally, we discuss the range of their usability for
practical applications. One of goal to use the data
compression scheme is to decrease the memory space
requirement. Therefore, the space complexity for the
non-compressed sparse array must larger than that of the
compressed sparse array. From Table 2, we can derive
the range of usability of the CRS/CCS and the
ECRS/ECCS schemes for practical application according
to the sparse ratio S. The results are shown in Table 3.
From Table 3, we can see that the range of usability of the
CRS/CCS schemes reduces as the dimension increases.
Hence, the range of usability of the ECRS/ECCS schemes
is wider than that of the CRS/CCS schemes for practical
applications. The ECRS/ECCS schemes are more
suitable for practical applications with a higher sparse
ratio than the CRS/CCS schemes.

Table 1: Time complexities.

Schemes
Dimensions

CRS/CCS ECRS/ECCS Improved Rate (%)

3-D n3+4Sn3 n3+3Sn3
S

S

41 +
×100

4-D n4+5Sn4 n4+3Sn4
S

S

51

2

+
×100

k-D
(k ≥ 2)

nk+(k+1)Snk nk+3Snk
Sk

Sk

)1(1

)2(

++
− ×100

Table 2: Space complexities.
Schemes

Dimensions
CRS/CCS ECRS/ECCS Condition

3-D
βSn

αnSn
3

3)12(
+

++

ECRS:

βSnαnSn 33)1(+++

ECCS:

βSnαnSn 323)1(+++

ECRS: 0>S

ECCS:
n

S
1>

4-D
βSn

αnSn
4

4)13(
+

++ βSnαnSn 424)1(+++ 22

1

n
S >

k-D
(k ≥ 4) βSn

αnSnk
k

k

+
++−)1)1((βSnαnnSn kkkk +++ −−)(42 2)2(

1

nk
S

−
>

* Condition : Space(CRS/CCS) > Space(ECRS/ECCS).

Table 3: The range of usability.

Schemes
Dimensions

CRS/CCS ECRS/ECCS

3-D
βα

β
S

+
<

2

βα
β

S
+

<

4-D
βα

β
S

+
<

3

βα
β

S
+

<

k-D
(k ≥ 2) βαk

β
S

+−
<

)1(

βα
β

S
+

<

4. Algorithms for Sparse Array Operations

Most algorithms of sparse array operations are based
on the CRS/CCS schemes. The structure of compressing
a sparse array based on the ECRS/ECCS schemes is quite
different from that based on the CRS/CCS schemes.
Hence, we need to redesign algorithms for sparse array
operations with the ECRS/ECCS schemes. For the page
limitation, in this section, we only present efficient
algorithms for matrix-matrix addition and matrix-matrix
multiplication sparse array operations based on the
ECRS(3)/ECCS(3) schemes. For both sparse array
operations, we can consider the compression of one or two
sparse arrays. However, the compression of two sparse
arrays for both sparse array operations is complicated and
has many issues for discussions. For simplicity, in this
paper, we only consider the compression of one sparse
array. However, we do give some experimental results
for the case where two sparse arrays are compressed in
Section 6. For the algorithms based on the CRS/CCS
schemes, please refer to [1].

4.1 Matrix-Matrix Addition Algorithms

Assume that A and B are two n×n×n three-

dimensional sparse arrays in the TMR(3). Let A' and B'
be the corresponding arrays of A and B in the EKMR(3),
respectively. According to the ECRS/ECCS schemes,
array A' can be compressed into three one-dimensional
arrays, R, CK, and V. Based on the ECRS/ECCS
schemes, the efficient algorithms for B' = A' + B' are given
below.

