
A Multiple LID Routing Scheme for Fat-Tree-Based InfiniBand Networks

Xuan-Yi Lin, Yeh-Ching Chung, and Tai-Yi Huang

Department of Computer Science
National Tsing-Hua University, Hsinchu, Taiwan 300, ROC

{xylin, ychung, tyhuang}@cs.nthu.edu.tw

Abstract

In a cluster system, performance of the interconnection

network greatly affects the computation power generated

together from all interconnected processing nodes. The
network architecture, the interconnection topology, and

the routing scheme are three key elements dominating the

performance of an interconnection network. InfiniBand

architecture (IBA) is a new industry standard architecture.

It defines a high-bandwidth, high-speed, and low-latency

message switching network that is good for constructing
high-speed interconnection networks for cluster systems.

Fat-trees are well-adopted as the topologies of

interconnection networks because of many nice properties

they have. In this paper, we proposed an m-port n-tree

approach to construct fat-tree-based InfiniBand networks.

Based on the constructed fat-tree-based InfiniBand
networks, we proposed an efficient Multiple LID (MLID)

routing scheme. The proposed routing scheme is

composed of processing node addressing scheme, path

selection scheme, and forwarding table assignment

scheme. To evaluate the performance of the proposed
routing scheme, we have developed a software simulator

for InfiniBand networks. The simulation results show

that the proposed routing scheme runs well on the

constructed fat-tree-based InfiniBand networks and is

able to efficiently utilize the bandwidth and the multiple

paths that fat-tree topology offers under InfiniBand
architecture.

1. Introduction

In cluster systems, high bandwidth, low latency

interconnection networks are essential for high-throughput

computations. The network architecture, the

interconnection topology, and the routing scheme are three

key elements that dominate the performance of
interconnection networks.

The InfiniBand architecture (IBA) is a new

industry-standard architecture for server I/O and

inter-server communication. IBA defines a switch-based,

point-to-point interconnection network that enables

high-speed, low-latency communication between

connected devices [3]. Due to the characteristics of IBA,
it is very suitable to use IBA as the interconnection

network of a cluster system. When using IBA as the

interconnection network of a cluster system, the

interconnection topology can be arbitrarily given by users,

based on considerations such as hardware availability,

bandwidth requirement, and the utilization of some
specific communication patterns between processing

nodes.

Many interconnection topologies and related issues

have been discussed in the literature [1] [2] [5]. In this

paper, we focus on the implementation of the popular

fat-tree topology on InfiniBand networks. To implement
fat-tree-based InfiniBand networks, the construction of the

fat-tree and the routing scheme for the constructed fat-tree

are two important issues. There are many ways to

construct the fat-trees. In this paper, we proposed an

m-port n-tree approach to construct the fat-tree-based
InfiniBand networks.

The InfiniBand network is a packet-switching based

network. Routing in an InfiniBand subnet is based on the

forwarding table stored in each switch. When a packet

arrives in a switch, the packet will be forwarded to the

corresponding output port via the forwarding table lookup.
The forwarding table stored in each switch maps the local

identifier (LID) in the DLID field of a packet to an output

port of the switch. Since one LID only maps to one output

port, routing in InfiniBand subnet is deterministic. In a

fat-tree-based InfiniBand network, there are multiple paths

between two processing nodes. If each processing node is
associated an LID, when multiple processing nodes want to

send packets to the same processing node at the same time,

the link congestion may occur and the bandwidth and

multiple paths offered by the fat-tree topology may be

wasted.

Some routing algorithms and techniques for InfiniBand
networks have been proposed in [7] [12] [13]. These

routing algorithms, in general, are designed for irregular

topologies. When applied to regular topologies like

fat-trees, they may not take all the properties of a regular

 2

topology into account and usually cannot deliver

satisfactory performance. In order to make good use of

the bandwidth and multiple paths offered by the fat-tree
topology, we proposed a multiple LID (MLID) routing

scheme based on the LID Mask Control (LMC)

mechanism provided by IBA. The proposed routing

scheme consists of processing node addressing scheme,

path selection scheme, and forwarding table assignment

scheme. The processing node addressing scheme assigns
multiple LIDs to each processing node. The path

selection scheme determines an LID of the destination

processing node for a packet sent from a source processing

node. There exists a one-to-one mapping (unique path)

between a source processing node and an LID of a

destination processing node. The forwarding table
assignment scheme correctly setup the forwarding table of

each switch based on the processing node addressing

scheme and the path selection scheme. To evaluate the

performance of the proposed routing scheme, we have

developed a software simulator for InfiniBand networks.

