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Abstract 
 

A data distribution scheme of sparse arrays on a 
distributed memory multicomputer, in general, is 
composed of three phases, data partition, data 
distribution, and data compression. To implement the data 
distribution scheme, methods proposed in the literature 
first perform the data partition phase, then the data 
distribution phase, followed by the data compression 
phase.  We called this scheme as Send Followed 
Compress (SFC) scheme.  In this paper, we propose two 
other data distribution schemes, Compress Followed Send 
(CFS) and Encoding-Decoding (ED), for sparse array 
distribution.  In the CFS scheme, the data compression 
phase is performed before the data distribution phase.  
In the ED scheme, the data compression phase can be 
divided into two steps, encoding and decoding.  The 
encoding step and the decoding step are performed before 
and after the data distribution phase, respectively.  To 
evaluate the CFS and the ED schemes, we compare them 
with the SFC scheme. Both theoretical analysis and 
experimental test were conducted.  In theoretical 
analysis, we analyze the SFC, the CFS, and the ED 
schemes in terms of the data distribution time and the 
data compression time.  In experimental test, we 
implemented these schemes on an IBM SP2 parallel 
machine.  From the experimental results, for most of test 
cases, the CFS and the ED schemes outperform the SFC 
scheme.  For the CFS and the ED schemes, the ED 
scheme outperforms the CFS scheme for all test cases. 
 
Index Terms − Data distribution schemes, Data 
compression methods, Partition methods, Sparse ratio, 
distributed memory multicomputers. 
 
1. Introduction 

 
Array operations are useful in a large number of 

important scientific codes, such as molecular dynamics 

[7], finite-element methods [10], climate modeling [13], 
etc.  A data distribution scheme of sparse arrays on a 
distributed memory multicomputer, in general, is 
composed of three phases, data partition, data distribution, 
and data compression.  In the data partition phase, a 
global sparse array is partitioned into some local sparse 
arrays.  In the data distribution phase, these local sparse 
arrays are distributed to processors.  In the data 
compression phase, a local sparse array is compressed by 
some data compression methods in order to obtain better 
performance for sparse array operations. 

To implement the data distribution scheme, many 
methods have been proposed in the literature [2, 6, 13-14, 
16].  Among them, the Block Row Scatter (BRS) scheme 
[2, 14] has been popularly used to solve other important 
issues for sparse array problems [2-3, 13-14].  In the data 
partition phase, the BRS scheme partition a global array 
into several blocks, all of the same spatial shape and size.  
In the data distribution phase, the BRS scheme send local 
sparse arrays to processors.  In the data compression 
phase, the BRS scheme use either the Compressed Column 
Storage (CCS) scheme [4] or the Compressed Row 
Storage (CRS) scheme [4] to compress the local sparse 
array in each processor.  For the BRS scheme, the three 
phases of the data distribution scheme are performed in 
the following order, the data partition phase, then the data 
distribution phase, followed by the data compression 
phase.  A data distribution scheme with this order is 
called the Send Followed Compress (SFC) scheme.   

In this paper, we propose two data distribution 
schemes, Compress Followed Send (CFS) and 
Encoding-Decoding (ED), for sparse array distribution.  
In the CFS scheme, the data compression phase is 
performed before the data distribution phase.  The ED is 
a novel concept in which the data compression phase can 
be divided into two steps, encoding and decoding.  The 
encoding step and the decoding step are performed before 
and after the data distribution phase, respectively.  In 
encoding step, we encode information of nonzero array 

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02) 
1530-2016/02 $17.00 © 2002 IEEE 



elements into a special buffer for each local sparse array.  
In decoding step, the special buffer is decoded into a 
compressed local sparse array.   