Algorithm matrix-matrix_addition_ECRS_EKMR(3)

1. for (i = 0 ; i < n ; i++)
2. for (j = RECRS[i] ; j < RECRS[i+1] ; j++)
3. B'[i][CKECRS[j-1]] = VECRS[j-1] + B'[i][CKECRS[j-1]] ;

end_of_matrix-matrix_addition_ECRS_EKMR(3)

Algorithm matrix-matrix_addition_ECCS_EKMR(3)
1. for (i = 0 ; i < n ; i++)
2. for (j = RECCS[i] ; j < RECCS[i+1] ; j++)
3. B'[CKECCS[j-1]][i] = VECCS[j-1] + B'[CKECCS[j-1]][i] ;

end_of_matrix-matrix_addition_ECCS_EKMR(3)

4.2 Matrix-Matrix Multiplication Algorithms

Assume that A and B are two n×n×n three-

dimensional sparse arrays with the sparse ratio S in the
TMR(3). Let A' and B' be the corresponding arrays of A
and B in the EKMR(3), respectively. For the ECRS/
ECCS schemes, array A' can be compressed into three
one-dimensional arrays, R, CK, and V. The algorithms
for C' = A' × B' based on the ECRS/ECCS schemes are
given below.

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

Algorithm matrix-matrix_multiplication_ECRS_EKMR(3)
1. for (i = 0 ; i < Sn3 ; i++)
2. K[i]=CKECRS[i] / n ;
3. CKECRS[i]= CKECRS[i] % n ;
4 for (i = 0 ; i < n ; i++)
5. for (k = 0; k < n; k++)
6. r1 = k × n;
7. for (j = RECRS[i]; j< RECRS[i+1]; j++)
8. r2 = CKECRS[j-1] + r1;
9. C'[i][r2] = C'[i][r2] + VECRS[j-1] × B'[K[j-1]][r2];

end_of_matrix-matrix_multiplication_ECRS_EKMR(3)

Algorithm matrix-matrix_multiplication_ECCS_EKMR(3)
1. for (i = 0 ; i < n2 ; i++)
2. for (j = RECCS[i]; j< RECCS[i+1]; j++)
3. r3 = i % n ;
4. r4 = i / n ;
5. r6 = CKECCS[j-1];
6. for (k = 0; k < n; k++)
7. r5 = k × n + r3;
8. C'[r6][r5] = C'[r6][r5] + VECCS[j-1] × B'[r4][r5];

end_of_matrix-matrix_multiplication_ECCS_EKMR(3)

5. Experimental Results

To evaluate the performance of the proposed data

compression schemes, we compare the compression time
of the ECRS/ECCS and the CRS/CCS schemes. We also
compare the execution time of sparse array operations
based on the ECRS/ECCS and the CRS/CCS schemes.
For the sparse array operations, matrix-matrix addition
and matrix-matrix multiplication operations are
implemented. For all the implemented sparse array
operations, we use three-dimensional arrays as test
samples. The compression algorithms and the sparse
array operations were implemented in C and were
executed on an IBM RS/6000 workstation.

5.1 The Compressing Time

For a k-dimensional sparse array based on the TMR(k)

where k ≥ 2, there are (k-1)! ways for the CRS/CCS
schemes to compress the sparse array. Assume that a
three-dimensional sparse array A[k][i][j] based on the
TMR(3) is given. If we compress array A by using the
CRS (CCS) scheme, we first compress all of non-zero
array elements along i index (j index for CCS) of the
sparse array. Then, we compress non-zero array
elements along k or j index (k or i index for CCS).
Therefore, there are two ways IJK and IKJ (JIK and IKJ
for CCS) to compress array A in the CRS (CCS) scheme.

For a k-dimensional sparse array based on the
EKMR(k), where k ≥ 3, there is only one way for the
ECRS/ECCS schemes to compress the sparse array.
Table 4 shows the execution time for compressing
three-dimensional sparse arrays with various sparse ratios
and array sizes based on the CRS and the ECRS schemes.
From Table 4, we can see that the performance of

compressing three-dimensional sparse arrays based on the
ECRS scheme is better than that based on the CRS scheme
for all test samples. The results match the theoretical
analysis described in Section 4. From Table 4, we also
can see that the performance of compressing spare arrays
using the IJK order is different from that of the IKJ order
in the CRS scheme. Since the size of R for the ECCS
scheme is larger than the size of RO for the CCS scheme,
we also list the execution time of compressing
three-dimensional sparse arrays with various sparse ratios
and array sizes based on the CCS and the ECCS schemes
in Table 5. From Table 5, we have similar observations
as those of Table 4. In Table 5, we also can see that the
compression time of the CCS scheme is much larger than
that of the CRS scheme. The reason is that the
compression algorithms were implemented in C.
However, for the ECRS/ECCS schemes, the difference is
not that large. The reason is that the data locality of the
EKMR scheme is better than that of the TMR scheme.

