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Abstract

A data distribution scheme of sparse arrays on a
distributed memory multicomputer, in general, is
composed of three phases, data partition, data
distribution, and data compression. To implement the data
distribution scheme, methods proposed in the literature
first perform the data partition phase, then the data
distribution phase, followed by the data compression
phase.  We called this scheme as Send Followed
Compress (SFC) scheme. In this paper, we propose two
other data distribution schemes, Compress Followed Send
(CFS) and Encoding-Decoding (ED), for sparse array
distribution. In the CFS scheme, the data compression
phase is performed before the data distribution phase.
In the ED scheme, the data compression phase can be
divided into two steps, encoding and decoding. The
encoding step and the decoding step are performed before
and after the data distribution phase, respectively. To
evaluate the CFS and the ED schemes, we compare them
with the SFC scheme. Both theoretical analysis and
experimental test were conducted. In  theoretical
analysis, we analyze the SFC, the CFS, and the ED
schemes in terms of the data distribution time and the
data compression time. In experimental test, we
implemented these schemes on an IBM SP2 parallel
machine. From the experimental results, for most of test
cases, the CFS and the ED schemes outperform the SFC
scheme. For the CFS and the ED schemes, the ED
scheme outperforms the CFS scheme for all test cases.

Index Terms — Data distribution schemes, Data

compression methods, Partition methods, Sparse ratio,
distributed memory multicomputers.

1. Introduction

Array operations are useful in a large number of
important scientific codes, such as molecular dynamics

[7], finite-element methods [10], climate modeling [13],
etc. A data distribution scheme of sparse arrays on a
distributed memory multicomputer, in general, is
composed of three phases, data partition, data distribution,
and data compression. In the data partition phase, a
global sparse array is partitioned into some local sparse
arrays. In the data distribution phase, these local sparse
arrays are distributed to processors. In the data
compression phase, a local sparse array is compressed by
some data compression methods in order to obtain better
performance for sparse array operations.

To implement the data distribution scheme, many
methods have been proposed in the literature [2, 6, 13-14,
16]. Among them, the Block Row Scatter (BRS) scheme
[2, 14] has been popularly used to solve other important
issues for sparse array problems [2-3, 13-14]. In the data
partition phase, the BRS scheme partition a global array
into several blocks, all of the same spatial shape and size.
In the data distribution phase, the BRS scheme send local
sparse arrays to processors. In the data compression
phase, the BRS scheme use either the Compressed Column
Storage (CCS) scheme [4] or the Compressed Row
Storage (CRS) scheme [4] to compress the local sparse
array in each processor. For the BRS scheme, the three
phases of the data distribution scheme are performed in
the following order, the data partition phase, then the data
distribution phase, followed by the data compression
phase. A data distribution scheme with this order is
called the Send Followed Compress (SFC) scheme.

In this paper, we propose two data distribution
schemes, Compress Followed Send (CFS) and
Encoding-Decoding (ED), for sparse array distribution.
In the CFS scheme, the data compression phase is
performed before the data distribution phase. The ED is
a novel concept in which the data compression phase can
be divided into two steps, encoding and decoding. The
encoding step and the decoding step are performed before
and after the data distribution phase, respectively. In
encoding step, we encode information of nonzero array
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elements into a special buffer for each local sparse array.
In decoding step, the special buffer is decoded into a
compressed local sparse array.

To evaluate the CFS and the ED schemes, we
compare them with the SFC scheme. In the data
partition phase, many partition methods as block or cyclic
partition methods can be used for these three schemes.
For the page limitation, in this paper, the row partition,
the column partition, and the 2D mesh partition methods
that are similar to (Block, *), (*, Block), and (Block,
Block) data distribution schemes used in Fortran 90 [1]
are used for these three schemes. In the data distribution
phase, local sparse arrays, whether compressed or not, are
sent to processors in sequence. In the compression
phase, many data compression methods in [4] can be used
for these three schemes. In this paper, the CRS/CCS
methods are used to compress sparse local arrays for the
SFC and the CFS schemes while the encoding/decoding
step is used for the ED scheme. Both theoretical
analysis and experimental test were conducted. In
theoretical analysis, we analyze the SFC, the CFS, and the
ED schemes in terms of the data distribution time and the
data compression time. In experimental test, we
implemented the SFC, the CFS, and the ED schemes on
an IBM SP2 parallel machine. From the experimental
results, for most of test cases, the CFS and the ED
schemes outperform the SFC scheme. For the CFS and
the ED schemes, the ED scheme outperforms the CFS
scheme for all test cases.