To evaluate the CFS and the ED schemes, we 
compare them with the SFC scheme.  In the data 
partition phase, many partition methods as block or cyclic 
partition methods can be used for these three schemes.  
For the page limitation, in this paper, the row partition, 
the column partition, and the 2D mesh partition methods 
that are similar to (Block, *), (*, Block), and (Block, 
Block) data distribution schemes used in Fortran 90 [1] 
are used for these three schemes.  In the data distribution 
phase, local sparse arrays, whether compressed or not, are 
sent to processors in sequence.  In the compression 
phase, many data compression methods in [4] can be used 
for these three schemes.  In this paper, the CRS/CCS 
methods are used to compress sparse local arrays for the 
SFC and the CFS schemes while the encoding/decoding 
step is used for the ED scheme.  Both theoretical 
analysis and experimental test were conducted.  In 
theoretical analysis, we analyze the SFC, the CFS, and the 
ED schemes in terms of the data distribution time and the 
data compression time.  In experimental test, we 
implemented the SFC, the CFS, and the ED schemes on 
an IBM SP2 parallel machine.  From the experimental 
results, for most of test cases, the CFS and the ED 
schemes outperform the SFC scheme.  For the CFS and 
the ED schemes, the ED scheme outperforms the CFS 
scheme for all test cases.   

This paper is organized as follows.  In Section 2, a 
brief survey of related work will be presented.  Section 3 
will describe the SFC, the CFS, and the ED schemes in 
detail.  Section 4 will analyze the theoretical 
performance for the SFC, the CFS, and the ED schemes.  
The experimental results of these three schemes will be 
given in Section 5. 
 
2. Related Work 

 
Many methods have been proposed in the literature 

to implement the data distribution scheme [2-3, 6, 13-14, 
16].  Zapata et al. [2, 14] have proposed a data 
distribution scheme, BRS, for two-dimensional sparse 
arrays.  Ziantz et al. [16] proposed a run-time 
optimization technique that was applied to sparse arrays 
compressed by the CRS/CCS methods for array 
distribution and off-processor data fetching to reduce both 
the communication and computation time.  They used 
the block data distribution scheme with a bin-packing 
algorithm that belongs to the SFC scheme.  Lee et al. [6] 
presented an efficient library for parallel sparse 
computations with Fortran 90 array intrinsic operations.  
Their approach is promising in speeding up sparse array 
computations using array intrinsic functions on both 
sequential and distributed memory environments. 

3. The SFC, CFS and ED Schemes 
 
In the following, we describe the SFC, the CFS, and 

the ED schemes in detail.  We assume that a 
two-dimensional global sparse array is given.   

 
3.1 The SFC Scheme 

 
The SFC is an intuitive data distribution scheme. In 

the data partition phase, a global sparse array is 
partitioned into local sparse arrays by some partition 
methods.  In this paper, the row partition, the column 
partition, and the 2D mesh partition methods are used to 
partition a global sparse array.  For simplicity, in the 
following, we use the row partition method as an example 
to describe the SFC, the CFS, and the ED data distribution 
schemes.  The SFC, the CFS, and the ED data 
distribution schemes based on the column and 2D mesh 
partition methods are similar to those based on the row 
partition method. 

Assume that an 8×10 sparse array A with 16 nonzero 
array elements (Figure 1) and four processors are given.  
The partition result for the sparse array A by using the 
row partition method is shown in Figure 2.  In the data 
distribution phase, local sparse arrays are packed and sent 
to processors in sequence.  Figure 3 shows the 
corresponding local sparse arrays received by each 
processor for the partition result shown in Figure 2.  In 
the data compression phase, a local sparse array in each 
processor is compressed by a data compression method.  
In this paper, the CRS and the CCS methods are used to 
compress sparse local arrays for the SFC and CFS 
schemes.  The CRS (CCS) method uses two 
one-dimensional integer arrays, RO and CO, and one 
one-dimensional floating-point array, VL, to compress all 
of nonzero array elements along the rows (columns for 
CCS) of the sparse array.  The details for the CRS (CCS) 
method can be found in [4].  Figure 4 show the 
compressed results by using the CRS method for the 
received local sparse arrays shown in Figure 3. 
 
3.2 The CFS Scheme 

 
The CFS scheme is similar to the SFC scheme 

except that the data compression phase is performed 
before the data distribution phase.  In the data partition 
phase, partition methods are used to partition a global 
sparse array.  In the data compression phase, the 
CRS/CCS methods are used to compress local sparse 
arrays.  In the compression, the values stored in CO are 
global array indices.  In the data distribution phase, RO, 
CO, and VL for each local sparse array are packed and 
sent to its corresponding processor.  After received the 
corresponding packed buffer, each processor unpacks the 
buffer to the corresponding RO, CO, and VL.  
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Sparse array A  
Figure 1: A sparse array A with 16 nonzero array elements. 
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Figure 2: The partition result for the sparse array A by using 
the row partition method. 
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Figure 3: The corresponding local sparse arrays received by 
each processor for the partition result shown in Figure 2. 
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Figure 4: The compressed results by using the CRS method 
for the received local sparse arrays shown in Figure 3. 
 