Table 4: The execution time of compressing
three-dimensional sparse arrays.

Schemes CRS
Sparse Ratios Array Sizes IJK IKJ

ECRS

10×10×10� 0.176� 0.178� 0.143�

100×100×100� 180.088� 177.635� 146.23�

0.1
200×200×200 1442.718� 1432.797� 1173.592�

10×10×10� 0.156� 0.158� 0.128�

100×100×100� 158.273� 157.734� 131.781�

0.01
200×200×200 1266.479� 1264.874� 1043.532�

10×10×10� 0.157� 0.156� 0.128�

100×100×100� 155.174� 154.371� 124.607�

0.001
200×200×200 1242.497� 1240.752� 1032.02�

Time: ms

Table 5: The execution time of compressing
three-dimensional sparse arrays.

Schemes CCS
Sparse Ratios Array Sizes JIK JKI

ECCS

10×10×10� 0.176� 0.176� 0.159�

100×100×100� 333.68� 318.25� 148.371�

0.1
200×200×200 2847.594� 2615.103� 1199.344�

10×10×10� 0.156� 0.157� 0.146�

100×100×100� 309.988� 295.739� 140.51�

0.01
200×200×200 2685.472� 2435.533� 1061.865�

10×10×10� 0.154� 0.155� 0.144�

100×100×100� 308.022� 294.132� 135.681�

0.001
200×200×200 2657.696� 2426.895� 1045.681�

Time: ms

5.2 The Execution time of Sparse Array
Operations

Table 6 shows the execution time of algorithms for the

matrix-matrix addition sparse array operation based on the
CRS and the ECRS schemes by compressing one
three-dimensional sparse array with various sparse ratios

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

and array sizes. In Table 6, we also compare the
execution time of algorithms for the matrix-matrix
addition sparse array operation with and without the data
compression scheme. From Table 6, we can see that the
performance of the matrix-matrix addition sparse array
operation based on the ECRS scheme is better than that
based on the CRS scheme. The reason is that the cost of
indirect data access for the ECRS scheme is less than that
for the CRS scheme. Moreover, the performance of the
matrix-matrix addition sparse array operation with the
data compression scheme is better than that without the
data compression scheme.

Table 7 shows the execution time of algorithms for the
matrix-matrix addition sparse array operation based on the
CCS and the ECCS schemes by compressing one
three-dimensional sparse array with various sparse ratios
and array sizes. From Table 7, we have similar
observations as those shown in Table 6.

Table 8 shows the execution time of algorithms for the
matrix-matrix addition sparse array operation based on the
CRS/CCS and the ECRS/ECCS schemes by compressing
two three-dimensional sparse arrays with various sparse
ratios and array sizes. From Table 8, we can see that the
performance of the matrix-matrix addition sparse array
operation based on the ECRS/ECCS schemes is better than
that based on the CRS/CCS schemes. The reason is that
the cost of index comparison for the ECRS/ECCS schemes
is less than that for the CRS/CCS schemes.

Table 9 shows the execution time of algorithms for the
matrix-matrix multiplication sparse array operation based
on the CRS/CCS and the ECRS/ECCS schemes by
compressing one three-dimensional sparse array with
various sparse ratios and array sizes. From Table 9, we
can see that the performance of the matrix-matrix
multiplication sparse array operation based on the
ECRS/ECCS schemes is better than that based on the
CRS/CCS schemes. The reason is that the cost of
indirect data access in the ECRS/ECCS schemes is less
than that in the CRS/CCS schemes.

Table 7: The execution time for the matrix-matrix
addition operation by compressing one sparse array.

Schemes CCS ECCS
Sparse Ratios Array Sizes C-N JIK C-N JKI C-N

10×10×10� 0.028 0.028 .028
100×100×100� 49.709 51.390 31.577 0.1
200×200×200 441.520 433.586 306.398

10×10×10� 0.008 0.008 0.008
100×100×100� 4.961 5.560 4.001 0.01
200×200×200 52.721 51.688 40.222

10×10×10� 0.006 0.006 0.006
100×100×100� 0.486 0.552 0.422 0.001
200×200×200 5.245 5.114 4.568

Time: ms
*C-N: Compressed array-Non-compressed array addition.