This paper is organized as follows. In Section 2, a
brief survey of related work will be presented. Section 3
will describe the SFC, the CFS, and the ED schemes in
detail. Section 4 will analyze the theoretical
performance for the SFC, the CFS, and the ED schemes.
The experimental results of these three schemes will be
given in Section 5.

2. Related Work

Many methods have been proposed in the literature
to implement the data distribution scheme [2-3, 6, 13-14,
16]. Zapata et al. [2, 14] have proposed a data
distribution scheme, BRS, for two-dimensional sparse
arrays. Ziantz et al. [16] proposed a run-time
optimization technique that was applied to sparse arrays
compressed by the CRS/CCS methods for array
distribution and off-processor data fetching to reduce both
the communication and computation time. They used
the block data distribution scheme with a bin-packing
algorithm that belongs to the SFC scheme. Lee et al. [6]
presented an efficient library for parallel sparse
computations with Fortran 90 array intrinsic operations.
Their approach is promising in speeding up sparse array
computations using array intrinsic functions on both
sequential and distributed memory environments.

3. The SFC, CFS and ED Schemes

In the following, we describe the SFC, the CFS, and
the ED schemes in detail. We assume that a
two-dimensional global sparse array is given.

3.1 The SFC Scheme

The SFC is an intuitive data distribution scheme. In
the data partition phase, a global sparse array is
partitioned into local sparse arrays by some partition
methods. In this paper, the row partition, the column
partition, and the 2D mesh partition methods are used to
partition a global sparse array. For simplicity, in the
following, we use the row partition method as an example
to describe the SFC, the CFS, and the ED data distribution
schemes. The SFC, the CFS, and the ED data
distribution schemes based on the column and 2D mesh
partition methods are similar to those based on the row
partition method.

Assume that an 8x10 sparse array A with 16 nonzero
array elements (Figure 1) and four processors are given.
The partition result for the sparse array A by using the
row partition method is shown in Figure 2. In the data
distribution phase, local sparse arrays are packed and sent
to processors in sequence.  Figure 3 shows the
corresponding local sparse arrays received by each
processor for the partition result shown in Figure 2. In
the data compression phase, a local sparse array in each
processor is compressed by a data compression method.
In this paper, the CRS and the CCS methods are used to
compress sparse local arrays for the SFC and CFS
schemes. The CRS (CCS) method uses two
one-dimensional integer arrays, RO and CO, and one
one-dimensional floating-point array, VL, to compress all
of nonzero array elements along the rows (columns for
CCS) of the sparse array. The details for the CRS (CCS)
method can be found in [4]. Figure 4 show the
compressed results by using the CRS method for the
received local sparse arrays shown in Figure 3.

3.2 The CFS Scheme

The CFS scheme is similar to the SFC scheme
except that the data compression phase is performed
before the data distribution phase. In the data partition
phase, partition methods are used to partition a global
sparse array. In the data compression phase, the
CRS/CCS methods are used to compress local sparse
arrays. In the compression, the values stored in CO are
global array indices. In the data distribution phase, RO,
CO, and VL for each local sparse array are packed and
sent to its corresponding processor. After received the
corresponding packed buffer, each processor unpacks the
buffer to the corresponding RO, CO, and VL.
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Figure 1: A sparse array A with 16 nonzero array elements.
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Figure 2: The partition result for the sparse array A by using
the row partition method.
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Figure 3: The corresponding local sparse arrays received by
each processor for the partition result shown in Figure 2.
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Figure 4: The compressed results by using the CRS method
for the received local sparse arrays shown in Figure 3.