Since values stored in CO are global array indices in 
the compression phase, when unpack the received buffer, 
values stored in CO may need to be converted to local 
array indices.  We have the following cases. 

Case 3.2.1: When the row (column) partition method 
and the CRS (CCS for column) method are used in the 
data partition phase and the data compression phase, 
respectively, the values stored in CO of the received 
buffer are desired local array indices.  No conversion is 
needed. 

Case 3.2.2: When the row (column) partition method 
and the CCS (CRS for column) method are used in the 
data partition phase and the data compression phase, 
respectively, each processor Pi converts the values stored 
in CO of the received buffer to the corresponding local 
array indices by subtracting N from each value stored in 
CO of the received buffer, where N is the total number of 

columns (rows for column) in P0, P1, …, Pi-1. 
Case 3.2.3: When the 2D mesh partition method and 

the CRS (CCS) method are used in the data partition phase 
and the data compression phase, respectively, each 
processor Pi,j converts the values stored in CO of the 
received buffer to the corresponding local array indices by 
subtracting M from each value stored in CO of the 
received buffer, where M is the total number of columns 
(rows for CCS) in Pi,0, Pi,1, …, Pi,j-1 (P0,j, P1,j, …, Pi-1,j for 
CCS). 

An example of the CFS scheme is given in Figure 5 
in which the row partition method is used in the data 
partition phase and the CCS method is used in the data 
compression phase.  Figure 5(a) shows the partition 
result for the sparse array A (Figure 1) by using the row 
partition method.  Figure 5(b) shows the compressed 
results by using the CCS method for local sparse arrays 
shown in Figure 5(a).  In Figure 5(b), the values stored 
in CO are global indices of global sparse array A, not 
local indices of a local sparse array.  Figure 5(c) only 
shows the data distribution phase for P1.  In Figure 5(c), 
RO, CO, and VL for the first local sparse array are packed 
into a buffer and sent to P1.  After receiving the buffer, 
P1 unpacks the received buffer to the corresponding RO, 
CO, and VL.  According to Case 3.2.2 described above, 
P1 converts the values stored in CO of the received buffer 
to the corresponding local array indices by subtracting 3 
from each value stored in CO of the received buffer.  For 
P0, P2, and P3, the packing, send/receive, and unpacking 
procedures are similar to that of P1.   
 
3.3 The ED Scheme 

 
The ED is a novel concept in which the data 

compression phase can be divided into two steps, 
encoding and decoding.  In the data partition phase, the 
partition methods are used to partition a global sparse 
array.  In the encoding step, each local sparse array is 
encoded into a special buffer B.  Figure 6 shows the 
formats of the special buffer B for the CRS/CCS methods.  
In Figure 6, for the CRS (CCS) method, the Ri is used to 
store the number of nonzero array elements in a row 
(column for CCS) i.  The Ci,j and Vi,j are used to store the 
column (row for CCS) index and the value of the jth 
nonzero array element in a row (column for CCS) i, 
respectively.  The Ci,j and Vi,j are alternately stored in the 
buffer B and each Ci,j is a global index of the global sparse 
array.  In the data distribution phase, these special 
buffers are sent to processors in sequence.  In the 
decoding step, the special buffer B is decoded to get RO, 
CO, and VL in each processor.  To get RO, in each 
processor, RO[0] is first initialized to 1.  Then other 
values of RO are computed according to the 
formula iRiROiRO +=+ ][]1[ , where i = 0, 1, …, n and n 

is the number of rows in a local sparse array.   
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Figure 5: An example of the CFS scheme. 

 

 

R0 C0,1 V0,1 C0,j V0,j ����� �����Ri Ci,1 Vi,1����� Ci,j Vi,j

i : the row index

Ri : the number of non-zero array elements in row i

j : the jth non-zero array element in row i

Ci,j : the column index of jth non-zero array elements in row i

Vi,j : the value  of jth non-zero array elements in row i

(a) for CRS method

R0 C0,1 V0,1 C0,j V0,j ����� �����
Ri Ci,1 Vi,1�����

Ci,j Vi,j

i : the column index

Ri : the number of non-zero array elements in column i

j : the jth non-zero array element in column i

Ci,j : the row index of jth non-zero array elements in column i

Vi,j : the value  of jth non-zero array elements in column i

(b) for CCS method  
Figure 6: The formats of the special buffer B. 