6. Conclusions

In this paper, we have presented the ECRS/ECCS data
compression schemes for multi-dimensional sparse array
based on the EKMR scheme. We have analyzed the
theoretical performance for both CRS/CCS and
ECRS/ECCS schemes in terms of the time complexity, the
space complexity, and the range of their usability for
practical applications. From the theoretical analysis, we
can conclude that the time and the space complexities for
compressing a multi-dimensional sparse array based on
the ECRS/ECCS schemes are less than those based on the
CRS/CCS schemes. The range of usability of the
ECRS/ECCS schemes is wider than that of the CRS/CCS
schemes for practical applications. In experimental test,
we also compared the execution time of matrix-matrix
addition and matrix-matrix multiplication sparse array
operations for both CRS/CCS and ECRS/ECCS schemes.
The experimental results show that sparse array operations
based on the ECRS/ECCS schemes outperform those
based on the CRS/CCS schemes for all test samples. The
results encourage us using the ECRS/ECCS schemes to
compress multi-dimensional sparse arrays.

Acknowledgments

The work in this paper was partially supported by

National Science Council of the Republic of China under
contract NSC90-2213-E-035-019.

References
[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Dongarra, V.

Eijkhout, R. Pozo, C. Romine and H. Van der Vorst,
Templates for the Solution of Linear Systems: Building
Blocks for the Iterative Methods, 2nd Edition, SIAM, 1994.

[2] Rong-Guey Chang, Tyng-Ruey Chung, and Jenq Kuen Lee,
“Compiler Optimization for Parallel Sparse Programs with
Array Intrinsics of Fortran 90,” In the International
Conference on Parallel Processing, September, 1999.

[3] Rong-Guey Chang, Tyng-Ruey Chung, and Jenq Kuen Lee,
“Parallel Sparse Supports for Array Intrinsic Functions of
Fortran 90,” accepted by Journal of Supercomputing.

[4] M. Cierniak and W. Li, “Unifying Data and Control
Transformations for Distributed Shared Memory
Machines,” Technical Report, November 1994.

[5] J.K. Cullum and R.A. Willoughby, “Algorithms for Large
Symmetric Eignenvalue Computations,” vol. 1 , 1985.

[6] B. B. Fraguela, R. Doallo, E. L. Zapata, “Cache Misses
Prediction for High Performance Sparse Algorithms, ” 4th
International Euro-Par Conference, pp.224-233, 1998.

[7] B. B. Fraguela, R. Doallo, E. L. Zapata, “Cache
Probabilistic Modeling for Basic Sparse Algebra Kernels
Involving Matrices with a Non-Uniform Distribution, ” 24th
IEEE Euromicro Conference, pp.345-348, August, 1998.

[8] G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd
ed. (Johns Hopkins Univ.Press, Baltimore, 1989)

[9] Mahmut Kandemir, J. Ramanujam, Alok Choudhary,
“Improving Cache Locality by a Combination of Loop and
Data Transformations,” IEEE Trans. on Computers, vol. 48,
no. 2, February 1999.

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

[10] Christoph W. Kebler and Craig H. Smith, “The
SPARAMAT Approach to Automatic Comprehension of
Sparse Matrix Computations,” In Proceedings of the
Seventh International Workshop on Program
Comprehension, pp. 200-207, 1999.

[11] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill, “A
Relation Approach to the Compilation of Sparse Matrix
Programs,” In Euro Par, August 1997.

[12] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill,
“Compiling Parallel Code for Sparse Matrix Applications,”
In Proceedings of the Supercomputing Conference, 1997.

[13] Chun-Yuan Lin, Jen-Shiuh Liu, and Yeh-Ching Chung,
“Efficient Representation Scheme for Multi-Dimensional
Array Operations, ” IEEE Transactions on Computers,
vol.51, no. 3, pp.327-345, March 2002.