Since values stored in CO are global array indices in
the compression phase, when unpack the received buffer,
values stored in CO may need to be converted to local
array indices. We have the following cases.

Case 3.2.1: When the row (column) partition method
and the CRS (CCS for column) method are used in the
data partition phase and the data compression phase,
respectively, the values stored in CO of the received
buffer are desired local array indices. No conversion is
needed.

Case 3.2.2: When the row (column) partition method
and the CCS (CRS for column) method are used in the
data partition phase and the data compression phase,
respectively, each processor P; converts the values stored
in CO of the received buffer to the corresponding local
array indices by subtracting N from each value stored in
CO of the received buffer, where N is the total number of

columns (rows for column) in Py, Py, ..., P;;.

Case 3.2.3: When the 2D mesh partition method and
the CRS (CCS) method are used in the data partition phase
and the data compression phase, respectively, each
processor P;; converts the values stored in CO of the
received buffer to the corresponding local array indices by
subtracting M from each value stored in CO of the
received buffer, where M is the total number of columns
(rows for CCS) in P, P;y, ..., Pij1 (Poj, Py, ..., Piyj for
CCS).

An example of the CFS scheme is given in Figure 5
in which the row partition method is used in the data
partition phase and the CCS method is used in the data
compression phase. Figure 5(a) shows the partition
result for the sparse array A (Figure 1) by using the row
partition method. Figure 5(b) shows the compressed
results by using the CCS method for local sparse arrays
shown in Figure 5(a). In Figure 5(b), the values stored
in CO are global indices of global sparse array A, not
local indices of a local sparse array. Figure 5(c) only
shows the data distribution phase for P;. In Figure 5(c),
RO, CO, and VL for the first local sparse array are packed
into a buffer and sent to P;. After receiving the buffer,
Py unpacks the received buffer to the corresponding RO,
CO, and VL. According to Case 3.2.2 described above,
P, converts the values stored in CO of the received buffer
to the corresponding local array indices by subtracting 3
from each value stored in CO of the received buffer. For
Py, P,, and P;, the packing, send/receive, and unpacking
procedures are similar to that of P;.

3.3 The ED Scheme

The ED is a novel concept in which the data
compression phase can be divided into two steps,
encoding and decoding. In the data partition phase, the
partition methods are used to partition a global sparse
array. In the encoding step, each local sparse array is
encoded into a special buffer B. Figure 6 shows the
formats of the special buffer B for the CRS/CCS methods.
In Figure 6, for the CRS (CCS) method, the R; is used to
store the number of nonzero array elements in a row
(column for CCS) i. The C;;and V;; are used to store the
column (row for CCS) index and the value of the jth
nonzero array element in a row (column for CCS) i,
respectively. The C;; and V;; are alternately stored in the
buffer B and each C;; is a global index of the global sparse
array. In the data distribution phase, these special
buffers are sent to processors in sequence. In the
decoding step, the special buffer B is decoded to get RO,
CO, and VL in each processor. To get RO, in each
processor, RO[0] is first initialized to 1. Then other
values of RO are computed according to the
formula RO[i +1]=RO[i]+ R, , where i =0, 1, ..., nand n

is the number of rows in a local sparse array.
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Figure 5: An example of the CFS scheme.
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i:the row index J @ the jth non-zero array element in row i

R, : the number of non-zero array elements in row i
Cu : the column index of jth non-zero array elements in row i

V”. : the value of jth non-zero array elements in row i

(a) for CRS method
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i : the column index J : the jth non-zero array element in column i

R, : the number of non-zero array elements in column i
C;, : the row index of jth non-zero array elements in column i
V..t the value of jth non-zero array elements in column i

’ (b) for CCS method
Figure 6: The formats of the special buffer B.