 
To get CO, in each processor, we move C0,0, C0,1 , …, 

C0,j, C1,0, C1,1, …, C1,j, …, Ci,0, Ci,1, …, Ci,j stored in the 
special buffer to CO, where i = 0, 1, …, n, j = 0, 1, …,m, 
n is the number of rows of the local sparse array of a 
processor, and m is the number of nonzero array elements 
in row i.  To get VL, we move all Vi,j to VL in a similar 
manner as that of getting CO.  Since each Ci,j is a global 
array index in the encoding step, to decode the received 
special buffer in the decoding step, each Ci,j may need to 
be converted to a local array index.  We have the 
following cases.   

Case 3.3.1: When the row (column) partition method 
and the CRS (CCS for column) method are used in the 
data partition phase and the data compression phase, 
respectively, each Ci,j of the received buffer is desired 
local array index.  No conversion is needed.  

Case 3.3.2: When the row (column) partition method 
and the CCS (CRS for column) method are used in the 
data partition phase and the data compression phase, 
respectively, each processor Pi converts each Ci,j of the 
received special buffer to the corresponding local array 
index by subtracting N from each Ci,j of the received 
special buffer, where N is the total number of columns 
(rows for column) in P0, P1, …, Pi-1. 

Case 3.3.3: When the 2D mesh partition method and 
the CRS (CCS) method are used in the data partition phase 
and the data compression phase, respectively, each 
processor Pi,j converts each Ci,j of the received special 
buffer to the corresponding local array index by 
subtracting M from each Ci,j of the received special buffer, 
where M is the total number of columns (rows for CCS) in 
Pi,0, Pi,1, …, Pi,j-1 (P0,j, P1,j, …, Pi-1,j for CCS). 

An example of the ED scheme is given in Figure 7 in 
which the row partition method is used in the data 
partition phase and the local sparse arrays are in CCS 
format.  Figure 7(a) shows the partition result for the 
sparse array A (Figure 1) by using the row partition 
method.  Figure 7(b) shows the special buffers for local 
sparse arrays shown in Figure 7(a).  In Figure 7(b), each 
Ci,j is a global index of global sparse array A.  Figure 7(c) 
shows the special buffers received by each processor.  
Figure 7(d) only shows the decoding step for P1.  After 
receiving the special buffer, to get RO, RO[0] is first set to 
1.  Then other values of RO are computed according to 
the formula iRiROiRO +=+ ][]1[ , where i = 0, 1, and 2.  

To get CO, we move C3,0, C4,0, and C5,0 stored in the 
special buffer to CO.  According to Case 3.3.2 described 
above, P1 subtracts 3 from C3,0, C4,0, and C5,0 of the 
received special buffer to convert them to the desired 
local array indices.  To get VL, we move V3,0, V4,0, and 
V5,0 stored in the special buffer to VL.  For P0, P2, and P3, 
the decoding step is similar to that of P1.  
 
4. Theoretical Analysis 

 
In this section, we analyze the SFC, the CFS, and the 

ED schemes for two-dimensional sparse arrays in terms of 
the data distribution time and the data compression time.  
Here, we do not consider the data partition time since the 
comparisons of the data distribution time and the data 
compression time of these three schemes are based on the 
same partition methods.  For the page limitation, in this 
paper, we only list theoretical analysis results for these 
three schemes using the row partition method.  However, 
we do give some experimental results for the cases where 
the column and the 2D mesh partition methods are used. 
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Figure 7: An example of the ED scheme. 

 
In the following, we list the notations used in the 

theoretical analysis. 
 TStartup is the startup time for a communication 

channel. 
 TData is the transmission time for sending an array 

element through a communication channel. 
 TOperation is the operation time for an array 

element.  In order to simplify the analysis, we 
use TOperation to present any operation cost for an 
array element, such as memory access, addition 
or subtraction operations, etc. 