The proposed routing scheme along with the Single LID
(SLID) routing scheme were simulated under different

network sizes and traffic patterns. Simulation results

show that performance of the proposed routing scheme

outperforms the SLID scheme for all test cases.

This paper is organized as follows. In Section 2,
fat-trees and InfiniBand architecture are introduced.

Section 3 details the construction of fat-tree-based

InfiniBand networks based on fix-arity switch components.

Section 4 describes the proposed routing scheme for the

constructed fat-tree-based InfiniBand networks. In

Section 5, the performance of the proposed routing scheme
is evaluated under different network sizes and traffic

patterns.

2. Preliminaries

2.1 Fat-Tree Topology

Fat-trees are a family of general-purpose

interconnection strategies that effectively utilize any given

amount of hardware resource devoted to communication

[6]. Kinds of fat-tree variations have been adopted by

many research prototypes and commercial machines. The

major difference between fat-trees and traditional tree
architecture is that fat-trees are more resemble real trees.

In a traditional tree, the link bandwidth is fixed no matter

how high the tree is. This will cause traffic congestion

problems occurring at root switch. In a fat-tree, the link

bandwidth increases when upward from leaves to root.

The root congestion problem can be relieved. In a
fat-tree-based interconnection network, leaf nodes

represent processors, internal nodes are switches, and

edges correspond to bidirectional links between parents

and children. Figure 1 shows the difference between

traditional trees and fat-trees. In Figure 1(a), a binary tree
is shown. A binary fat-tree is shown in Figure 1(b).

From Figure 1(b), we can see that the edge (link bandwidth)

gets thicker (higher) when closer to the root. Figure 1(c)

shows a more detailed architecture of a fat-tree.

(a) (b)

External Connections

Processor

Switch

(c)
��������	�
���
��������������
���
������������������
���

��������������������������������

Routing in a fat-tree is relatively easy since there is a

unique shortest path between a pair of processing nodes i
and j. The routing consists of two phases, the ascending

phase and the descending phase. In the ascending phase, a

message from processing node i to processing node j goes

upward through the internal switches of a fat-tree until the

least common ancestor m of processing nodes i and j is

found. In the descending phase, the message goes
downward through the internal switches to processor j.

Figure 2 shows a routing example in a fat-tree.

m

i j

ascending

descending
��������	�
��������������������������������

 3

2.2 InfiniBand Architecture (IBA)

The InfiniBand architecture (IBA) is a new

industry-standard architecture for server I/O and

inter-server communication. IBA is designed around a

point-to-point, switched I/O fabric, whereby end node

devices are interconnected by cascaded switch devices [3].

IBA can be used to connect multiple independent processor
platforms (i.e., host processor nodes), I/O platforms, and

I/O devices. An InfiniBand network can be divided into

subnets. Switches are used to perform intra-subnet

communication between connected devices and routers are

used to perform inter-subnet communication. There is
one or several Subnet Manager (SM) in an InfiniBand

subnet. The SM is responsible for the configuration and

the control of a subnet. In an InfiniBand subnet, packet

source/destination is called endport. A Local Identifier

(LID) is an address assigned to an endport by the SM

during the subnet initialization process. LID is unique
within an InfiniBand subnet.

The InfiniBand network is a packet-switching based

network. Routing in an InfiniBand subnet is deterministic,

based on the forwarding table lookup. For a packet, the

LIDs of its source and destination processing nodes are

stored in SLID and DLID fields of the Local Route Header
(LRH), respectively. A packet within a switch is

forwarded to an output port based on the packet’s DLID

field and the switch’s forwarding table. When a switch

received a packet, the packet header is parsed and the

DLID field is mapped to an entry of the forwarding table

stored in the switch. According to the value of the
mapped entry, the switch can forward the packet to its next

destination. An example is illustrated in Figure 3. This

deterministic behavior simplifies the design of switches.