To get CO, in each processor, we move Cyo, Co 1 5 .-
CO,j’ CI,O’ C]y], cees C]yj, ceey C,"o, C,"], ceey C[,j stored in the
special buffer to CO, where i =0, 1, ...,n,j=0, 1, ....m,
n is the number of rows of the local sparse array of a
processor, and m is the number of nonzero array elements
inrow i. To get VL, we move all V;; to VL in a similar
manner as that of getting CO. Since each C;; is a global
array index in the encoding step, to decode the received
special buffer in the decoding step, each C;; may need to
be converted to a local array index. We have the
following cases.

bl

Case 3.3.1: When the row (column) partition method
and the CRS (CCS for column) method are used in the
data partition phase and the data compression phase,
respectively, each C;; of the received buffer is desired
local array index. No conversion is needed.

Case 3.3.2: When the row (column) partition method
and the CCS (CRS for column) method are used in the
data partition phase and the data compression phase,
respectively, each processor P; converts each C;; of the
received special buffer to the corresponding local array
index by subtracting N from each C;; of the received
special buffer, where N is the total number of columns
(rows for column) in Py, Py, ..., P;;.

Case 3.3.3: When the 2D mesh partition method and
the CRS (CCS) method are used in the data partition phase
and the data compression phase, respectively, each
processor P;; converts each C;; of the received special
buffer to the corresponding local array index by
subtracting M from each C;; of the received special buffer,
where M is the total number of columns (rows for CCS) in
Pio, Pii, ..., Pijy (Poj, Py, ..., Py jfor CCS).

An example of the ED scheme is given in Figure 7 in
which the row partition method is used in the data
partition phase and the local sparse arrays are in CCS
format. Figure 7(a) shows the partition result for the
sparse array A (Figure 1) by using the row partition
method. Figure 7(b) shows the special buffers for local
sparse arrays shown in Figure 7(a). In Figure 7(b), each
C;;is a global index of global sparse array A.  Figure 7(c)
shows the special buffers received by each processor.
Figure 7(d) only shows the decoding step for P,. After
receiving the special buffer, to get RO, RO[0] is first set to
1. Then other values of RO are computed according to
the formula RO[i +1] = RO[i]+ R; , where i = 0, 1, and 2.
To get CO, we move C;q, Cy9, and Csq stored in the
special buffer to CO. According to Case 3.3.2 described
above, P, subtracts 3 from C;o, C4p, and Cs, of the
received special buffer to convert them to the desired
local array indices. To get VL, we move V3¢, V4, and
Vs, stored in the special buffer to VL. For Py, P,, and P;,
the decoding step is similar to that of P;.

4. Theoretical Analysis

In this section, we analyze the SFC, the CF'S, and the
ED schemes for two-dimensional sparse arrays in terms of
the data distribution time and the data compression time.
Here, we do not consider the data partition time since the
comparisons of the data distribution time and the data
compression time of these three schemes are based on the
same partition methods. For the page limitation, in this
paper, we only list theoretical analysis results for these
three schemes using the row partition method. However,
we do give some experimental results for the cases where
the column and the 2D mesh partition methods are used.
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(c) The data distribution phase

Figure 7: An example of the ED scheme.

In the following, we list the notations used in the
theoretical analysis.
® Ty is the startup time for a communication
channel.
® Tp., is the transmission time for sending an array
element through a communication channel.
® Toperaion 1S the operation time for an array
element. In order to simplify the analysis, we
use Toperaion tO present any operation cost for an
array element, such as memory access, addition
or subtraction operations, etc.
® Tpicinuion 1S the data distribution time for the data
distribution phase. The data distribution time
includes the packing/unpacking time and
send/receive time.
®  TCompression 18 the data compression time for the
data compression phase.
A is an nxn global sparse array.
p is the number of processors.
s is the sparse ratio of A.
S={s;|i=0,],..p—1} is the set of sparse ratios

of local sparse arrays. The largest sparse ratio
in S is denoted as s.

4.1 The Row Partition Method

Assume that A and p are given. The number of
nonzero array elements in A is sn’.