 TDistribution is the data distribution time for the data 
distribution phase.  The data distribution time 
includes the packing/unpacking time and 
send/receive time. 

 TCompression is the data compression time for the 
data compression phase.   

 A is an n×n global sparse array. 
 p is the number of processors. 
 s is the sparse ratio of A. 
 }1,...1,0|{ −== pisS i  is the set of sparse ratios 

of local sparse arrays.  The largest sparse ratio 
in S is denoted as s'. 

 
4.1 The Row Partition Method 

 
Assume that A and p are given.  The number of 

nonzero array elements in A is sn2.  

4.1.1 The CRS method 
A. The SFC Scheme 

 
For the SFC scheme, the row partition method 

partition A into p local sparse arrays and the size of each 
local sparse array is   npn × .  The largest number of 

nonzero array elements among local sparse arrays is 

  npn × ×s'.  For a two-dimensional spare array in the 

row partition method, array elements in a local sparse 
array are continuous.  Therefore, local sparse arrays are 
sent to processors without packing into buffers.  The 
data distribution time TDistribution is (p×TStartup+n2×TData).  
In the data compression phase, local sparse arrays are 
compressed by the CRS method.  Therefore, the data 

compression time TCompression is (   npn × ×( '31 s+ )) 

×TOperation.   
 

B. The CFS Scheme 
 
For the CFS scheme, the row partition method 

partition A into p local sparse arrays and the size of each 
local sparse array is   npn × .  The largest number of 

nonzero array elements among local sparse arrays is 

  npn × ×s'.  In the data compression phase, local 

sparse arrays are compressed by the CRS method.  This 
phase is similar to compress a global sparse array by the 
CRS method.  Therefore, the data compression time 
TCompression is (n2×( s31 + ))×TOperation.  In the data 
distribution phase, the compressed results are first packed 
into buffers.  These buffers are then sent to the 
corresponding processors.  After receiving the 
corresponding buffer, each processor unpacks the buffer 
to get the desired RO, CO, and VL.  The values stored in 
CO do not need to be converted to local sparse indices in 
each processor according to Case 3.2.1.  The packing 
time is (2n2s+n+p)×TOperation, the send/receive time is p × 
TStartup + (2n2s+n+p) × TData, and the unpacking time is 

(   )))1(2( ' nsnpn +×× +1) × TOperation.  Therefore, the 

data distribution time TDistribution is p×TStartup + 

(2n2s+n+p)×TData + (2n2s + (   npn × × )))1(2( ' ns +  + 

n + p + 1)×TOperation. 
 

C. The ED Scheme 
 
For the ED scheme, the row partition method 

partition A into p local sparse arrays and the size of each 
local sparse array is   npn × .  The largest number of 

nonzero array elements among local sparse arrays is 

  npn × ×s'.  In the encoding step, the encoding time is 

(n2×( s31 + ))×TOperation.  In the data distribution phase, 
the data distribution time TDistribution is (p×TStartup + 

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02) 
1530-2016/02 $17.00 © 2002 IEEE 



(2n2s+n)×TData).  In the decoding step, the special buffer 
B in each processor is decoded.  The Ci,j stored in the 
special buffer do not need to be converted to local sparse 
indices in each processor according Case 3.3.1.  The 

decoding time is (   ++×× )))1(2( ' nsnpn 1) ×TOperation.  

The data compression time TCompression is 

(n2×( s31 + )+   )))1(2( ' nsnpn +×× +1) ×TOperation.  

Table 1 lists the data distribution time and the data 
compression time of the SFC, the CFS, and the ED 
schemes using the row partition method and the CRS 
method.   
 

Table 1: The data distribution time and the data 
compression time of the SFC, the CFS, and the ED schemes. 
Method Complexity Cost 

TDistribution p×TStartup + n2×TData 

SFC 
TCompression ( np

n ×



 ×( '31 s+ ))×TOperation 

TDistribution 
p×TStartup + (2n2s+n+p)×TData + 

( pnnsnp
nsn +++××



+ )))1(2((2 '2 +1)×TOperationCFS 

TCompression (n2×( s31+ ))×TOperation 

TDistribution p×TStartup + (2n2s+n)×TData 

ED 
TCompression (n2×( s31+ )+ ))1(2( '

nsnp
n +××



 +1)×TOperation

 
 

D. Discussions 
 
From Table 1, we can see that the data distribution 

time of the ED scheme is less than that of the CFS scheme.  
The data distribution time of the ED scheme is less than 
that of the SFC scheme if the sparse ratio of a global 
sparse array is less than 0.5.  Since the sparse ratio of a 
global sparse array is less than 0.5, the data distribution 
time of the ED scheme is less than that of the SFC scheme.  
We have the following remark. 