The latency of packet relaying can be limited to a very

small value as well.
Since there are only one-to-one mapping between DLID

and output port, in order to support multiple paths, IBA

defines an LID Mask Control (LMC) value that can be

assigned to each endport. According to the LMC value,

an endport can be associated with more than one LID such

that communications between any pair of endports can go
through different available paths. The LMC is a 3-bit

field that represents 2LMC paths (maximum of 128 paths).

During topology discovery process at the subnet

initialization, the SM may determine the number of paths

for a given endport and will partition the 16-bit LID space

to assign a base LID and up to 2LMC sequential LIDs to
each endport based on the LMC. An example is given in

Figure 4. In Figure 4, if processing node A is sending

message to processing node B, there will be two paths

available between processing nodes A and B. The DLID

field in a packet that processor A generated will determine
the routing path for the packet. For example, if the DLID

of a packet is 4, the packet will be sent from processing

node A through switches P and R to processing node B. If

the DLID of a packet is 5, the packet will be sent from
processing node A through switches P, Q, and R to

processing node B.

DLID

Output port

SLID

Packet Header

IB Packet

crossbar

switch

Linear Forwarding

Table (LFT)

Output port

Output port

Output port

Output port

Output port

Output port

Output port
��������	��������������� �������������
!�������"���

�����# ������

�

C �

1
2

3

4
5

6

7

8

�

1
2

3

4
5

6

7

8

�

1
2

3

4
5

6

7

8

A

D B

LID=1

LID=2

LID=3

LID=4

LID=5

1

7

LID=1

LID=2

LID=3

LID=4

LID=5

6

5

6

LID=1

LID=2

LID=3

LID=4

LID=5

1

1

7

3

3

LID=1

LID=2

LID=3

LID=4

LID=5

1

1

7

3

3

DLID=4DLID=5

LFT of P

LFT of Q

LFT of R

�������$	�
��������������������������#��������

#���������##�����������#����������������%!&%#��

3. The Construction of Fat-Tree-Based

InfiniBand Networks

In this section, we will discuss how to use InfiniBand

switches to construct fat-tree-based InfiniBand networks.

From the fat-tree described in Figure 1(c), we observed

that the arity of internal switches of a fat-tree increases as

we traverse upward from leaves to root. The requirement

of increasing arity switches makes the physical
implementation of switch-based fat-tree topology

unfeasible. To solve this problem, some alternatives have

 4

been proposed to construct fat-trees using constant size

elements [14] or use fixed-arity switches [7][10]. These

solutions trade connectivity with simplicity, that is,
incoming messages at a given switch in a “full” fat-tree

may have more choices in the routing decision than in a

corresponding network with fixed-arity switches.

Performance and properties of such kind of switch-based

fat-trees are studied in [8] [9]. In the following, we will

show how to use fixed-arity switches to construct the
desired fat-tree-based InfiniBand networks.

Based on the need of fixed-arity communication

switches to construct a fat-tree network, we proposed an

m-port n-tree approach to construct the desired fat-trees.

The m-port n-trees are a class of fixed-arity fat-trees.

Given an m-port n-tree FT(m, n), it has the following
characteristics:

1 The height of FT(m, n) is n + 1.

2 m is a power of 2.

3 FT(m, n) consists of 2 (2)nm× processing

nodes and ()
1

(2 1) / 2
n

n m

−

− × communication

switches.
4 Each communication switch has m

communication ports.

The processing node in FT(m,n) is labeled as

0 1 1
(),

n
P p p p p

−

= � where { }0,1, , 1p m∈ −� × {0,1,…,

(m/2) − 1}n−1. For example, the set of processing nodes in

a 4-port 3-tree is {P(000), P(001), P(010), P(011), P(100),
P(101), P(110), P(111), P(200), P(201), P(210), P(211),

P(300), P(301), P(310), P(311)}. For processing node

P(310), we have
0

3p = ,
1

1p = , and
2

0p = . The

communication switch in FT(m, n) is labeled as

0 1 2
, ,

n
SW w w w w l

−

< = >� where { }0,1, , 1l n∈ −� is

the level of the switch and

(){ }

{ } (){ } { }

1

2

0,1, , 2 1 if 0
.