4.1.1 The CRS method
A. The SFC Scheme

For the SFC scheme, the row partition method
partition A into p local sparse arrays and the size of each
local sparse array is ’_n/ p-|><n. The largest number of
nonzero array elements among local sparse arrays is
|_n/ p-|><n xs. For a two-dimensional spare array in the
row partition method, array elements in a local sparse
array are continuous. Therefore, local sparse arrays are
sent to processors without packing into buffers. The
data distribution time Tpjgripusion 1S (pXTsz,,+n2><TDam)-
In the data compression phase, local sparse arrays are
compressed by the CRS method. Therefore, the data

compression time T compregsion 1S ( |'n/ p—|><n x( 1+3s )

X TOpemtivn .
B. The CFS Scheme

For the CFS scheme, the row partition method
partition A into p local sparse arrays and the size of each
local sparse array is ’_n/ p-|><n. The largest number of
nonzero array elements among local sparse arrays is
(n/ p—|><n xs. In the data compression phase, local
sparse arrays are compressed by the CRS method. This
phase is similar to compress a global sparse array by the
CRS method. Therefore, the data compression time
Teompression 18 (WX 1+38 DXToporaion-  In the data
distribution phase, the compressed results are first packed
into buffers.  These buffers are then sent to the
corresponding  processors. After receiving the
corresponding buffer, each processor unpacks the buffer
to get the desired RO, CO, and VL. The values stored in
CO do not need to be converted to local sparse indices in
each processor according to Case 3.2.1. The packing
time is (2n2s+n+p)xT0pmt,»vn, the send/receive time is p x
Tswarup + (2n2s+n+p) X Tpauwa, and the unpacking time is

((n/p—|>< nx(2s +(1/n))) +1) X Toperasion- Therefore, the
data distribution time  Tpipibution 15 PXTsarnpy +
@nPs+n+p)XTpue + 2n’s + ([n/pIxn x (25 +(1/n)) +
n+p + DXToperation

C. The ED Scheme

For the ED scheme, the row partition method
partition A into p local sparse arrays and the size of each
local sparse array is ’_n/ p-|><n. The largest number of
nonzero array elements among local sparse arrays is
(n/ p—|><n xs. In the encoding step, the encoding time is
(n*x(1+3s NXToperaiion-  In the data distribution phase,
the data distribution time Tpipipuion 15 PXTsarmp +
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(2n2s+n)xTDM). In the decoding step, the special buffer
B in each processor is decoded. The C;; stored in the
special buffer do not need to be converted to local sparse
indices in each processor according Case 3.3.1. The

decoding time is (|_n/p—|>< nx(2s +(1/m)+ 1) XToperasion-
The  data Tcompression 18
(*%( 1435 )+ [n/pxnx@2s +1/n)) +1) XToperation-
Table 1 lists the data distribution time and the data
compression time of the SFC, the CFS, and the ED

schemes using the row partition method and the CRS
method.

compression time

Table 1: The data distribution time and the data
compression time of the SFC, the CFS, and the ED schemes.
Method | Complexity Cost
PXTsiarnp + nszD,,,,,

([ %] % X(14 35 DXT oporaon

2
PXTsaup + (2n"s+14p)XTparg +

Tpistibution '
crs | Tooin (2n2‘;+([ A 1><n><(25 + (Y +n+ p +DXToperaion

TDisrribuzion

SFC

T Compression

2
Tcompression (n"xX(1+ 35 ))XT operation
2
Tpistribution )4 XTSmr-mp + 2ns+m)XTpaia
ED 2. n . 1
Teompression | (X(1+3s)+ » Xnx(2s +( A)) +DXT operation

D. Discussions

From Table 1, we can see that the data distribution

time of the ED scheme is less than that of the CFS scheme.

The data distribution time of the ED scheme is less than
that of the SFC scheme if the sparse ratio of a global
sparse array is less than 0.5. Since the sparse ratio of a
global sparse array is less than 0.5, the data distribution

time of the ED scheme is less than that of the SFC scheme.