Remark 1. The data distribution time of the ED 
scheme is less than that of the SFC and the CFS schemes. 

For the data distribution time of the CFS scheme, it 
is less than that of the SFC scheme if the condition TData > 
(2s/1−2s)TOperation is satisfied.  In general, TData is less 
than or equal to TOperation in a distributed memory 
multicomputer.  If we assume that TData is equal to 
TOperation, TData > (2s/1−2s)TOperation when s is less than 0.25.  
According to the Harewell-Boeing Sparse Matrix 
Collection [8, 9], it shows that over 80% sparse array 
applications in which the sparse ratio of a sparse array is 
less than 0.1.  We have the following remark. 

Remark 2. The data distribution time of the CFS 
scheme is less than that of the SFC scheme for most of 
sparse array applications. 

For the data compression time of the SFC, the CFS, 
and the ED schemes using the row partition method and 
the CRS method, we have the following remark.  

Remark 3. The data compression time of the SFC 

scheme is less than that of the CFS scheme that is less 
than that of the ED scheme. 

From Table 1, for the overall performance of the 
SFC, the CFS, and the ED schemes using the row 
partition method and the CRS method, we have two 
remarks. 

Remark 4.  The ED scheme outperforms the CFS 
scheme.   

Remark 5.  The ED and the CFS schemes 
outperform the SFC scheme if the conditions 

OperationData TssT )2131( −+> and >DataT  

OperationTss )2151( −+  are satisfied, respectively.  

( OperationData TssT )213( −>  and >DataT  

OperationTss )215( −  in the column and the 2D mesh 

partition methods) 
 

4.1.2 The CCS method 
 
Table 2 lists the data distribution time and the data 

compression time of the SFC, the CFS, and the ED 
schemes using the row partition method and the CCS 
method.   
 

Table 2: The data distribution time and the data 
compression time of the SFC, the CFS, and the ED schemes. 
Method Complexity Cost 

TDistribution p×TStartup + n2×TData 
SFC

TCompression ( np
n ×



 ×(1+3s'))×TOperation 

TDistribution

p×TStartup + (2n2s+n+p)×TData + 

( nppnsnp
nsn +++××



+ )3((2 '2 +1)×TOperationCFS

TCompression (n2×( s31+ ))×TOperation 
TDistribution p×TStartup + (2n2s+pn)×TData 

ED 
TCompression (n2×( s31 + ) + )3( 'snp

n ××



 +n+1)×TOperation 

 
 

The main difference between Table 1 and Table2 is 
that, for the CFS and the ED schemes, the values stored in 
CO and each Ci,j stored in the special buffer need to be 
converted to local array indices in each processor 
according to Case 3.2.2 and Case 3.3.2, respectively.  
From Table 2, for the data distribution time, the data 
compression time, and the overall performance of these 
three schemes, we have similar observations as those of 
Remarks 1, 2, 3, 4, and 5.   

 
5. Experimental Results 

 
In the experimental test, we implement the SFC, the 

CFS, and the ED schemes on an IBM SP2 parallel 
machine.  In the partition phase, the row partition, the 
column partition, and the 2D mesh partition methods are 
implemented.  In the compression phase, the CRS 
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method is implemented.   All methods are written in C + 
MPI (Message Passing Interface) codes.  The sparse 
ratio is set to 0.1 for all two-dimensional sparse arrays 
used as test samples.  

 
5.1 The Row Partition Method 

 
Table 3 shows the data distribution and the data 

compression time for the SFC, the CFS, and the ED 
schemes using the row partition method.   
 

Table 3: The data distribution and the data compression 
time of the SFC, the CFS, and the ED schemes. 