0,1, , 1 0,1, , 2 1 if 1,2, , 1

n

n

m l

w

m m l n

−

−

⎧ − =⎪
∈⎨

− × − ∈ −⎪⎩

�

� � �

Let ,
k

SW w l〈 〉 denote the kth port of , SW w l〈 〉 ,

where k = 0, 1, 2,…, m−1. For switches , SW w l〈 〉 and

, SW w l′ ′〈 〉 , ports ,
k

SW w l〈 〉 and
'

', '
k

SW w l〈 〉 are

connected by an edge if and only if 1l l′ = + ,
0 1 3n

w w w
−

�

=
0 1 1 1 2l l n

w w w w w
− + −

′ ′ ′ ′ ′
� � , k =

l
w′ , and 'k =

()2
2

n
w m

−

+ . For switch , (1) ,SW w n〈 − 〉 port

, (1)
k

SW w n〈 − 〉 is connected to processing node ()P p

if and only if
0 1 2n

w w w
−

� =
0 1 2n
p p p

−

� and k =
1n

p
−

.

An example of a 4-port 3-tree is shown in Figure 5. In

Figure 5, we can see that the height of the 4-port 3-tree is 4.

There are 16 processing nodes and 20 communication

switches. Each communication switch has 4

communication ports labeled as 0, 1, 2, and 3. The set of

processing nodes is {P(000), P(001), P(010), P(011),

P(100), P(101), P(110), P(111), P(200), P(201), P(210),

P(211), P(300), P(301), P(310), P(311)}. The sets of
switches in level 0, 1, and 2 are {SW<00, 0>, SW<01, 0>,

SW<10, 0>, SW<11, 0>}, {SW<00, 1>, SW<01, 1>, SW<10,

1>, SW<11, 1>, SW<20, 1>, SW<21, 1>, SW<30, 1>,

SW<31, 1>}, and {SW<00, 2>, SW<01, 2>, SW<10, 2> ,

SW<11, 2>, SW<20, 2>, SW<21, 2>, SW<30, 2>, SW<31,

2>}, respectively. Ports ,
k

SW w l〈 〉 = <01, 0>1 and

'

', '
k

SW w l〈 〉 = <10, 1>3 are connected by an edge since

1l l′ = + ,
0 1 3n

w w w
−

� =
0 1 1 1 2l l n

w w w w w
− + −

′ ′ ′ ′ ′
� � = 0, k

=
l

w′ = 1, and 'k = ()2
2

n
w m

−

+ = 3. Port

, (1)
k

SW w n〈 − 〉 = <20, 2>1 is connected to processing

node P(211) since
0 1 2n

w w w
−

� =
0 1 2n
p p p

−

� = 21 and

k =
1n

p
−

= 1.

2

00, 1〈 〉

0 1

3

001000

2

00, 2〈 〉

0 1

3

001 010

2

01, 2〈 〉

0 1

3

100

2

10, 1〈 〉

0 1

3 2

11, 1〈 〉

0 1

3

2

10, 2〈 〉

0 1

3

101 110

2

11, 2〈 〉

0 1

3

200

2

20, 1〈 〉

0 1

3 2

21, 1〈 〉

0 1

3

2

20, 2〈 〉

0 1

3

201 210

2

21, 2〈 〉

0 1

3

300

2

30, 1〈 〉

0 1

3 2

31, 1〈 〉

0 1

3

2

30, 2〈 〉

0 1

3

301 310

2

31, 2〈 〉

0 1

3

011 111 211 311

01, 0〈 〉
0 1 2 3

10, 0〈 〉
0 1 2 3

11, 0〈 〉
0 1 2 3

2

01, 1〈 〉

0 1

3

00, 0〈 〉
0 1 2 3

Processing

Node

P

Switch

, w l〈 〉SW

p

 �

��������	�
���
������������

�
By replacing the communication switches and edges of

an m-port n-tree as InfiniBand switches and InfiniBand
links, respectively, we obtain an m-port n-tree InfiniBand

network, denoted by IBFT(m, n). InfiniBand switches

have 2 types of ports, internal and external ports. The

internal port is a special port for management purpose.

Port 0 of an InfiniBand switch is used as the internal port or
referred as management port. The external ports

numbered from 1 up to 254 are used to connect to other

devices. Since port 0 of an InfiniBand switch is reserved

for special purpose, when constructing IBFT(m, n), port

,
k

SW w l〈 〉 in an m-port n-tree is mapped to port k+1 of an

InfiniBand switch. Also, IBA supports multiple links

(endports) attached to the same processing node or other
I/O devices, for simplicity, we assume that every

processing node only contains one endport in this paper.