We have the following remark.

Remark 1. The data distribution time of the ED
scheme is less than that of the SF'C and the CFS schemes.

For the data distribution time of the CFS scheme, it
is less than that of the SF'C scheme if the condition Tp,, >
(25/11=28)Toperarion 18 satisfied. In general, Tp,, is less
than or equal t0 Toperaion in a distributed memory
multicomputer. If we assume that Tp,, is equal to

Toperations Tpaa > (28/1=28)Toperarion When s is less than 0.25.

According to the Harewell-Boeing Sparse Matrix
Collection [8, 9], it shows that over 80% sparse array
applications in which the sparse ratio of a sparse array is
less than 0.1.  'We have the following remark.

Remark 2. The data distribution time of the CFS
scheme is less than that of the SFC scheme for most of
sparse array applications.

For the data compression time of the SFC, the CFS,
and the ED schemes using the row partition method and
the CRS method, we have the following remark.

Remark 3. The data compression time of the SFC

scheme is less than that of the CFS scheme that is less
than that of the ED scheme.

From Table 1, for the overall performance of the
SFC, the CFS, and the ED schemes using the row
partition method and the CRS method, we have two
remarks.

Remark 4. The ED scheme outperforms the CFS
scheme.

Remark 5. The ED and the CFS schemes
outperform the SFC scheme if the conditions

TData > 1+ 35/ 1-2s )TOperation and TData >

(1+5s/1- 29)Toperation  are  satisfied, — respectively.
( TData > (3s/1 - 2S)TOpemtion and

(55/1=28)Tpperation in the column and the 2D mesh

TData >

partition methods)

4.1.2 The CCS method

Table 2 lists the data distribution time and the data
compression time of the SFC, the CFS, and the ED
schemes using the row partition method and the CCS
method.

Table 2: The data distribution time and the data
compression time of the SFC, the CFS, and the ED schemes.

Method| Complexity Cost
T pistribution P XTSmrlu]) + nZXTDam
S Teompmsion (| 1 <4350

PXTstarup + @1 s+n4p)XTp g +

crs | Toisriaion | (22 +([ % WX11><(35')+ pr+ p+n+DXToperaion

2
T Compression ("% (1435 )XToperation
7
Tpistribution prS!m'lup +(2n S+I7”)XTDam
ED 2 '
Teompmsion | (PX(1435) + | 115X (35') 414 DXT e

The main difference between Table 1 and Table2 is
that, for the CF'S and the ED schemes, the values stored in
CO and each C;; stored in the special buffer need to be
converted to local array indices in each processor
according to Case 3.2.2 and Case 3.3.2, respectively.
From Table 2, for the data distribution time, the data
compression time, and the overall performance of these
three schemes, we have similar observations as those of
Remarks 1, 2, 3, 4, and 5.

5. Experimental Results

In the experimental test, we implement the SFC, the
CFS, and the ED schemes on an IBM SP2 parallel
machine. In the partition phase, the row partition, the
column partition, and the 2D mesh partition methods are
implemented. In the compression phase, the CRS
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method is implemented.  All methods are written in C +
MPI (Message Passing Interface) codes. The sparse
ratio is set to 0.1 for all two-dimensional sparse arrays
used as test samples.

5.1 The Row Partition Method

Table 3 shows the data distribution and the data
compression time for the SFC, the CFS, and the ED
schemes using the row partition method.

Table 3: The data distribution and the data compression
time of the SFC, the CFS, and the ED schemes.