[14] Jen-Shiuh Liu, Jiun-Yuan Lin, and Yeh-Ching Chung,
“Efficient Parallel Algorithms for Multi-Dimensional
Matrix Operations,” Proceedings of IEEE International
Symposium on Parallel Architectures, Algorithms and
Networks, Dec. 2000, Dallas, USA.

[15] Peter D. Sulatycke and Kanad Ghose, “Caching Efficient
Multithreaded Fast Multiplication of Sparse Matrices,” In
Proceedings of the 1st Merged International Parallel
Processing Symposium and Symposium on Parallel and
Distributed Processing, 1998.

[16] Manuel Ujaldon, Emilio L. Zapata, Shamik D. Sharma, and
Joel Saltz, “Parallelization Techniques for Sparse Matrix
Applications,” Journal of parallel and distribution
computing, 1996.

Table 6: The execution time for the matrix-matrix addition operation by compressing one sparse array.

Schemes CRS ECRS
Sparse Ratios Array Sizes C-N IJK C-N IKJ N-N C-N N-N

10×10×10� 0.027� 0.027� 0.156� 0.025� 0.125�

100×100×100� 26.599� 26.166� 160.421� 21.797� 134.796�

0.1
200×200×200 219.133� 217.494� 1280.544� 174.875� 1088.741�

10×10×10� 0.007� 0.007� 0.154� 0.007� 0.123�

100×100×100� 4.447� 3.907� 156.594� 3.762� 129.826�

0.01
200×200×200 33.392� 32.886� 1245.941� 28.305� 1044.63�

10×10×10� 0.006� 0.006� 0.154� 0.006� 0.124�

100×100×100� 0.492� 0.484� 154.613� 0.479� 130.545�

0.001
200×200×200 4.043� 3.985� 1234.613� 3.879� 1030.545�

Time: ms
*C-N: Compressed array-Non-compressed array addition. *N-N: Non-compressed array-Non-compressed array addition.

Table 8: The execution time of the matrix-matrix addition operation by compressing two sparse arrays.

Schemes CRS ECRS CCS ECCS
Sparse Ratios Array Sizes C-C IJK C-C IKJ C-C C-C JIK C-C JKI C-C

10×10×10� 0.096� 0.087� 0.07� 0.135 0.118 0.105
100×100×100� 106.702� 91.38� 66.03� 110.376 106.695 67.540 0.1
200×200×200 873.434� 828.625� 524.72� 897.346 868.475 609.974

10×10×10� 0.017� 0.015� 0.014� 0.023 0.021 0.017
100×100×100� 9.178� 8.816� 7.838� 11.911 11.169 8.445 0.01
200×200×200 78.243� 73.842� 55.5� 80.763 78.935 65.247

10×10×10� 0.009� 0.009� 0.009� 0.013 0.012 0.011
100×100×100� 0.794� 0.775� 0.718� 1.040 0.911 0.837 0.001
200×200×200 6.723� 6.655� 6.598� 7.078 6.918 6.614

Time: ms
*C-C: Compressed array-Compressed array addition.

Table 9: The execution time of the matrix-matrix multiplication operation by compressing one sparse array.

Schemes CRS ECRS CCS ECCS
Sparse Ratios Array Sizes C-N IJK C-N IKJ C-N C-N JIK C-N JKI C-N

10×10×10� 0.296� 0.295� 0.276� 0.234 0.232 0.224
100×100×100� 3597.635� 3335.909� 3096.54� 2600.032 2578.901 2316.291 0.1
200×200×200 161984.8� 150129.8� 138897.2� 41779.968 41029.251 36921.883

10×10×10� 0.037� 0.035� 0.035� 0.029 0.029 0.029
100×100×100� 455.157� 419.873� 395.519� 265.967 256.444 231.658 0.01
200×200×200 41274.71� 40388.59� 38301.28� 4164.510 4147.689 3689.118

10×10×10� 0.009� 0.009� 0.009� 0.007 0.000007 0.000006
100×100×100� 44.556� 44.102� 43.102� 24.813 24.534 22.422 0.001
200×200×200 729.424� 722.765� 712.617� 407.339 409.073 369.492

Time: ms
*C-N: Compressed array-Non-compressed array multiplication.

Proceedings of the First International Symposium on Cyber Worlds (CW�02)
0-7695-1862-1/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