Based on the constructed fat-tree-based InfiniBand

network, we have the following definitions.

Definition 1: Given an m-port n-tree InfiniBand

network, IBFT(m, n), for processing nodes

0 1 1
()

n
P p p p p

−

= � and
0 1 1

()
n

P p p p p
−

′ ′ ′ ′= � , gcp(P(p),

()P p′) =
0 1 1
p p p

α −

� is the greatest common prefix of

P(p) and ()P p′ if
0 1 1
p p p

α −

� =
0 1 1
p p p

α −

′ ′ ′
� and

1 1n
p p p
α α + −

� ≠
1 1

p p p
α α α+ −
′ ′ ′

� , where α ≥ 0 is the length

of gcp(P(p), ()P p′). If α = 0, it denotes that the labels of

 5

two processing nodes have no common prefix.

Definition 2: Let IBFT(m, n) be an m-port n-tree

InfiniBand network and
0 1 1
p p p

α −

� be the greatest

common prefix of processing nodes P(p) and ()P p′ , the

set of least common ancestors of processing nodes P(p)

and ()P p′ , is define as lca(P(p), ()P p′) = { , SW w l〈 〉 |

0 1 1
w w w

α −

� =
0 1 1
p p p

α −

� and l = α}.

Definition 3: Given an m-port n-tree InfiniBand

network, IBFT(m, n), a greatest common prefix group,

gcpg(x, α), is a set of processing nodes that have the same

greatest common prefix x and |x| = α . There are (m/2)n-α

processing nodes in an gcpg(x, α). Set gcpg(x, 0) is the set
of all processing nodes, where x is a null string.

Definition 4: Let processing node P(p) ∈ gcpg(x, α), the

rank of P(p) in gcpg(x, α) is defined as rank(gcpg(x,α),

P(p)) = ()
1

(1)
/ 2

n
n i

i

i

p m

α

−

− −

=

×∑ = (1)(/ 2) n

p m
α

α

− −

× +

(1) (1)

1 (/ 2) n

p m
α

α

− − +

+
× + … + 0

1 (/ 2)
n
p m

−
× , where

0 1 1n
p p p p

−

= � . The ranks of processing nodes in

gcpg(x, α) are between 0 and (m/2)n-α − 1. Since gcpg(x, 0)
contains all processing nodes in an InfiniBand network, the

rank of a processing node P(p) in gcpg(x, 0) is also called

the PID of P(p), denoted as PID(P(p)).
Let us give some examples to explain the above

definitions. Given the 4-port 3-tree InfiniBand network

shown in Figure 5(b), for processing nodes P(200) and

P(211), gcp(P(200), P(211)) is 2 and lca(P(200), P(211)) is

{SW<20, 1>, SW<21, 1>}. Both P(100) and P(111) are

members of gcpg(2, 1). There are 4 processing nodes,
P(200), P(201), P(210), and P(211), in group gcpg(2, 1).

The ranks of P(200) and P(211) in gcpg(2, 1) are 0 and 3,

respectively. PID(P(200)) = 8 and PID(P(211)) = 11.

4. The Routing Scheme for m-port n-tree

InfiniBand Networks

Routing in an InfiniBand network is deterministic based

on forwarding tables stored in InfiniBand switches.
When the deterministic routing scheme is applied to

topologies like fat-trees that offer multiple paths between

any pair of processing nodes, the construction of

forwarding tables is very important. If the forwarding

tables are not well designed, the link congestion problem

may occur and the advantage of high bandwidth offered by
multiple paths of a fat-tree will be wasted. For example,

in Figure 6, an 8-port 2-tree InfiniBand network IBFT(8, 2)

is shown. Switches i, j, k, l, are the four least common

ancestors of switches x and y. There are four paths

between switches x and y. Assume that each processing

node is associated with one LID. In order to evenly
distribute the traffic between switches x and y on the four

paths, x-i-y, x-j-y, x-k-y, x-l-y, we may generate forwarding

tables for switches x and y as shown in Figure 7, where the

numbers under processing nodes are their corresponding
LIDs. For switch x, packets sent to processing nodes E, F,