No. of Array Sizes| 50,200 | 400x400 | 800x800 | 1000x1000 | 2000x2000
Processors |Methods-Costs
e 1T 5.648 | 19.009 | 68798 | 94.542 | 383718
Teommsion] 2527 | 7604 | 26959 | 38.778 | 160.579
. s | Tostuien| 4119 | 10591 | 31377 | 39265 | 13491
Teompmsson] 4573 | 18.205 | 73.183 | 119348 | 507.399
op o | 1716 | 6132 | 18781 | 27618 | 103443
Teommeinn] 6878 | 21001 | 83453 | 127.398 | 520.574
e LD 7234 | 22.154 | 71642 | 97234 | 388.184
Teommsion] 0887 | 2380 | 8406 | 12647 | 40814
” s 1T 4.120 | 14.204 | 48.825 | 61640 | 187.761
Teompmsion] 4573 | 18205 | 73.183 | 119348 | 507.399
op Towu | 3302 | 8343 | 21625 | 30309 | 106922
Teomession] 4886 | 19.575 | 92.187 | 146.024 | 530.092
e Do | 8676 | 25083 | 74066 | 100.102 | 392763
Teommoion] 0689 | 2069 | 4882 | 8.179 31427
“ s 1T 6.542 | 14.908 | 54463 | 71.368 | 197.496
Teommeion] 4573 | 18.295 | 73.183 | 119348 | 507.399
o T 4704 | 11272 | 24.049 | 33.177 | 111235
Teompmsion] 4832 | 17.964 | 95.188 | 147.834 | 530.887
Time: ms

From Table 3, for the data distribution time, we have
the following observations.
1. The data distribution time of the ED scheme is
less than that of the SFC and the CFS schemes.
2. The data distribution time of the CFS scheme is
less than that of the SFC scheme.
From experimental tests, we can estimate that

Tpaa =1.2XToperarion - Therefore, for the CFS scheme,

the condition T, > (Y)Topuraion shown in Table 1 is

satisfied. These results match Remarks 1 and 2.

For the data compression time, from Table 3, we

have the following observation.

1. The data compression of the SFC scheme is less
than that of CF'S scheme is less than that of the ED
scheme.

This result matches Remark 3.

For the overall performance, from Table 3, we have

the following observations.

1. The ED scheme outperforms the CFS scheme.

2.The SFC outperforms the CFS and the ED
schemes since the conditions

TData > (1%)T0pemtion and

(1%)T0pem,ion shown in Table 1 are not satisfied,

TData >

respectively.
These results match Remarks 4 and 5.

From Table 3, we can see that the experimental
results match the theoretical analysis in Table 1.

5.2 The Column Partition Method

Table 4 shows the data distribution and the data
compression time of the SFC, the CFS, and the ED
schemes using the column partition method. From Table
4, for the data distribution time and the data compression
time, the experimental results match Remarks 1, 2, 3, and
4. For the overall performance of these schemes, we
have the following observations.

1. The ED scheme outperforms the CFS scheme.

2. The CFS and the ED schemes outperform the SFC

scheme since the conditions

TData > (%)T()pemtion and TData > (%)TOPemﬁan

are satisfied, respectively.
These results match Remarks 4 and 5.

Table 4: The data distribution and the data compression
time of the SFC, the CFS, and the ED schemes.

No. of Array Sizes
Processors|Methods-Costs

SFC

200x200 | 400x400 | 800x800 |1000x1000{2000x2000

12.208 | 45.155 | 179.714 | 292.231 909.207
1.914 6.536 24.003 38.606 147.746
4.734 14.787 61.085 84.134 289.102
4.573 18.295 73.183 119.348 | 507.399
1.741 6.182 18.880 27.742 103.691
6.763 24.848 97.887 152.643 | 597.112
14.727 | 47.457 | 188.987 | 301.999 | 925.376
0.704 1.76 7.260 9.691 38.179
6.983 17.173 77.401 109.220 | 334.324
4.573 18.295 73.183 119.348 | 507.399
3.427 8.593 22.724 32433 110.170
7.711 26.319 | 108.886 | 166.119 | 630.521
16.057 | 48.399 | 196.915 | 310.999 | 935.492
0.561 1.305 5.188 6.212 22.273
8.373 18.970 | 83.835 126.788 | 346.495
4.573 18.295 73.183 119.348 | 507.399
4.729 10.022 | 25.148 35.301 116.483
8.099 27.005 | 115.503 | 176.134 | 644.641
Time: ms

4 CFS

ED

SFC

16 CFS

ED

SFC

32 CFS

ED

5.3 The 2D Mesh Partition Method

Table 5 shows the data distribution and the data
compression time of the SFC, the CFS, and the ED
schemes using the 2D mesh partition method. For the
data distribution time and the data compression time, the
experimental results match Remarks 1, 2, and 3. For the
overall performance, the ED scheme outperforms the CFS
scheme that outperforms the SFC scheme. These results
match Remarks 4 and 5.