No. of 
Processors 

Array Sizes 
Methods-Costs 

200×200 400×400 800×800 1000×1000 2000×2000

TDistribution 5.648 19.009 68.798 94.542 383.718 
SFC 

TCompression 2.527 7.604 26.959 38.778 160.579 
TDistribution 4.119 10.591 31.377 39.265 134.291 

CFS 
TCompression 4.573 18.295 73.183 119.348 507.399 
TDistribution 1.716 6.132 18.781 27.618 103.443 

4 

ED 
TCompression 6.878 21.001 83.453 127.398 520.574 
TDistribution 7.234 22.154 71.642 97.234 388.184 

SFC 
TCompression 0.887 2.380 8.406 12.647 40.814 
TDistribution 4.120� 14.204 48.825� 61.640� 187.761�

CFS 
TCompression 4.573 18.295 73.183 119.348 507.399 
TDistribution 3.302 8.343 21.625 30.309 106.922 

16 

ED 
TCompression 4.886� 19.575 92.187� 146.024� 530.092�
TDistribution 8.676 25.083 74.066 100.102 392.763 

SFC 
TCompression 0.689 2.069 4.882 8.179 31.427 
TDistribution 6.542� 14.908 54.463� 71.368� 197.496�

CFS 
TCompression 4.573 18.295 73.183 119.348 507.399 
TDistribution 4.704 11.272 24.049 33.177 111.235 

32 

ED 
TCompression 4.832� 17.964 95.188� 147.834� 530.887�

Time: ms  
 

From Table 3, for the data distribution time, we have 
the following observations. 

1. The data distribution time of the ED scheme is 
less than that of the SFC and the CFS schemes.   

2. The data distribution time of the CFS scheme is 
less than that of the SFC scheme.  

From experimental tests, we can estimate that 

OperationData TT ×≈ 2.1 .  Therefore, for the CFS scheme, 

the condition OperationData TT )4
1(>  shown in Table 1 is 

satisfied.  These results match Remarks 1 and 2.   
For the data compression time, from Table 3, we 

have the following observation. 
1. The data compression of the SFC scheme is less 

than that of CFS scheme is less than that of the ED 
scheme.   

This result matches Remark 3.   
For the overall performance, from Table 3, we have 

the following observations. 
1. The ED scheme outperforms the CFS scheme. 
2. The SFC outperforms the CFS and the ED 

schemes since the conditions 

OperationData TT )8
15(>  and >DataT  

OperationT)8
13(  shown in Table 1 are not satisfied, 

respectively.   
These results match Remarks 4 and 5.   

From Table 3, we can see that the experimental 
results match the theoretical analysis in Table 1.   

 
5.2 The Column Partition Method 

 
Table 4 shows the data distribution and the data 

compression time of the SFC, the CFS, and the ED 
schemes using the column partition method.  From Table 
4, for the data distribution time and the data compression 
time, the experimental results match Remarks 1, 2, 3, and 
4.  For the overall performance of these schemes, we 
have the following observations. 

1. The ED scheme outperforms the CFS scheme. 
2. The CFS and the ED schemes outperform the SFC 

scheme since the conditions 

OperationData TT )8
5(>  and OperationData TT )8

3(>  

are satisfied, respectively.   
These results match Remarks 4 and 5.  

 
Table 4: The data distribution and the data compression 

time of the SFC, the CFS, and the ED schemes. 
No. of 

Processors
Array Sizes

Methods-Costs 
200×200 400×400 800×800 1000×1000 2000×2000

TDistribution 12.208 45.155 179.714 292.231 909.207
SFC

TCompression 1.914 6.536 24.003 38.606 147.746
TDistribution 4.734� 14.787� 61.085� 84.134� 289.102

CFS
TCompression 4.573 18.295 73.183 119.348 507.399
TDistribution 1.741 6.182 18.880 27.742 103.691

4 

ED 
TCompression 6.763� 24.848� 97.887� 152.643 597.112�
TDistribution 14.727 47.457 188.987 301.999 925.376

SFC
TCompression 0.704 1.76 7.260 9.691 38.179 
TDistribution 6.983� 17.173� 77.401� 109.220 334.324

CFS
TCompression 4.573 18.295 73.183 119.348 507.399
TDistribution 3.427 8.593 22.724 32.433 110.170 

16 

ED 
TCompression 7.711� 26.319� 108.886� 166.119 630.521
TDistribution 16.057 48.399 196.915 310.999 935.492