G, H will travel through paths x-i-y, x-j-y, x-k-y, x-l-y,

respectively. Although the forwarding tables generated in

Figure 7 can help dispersing traffic between switches x and

y through four root switches, the link congestion problem

may still occur when multiple source processing nodes are
sending messages to the same destination processing node

at the same time. For example, if processing nodes A, B,

C and D in Figure 7 all send messages to processing node E

at the same time, these messages will congest at port 5 of

switch x as shown in Figure 9(a) since the link associated

with port 5 can only send one message out at a given time.
One solution to relief the link congestion problem is to

assign multiple LIDs to the same processing node as

shown in Figure 8. In Figure 8, if processing nodes A, B,

C and D all send message to processing node E at the same

time, since processing node E have four LIDs, 116, 117,

118 and 119, the DLID field of packets sent from
processing node A, B, C and D to processing node E can be

filled with 116, 117, 118, 119, respectively. By doing so,

the traffic can be evenly distributed as shown in Figure

9(b).

E F G HA B C D

i j k l

yx
321 4

5 6 7 8

321 4

5 6 7 8

��������	�
����
���
��
������������������
��������

A B C D

x
321 4

5 6 7 8

E F G H

y
321 4

5 6 7 8

1

i j k l

2 3 4 29 30 31 32

DLID
Output

Port

1

2

3

4

29

30

31

32

.

.

.

.

.

.

5

6

7

8

1

2

3

4

LFT of y

DLID
Output

Port

1

2

3

4

29

30

31

32

.

.

.

.

.

.

5

6

7

8

1

2

3

4

LFT of x

��������	�����
����������������
���� ���

�����
!�
���

A B C D

x
321 4

5 6 7 8

E F G H

y
321 4

5 6 7 8

i j k l
DLID

Output

Port
1
2
3
4

.

1

LFT of x

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

113 117 121 125

114 118 122 126

115 119 123 127

116 120 124 128

1
1
1

5
6
7
8

2
2
2
2

9
10
11
12

3
3
3
3

13
14
15
16

4
4
4
4

.

.

.

.

.

113
114
115
116

5
6
7
8

117
118
119
120

5
6
7
8

121
122
123
124

5
6
7
8

125
126
127
128

5
6
7
8

E

F

G

H

A

B

C

D

DLID
Output

Port

.

LFT of y

.

.

.

.

.

E

F

G

H

A

B

C

D

5
6
7
8
5
6
7
8
5
6
7
8
5
6
7
8

1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

��������	���!���������������������
���� ���

�����
!�
���

 6

A B C D

6 7 8

1 2 3 4

5

32 41

x

j k l m

A B C D

6 7 85

32 41

x

j k l m

(a) (b)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

�������"	�#�$���%���������
��%�
������
��# $���

�������
����#�$��

�
Based on the above analysis, we proposed a Multiple

LID (MLID) routing scheme for the m-port n-tree

InfiniBand networks. The MLID routing scheme consists

of the processing node addressing scheme, the path

selection scheme, and the forwarding table assignment
scheme.

4.1 The Processing Node Addressing Scheme

Given an m-port n-tree InfiniBand network IBFT(m, n),

in order to utilize the multiple paths offered by IBFT(m, n),
every processing node in IBFT(m, n) is assigned a set of

LIDs instead of an LID in our routing scheme. The set of

LIDs assigned to each processing node is formed by the

combination of one base LID and a LID Mask Control

value LMC, where LMC = 1

2
log (/ 2)nm

− . For processing

node
0 1 1

()
n

P p p p p
−

= � in IBFT(m, n), the set of LIDs

assigned to P(p), denoted by LIDset(P(p)), is

{BaseLID(P(p)), BaseLID(P(p)) + 1, …, BaseLID(P(p)) +

(2LMC−1)}, where BaseLID(P(p)) =

()
1

(1)

0

2 / 2 1

n
n iLMC

i

i

p m

−

− +

=

⎛ ⎞
× × +⎜ ⎟
⎝ ⎠
∑ is the base LID of P(p).

There are 2LMC LIDs in LIDset(P(p)), which indicates that

there are maximal 2LMC paths between any pair of
processing nodes. Figure 10 shows an example of

multiple LIDs assignment for each processing node in a

4-port 3-tree InfiniBand network. In Figure 10, for

processing node P(300), BaseLID(P(300)) = 49. We have

LIDset(P(300)) = {49, 50, 51, 52}.