From the theoretical analysis and experimental
results, for the SFC, the CFS, and the ED schemes, we
have the following conclusions.

Conclusion 1: For the data distribution phase, the
data distribution time of the ED scheme is less than that
of the SFC and the CFS schemes. For most of cases, the
data distribution time of the CFS scheme is less than that
of the SFC scheme.
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Table 5: The data distribution and the data compression
time of the SFC, the CFS, and the ED schemes.

P"i)\’(";g{) - Melhm;:fggwf’m 120x120 | 240%240 | 480x480 | 960x960 | 1920x1920
src [ Tbu 11.191 | 46565 | 162.632 | 250.151 | 902.477

T compre 0.633 | 2.780 | 8.898 | 32556 | 136.174

T, 3498 | 8.192 | 32.737 | 54128 | 200.717

2O o | 4573 | 18.295 | 73.183 | 119.348 | 507.399
e LT 1659 | 4701 | 16.718 | 25.695 | 100.251

T compre 4.926 | 19.861 | 75.475 | 123.114 | 517.207

SFC | T 14.522 | 50.696 | 170.702 | 265.641 | 914.282

T compression |__0-339_|_0.998 | 2.750 | 9.792 36.127

T, 4303 | 12298 | 44391 | 67.015 | 22096

At CFS 4573 | 18.295 | 73.183 | 119.348 | 507.399
Ep | T 3702 | 9.143 | 23209 | 32293 | 110.89

T compression | 5096 | 20367 | 74.619 | 13349 | 532.396

src L 17785 | 60.028 | 183.293 | 285.791 | 938.527

T compre 0.184 | 0588 | 1.228 | 5376 18.973

Ty 6.155 | 15295 | 53.006 | 86.23 | 245.821

XGOS [ in ] 4573 | 18.295 | 73.183 | 119.348 | 507.399
£p LL 4177 | 10.093 | 25.09 | 34.649 | 115.602

T compre 6.249 | 25414 | 82.027 | 150.997 | 570.591
Time: ms

Conclusion 2: For the data compression phase, the
data compression time of the SFC is less than that of the
CFS scheme that is less than that of the ED scheme.

Conclusion 3: For the overall performance, the ED
scheme outperforms the CFS scheme. For most of cases,
the CF'S and the ED schemes outperform the SFC scheme.

6. Conclusions

In this paper, we have proposed two data distribution
schemes, CFS and ED, for the distribution of sparse
arrays on distributed memory multicomputers. Both
theoretical analysis and experimental test were conducted.
In theoretical analysis, we analyze the SFC, the CFS, and
the ED schemes in term of the data distribution time and
the data compression time. In the experimental tests, for
most of test cases, the CFS and the ED schemes
outperform the SFC scheme. The reason is that we do
not send entire local sparse arrays to processors in the
CFS and the ED schemes. The data distribution time
can be reduced. For the CFS and the ED schemes, the
ED scheme outperforms the CFS scheme for all test cases.
The reason is that, for the ED scheme, the data
distribution time is less than that for the CFS scheme. In
the future, we plan to work on to work on the following
directions. (1) Analyze the performance of the SF'C, the
CFS, and the ED schemes for other partition and data
compression methods. (2) Developing efficient data
distribution schemes for multi-dimensional sparse arrays
based on the extended Karnaugh map representation
(EKMR) scheme [11-12]. We believe that these
directions are of importance in parallel sparse array
operations.
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