SFC
TCompression 0.561 1.305 5.188 6.212 22.273 
TDistribution 8.373� 18.970� 83.835� 126.788 346.495

CFS
TCompression 4.573 18.295 73.183 119.348 507.399
TDistribution 4.729 10.022 25.148 35.301 116.483 

32 

ED 
TCompression 8.099� 27.005� 115.503� 176.134 644.641

Time: ms  
 

5.3 The 2D Mesh Partition Method 
 
Table 5 shows the data distribution and the data 

compression time of the SFC, the CFS, and the ED 
schemes using the 2D mesh partition method.  For the 
data distribution time and the data compression time, the 
experimental results match Remarks 1, 2, and 3.  For the 
overall performance, the ED scheme outperforms the CFS 
scheme that outperforms the SFC scheme.  These results 
match Remarks 4 and 5.  

From the theoretical analysis and experimental 
results, for the SFC, the CFS, and the ED schemes, we 
have the following conclusions. 

Conclusion 1: For the data distribution phase, the 
data distribution time of the ED scheme is less than that 
of the SFC and the CFS schemes.  For most of cases, the 
data distribution time of the CFS scheme is less than that 
of the SFC scheme. 
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Table 5: The data distribution and the data compression 
time of the SFC, the CFS, and the ED schemes. 

No. of 
Processors 

Array Sizes 
Methods-Costs 

120×120 240×240 480×480 960×960 1920×1920

TDistribution 11.191 46.565 162.632 250.151 902.477 
SFC 

TCompression 0.633 2.789 8.898 32.556 136.174 
TDistribution 3.498� 8.192� 32.737� 54.128� 200.717�

CFS 
TCompression 4.573 18.295 73.183 119.348 507.399 
TDistribution 1.659 4.701 16.718 25.695 100.251 

2×2 

ED 
TCompression 4.926� 19.861 75.475� 123.114� 517.207�
TDistribution 14.522 50.696 170.702 265.641 914.282 

SFC 
TCompression 0.339 0.998 2.750 9.792 36.127 
TDistribution 4.303� 12.298 44.391� 67.015� 220.96�

CFS 
TCompression 4.573 18.295 73.183 119.348 507.399 
TDistribution 3.702 9.143 23.209 32.293 110.89 

4×4 

ED 
TCompression 5.096� 20.367 74.619� 133.49� 532.396�
TDistribution 17.785 60.028 183.293 285.791 938.527 

SFC 
TCompression 0.184 0.588 1.228 5.376 18.973 
TDistribution 6.155� 15.295 53.006� 86.23� 245.821�

CFS 
TCompression 4.573 18.295 73.183 119.348 507.399 
TDistribution 4.177 10.093 25.09 34.649 115.602 

6×6 

ED 
TCompression 6.249� 25.414 82.027� 150.997� 570.591�

Time: ms  
 

Conclusion 2: For the data compression phase, the 
data compression time of the SFC is less than that of the 
CFS scheme that is less than that of the ED scheme.   

Conclusion 3: For the overall performance, the ED 
scheme outperforms the CFS scheme.  For most of cases, 
the CFS and the ED schemes outperform the SFC scheme. 
 
6. Conclusions 

 
In this paper, we have proposed two data distribution 

schemes, CFS and ED, for the distribution of sparse 
arrays on distributed memory multicomputers.  Both 
theoretical analysis and experimental test were conducted.  
In theoretical analysis, we analyze the SFC, the CFS, and 
the ED schemes in term of the data distribution time and 
the data compression time.  In the experimental tests, for 
most of test cases, the CFS and the ED schemes 
outperform the SFC scheme.  The reason is that we do 
not send entire local sparse arrays to processors in the 
CFS and the ED schemes.  The data distribution time 
can be reduced.  For the CFS and the ED schemes, the 
ED scheme outperforms the CFS scheme for all test cases.  
The reason is that, for the ED scheme, the data 
distribution time is less than that for the CFS scheme.  In 
the future, we plan to work on to work on the following 
directions.  (1) Analyze the performance of the SFC, the 
CFS, and the ED schemes for other partition and data 
compression methods.  (2) Developing efficient data 
distribution schemes for multi-dimensional sparse arrays 
based on the extended Karnaugh map representation 
(EKMR) scheme [11-12].  We believe that these 
directions are of importance in parallel sparse array 
operations. 
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