3

00, 1〈 〉

1 2

4

001

3

00, 2〈 〉

1 2

4

001 010

3

01, 2〈 〉

1 2

4

100

3

10, 1〈 〉

1 2

4 3

11, 1〈 〉

1 2

4

3

10, 2〈 〉

1 2

4

101 110

3

11, 2〈 〉

1 2

4

200

3

20, 1〈 〉

1 2

4 3

21, 1〈 〉

1 2

4

3

20, 2〈 〉

1 2

4

201 210

3

21, 2〈 〉

1 2

4

300

3

30, 1〈 〉

1 2

4 3

31, 1〈 〉

1 2

4

3

30, 2〈 〉

1 2

4

301 310

3

31, 2〈 〉

1 2

4

011 111 211 311

01, 0〈 〉
1 2 3 4

10, 0〈 〉
1 2 3 4

11, 0〈 〉
1 2 3 4

3

01, 1〈 〉

1 2

4

00, 0〈 〉
1 2 3 4

Base

LID

LID

set

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

000

��������	
�����
���
�������������������

4.2 The Path Selection Scheme

After each processing node is assigned a set of LIDs, the

next problem is how to take the advantage of multiple LIDs

of a processing node such that the link congestion can be

relieved. Consider the communication between

processing nodes P(p) and P(p'). Assume that

0 1 1
()

n
P p p p p

−

= � and
0 1 1

()
n

P p p p p
−

′ ′ ′ ′= � are in

gcpg(x, α), but P(p) and P(p') are in gcpg(xp
α
, α+1) and

gcpg(xp
α
′ , α+1), respectively, where xp xp

α α
′≠ . Both

gcpg(xp
α
, α+1) and gcpg(xp

α
′ , α+1) groups have

()
(1)

/ 2
n

m

α− +

 processing nodes apiece. For each

processing node in gcpg(xp
α
, α+1), there are ()

(1)
/ 2

n

m

α− +

paths to each processing node in gcpg(xp
α
′ , α+1). If each

processing node in gcpg(xp
α
, α+1) wants to send messages

to the same processing node in gcpg(xp
α
′ , α+1), say P(p'),

the processing nodes with ranks 0, 1, …, ()
(1)

/ 2
n

m

α− +

− 1

can choose BaseLID(P(p')), BaseLID(P(p')) …,

BaseLID(P(p')) + ()
(1)

/ 2
n

m

α− +

− 1 as the LID of P(p'),

respectively. In this way, the multiple paths between
processing nodes in two groups can be fully utilized.

An example is shown in Figure 11. In Figure 11, we

have gcpg(0, 1) = {P(000), P(001), P(010), P(011)} and

gcpg(3, 1) = {P(300), P(301), P(310), P(311)}. If each

processing node in gcpg(0, 1) wants to send message to

P(300) in gcpg(3, 1), P(000), P(001), P(010), and P(011)
will select 49, 50, 51, and 52 as the LID of P(300),

respectively. Packets send from P(000), P(001), P(010),

and P(011) to P(300) will go through routes Q, R, S, and T

to P(300).

3

00, 1〈 〉

1 2

4

001000

3

00, 2〈 〉

1 2

4

001 010

3

01, 2〈 〉

1 2

4

300

3

30, 1〈 〉

1 2

4 3

31, 1〈 〉

1 2

4

3

30, 2〈 〉

1 2

4

301 310

3

31, 2〈 〉

1 2

4

011 311

01, 0〈 〉
1 2 3 4

10, 0〈 〉
1 2 3 4

11, 0〈 〉
1 2 3 4

3

01, 1〈 〉

1 2

4

00, 0〈 〉
1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

�

�

�

�

���������	�
��
��������������������������������

���������������������
����������������������������

���������������������������������������

4.3 The Forwarding Table Assignment Scheme

 7

After the path selection scheme is performed, the next

task is to setup the forwarding table in each InfiniBand

switch such that a message sent from one processing node
to another will follow the path we set in the path selection

scheme. As mentioned in Section 2.2, the InfiniBand

network uses the packet-switching routing mechanism.

Messages are sent as packets. In each packet, there is a

DLID field that specifies the destination LID of the packet.

Within a switch, each packet is forwarded to an output port
based on the DLID field of the packet and the forwarding

table of the switch. The forwarding table of each switch is

set at the subnet initialization process. After the subnet

initialization process, the packet routing behavior is fixed

unless a subnet reconfiguration or for other purpose that

the subnet manager re-assigns forwarding table for each
switch.

Given an m-port n-tree InfiniBand network IBFT(m, n),

a switch SW<w, l> of IBFT(m, n), and a packet whose

DLID field is lid, when the packet arrives in switch SW<w,

l>, the output port ,
k

SW w l〈 〉 of the packet can be

determined based on the construction of IBFT(m, n), the

processing node assignment scheme, and the path selection
scheme. We have the following two cases.

Case 1: If the processing node
0 1 1

()
n

P p p p p
−

= �

that owns the lid can be reached downward from SW<w, l>,

then k can be determined by the following equation

1
l

k p= + . (1)

For
0 1 2

, ,
n

SW w w w w l
−

< = >� processing node

0 1 1
()

n
P p p p p

−

= � that owns the lid can be reached

downward from SW<w, l> if PID(P(p)) =
()

()
1

2

1
n

m

lid
−

⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 and

0 1 1l
w w w

−

� =
0 1 1l
p p p

−

� . The conversion between

PID(P(p)) and
0 1 1

()
n

P p p p p
−

= � can be done either by

table lookup or by arithmetic operations.

Case 2: If the processing node that owns the lid can not
be reached downward from SW<w, l>, then k can be

determined by the following equation

()

()
()1

2

1
mod 1

2 2
n l

m

lid m m
k

− −

⎛ ⎞⎢ ⎥− ⎛ ⎞ ⎛ ⎞⎜ ⎟⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

 (2)

To verify the correctness of Equations (1) and (2), let us

take Figure 11 as an example. In Figure 11, assume that
processing nodes P(000), P(001), P(010), and P(011) want

to send messages to processing node P(300). According

to the path selection scheme, packets sent from P(000),

P(001), P(010), and P(011) to P(300) will go through paths

Q, R, S, and T, respectively. When a packet is sent from

P(000) to P(300) through path Q, the DLID of the packet is

49 and ports
1

00, 2SW 〈 〉 ,
3

00, 2SW 〈 〉 ,
1

00, 1SW 〈 〉 ,

3
00, 1SW 〈 〉 ,

1
00, 0SW 〈 〉

4
00, 0SW 〈 〉 ,

3
30, 1SW 〈 〉 ,

1
30, 1SW 〈 〉 ,

3
30, 2SW 〈 〉 , and

1
30, 2SW 〈 〉 will be

traversed in sequence. When the packet arrives in switch

SW<00, 2>, lid = 49 matches case 2 and the output port of

the packet is k = 3. When the packet arrives in switch
SW<00, 1>, lid = 49 matches case 2 and the output port of

the packet is k = 3. When the packet arrives in switch

SW<00, 0>, lid = 49 matches case 1 and the output port of

the packet is k = 4. When the packet arrives in switch

SW<30, 1>, lid = 49 matches case 1 and the output port of

the packet is k = 1. When the packet arrives in switch
SW<30, 2>, lid = 49 matches case 1 and the output port of

the packet is k = 1. From the above analysis, we can see

that Equations (1) and (2) can correctly setup path Q for the

packet sent from P(000) to P(300). For paths R, S, and T,

we can obtain similar results.

5. Performance Evaluation

In order to evaluate the performance of the proposed
routing scheme, we have developed an InfiniBand network

simulator. The simulator was written in JAVA. Two

routing schemes, Single LID (SLID) and Multiple LID

(MLID) were simulated for performance evaluation. In

the SLID scheme, each processing node P(p) is associated
with one LID, PID(P(p)). The forwarding table

assignment of the SLID scheme is base on the

consideration of evenly distributing possible traffic over

available paths. The MLID routing scheme is the

proposed routing scheme.

5.1 The IBA Network Model

In the simulator, an InfiniBand subnet, which is similar

to that of [11], is modeled. There are two basic

components in the IBA subnet, endnodes (processing

nodes) and switches that are connected by IBA links. The
endnodes act as the message (data) producers and

consumers while the switches are responsible for correctly

forward messages from source endnodes to destination

endnodes. InfiniBand packets are routed through

switches by forwarding table lookup. Forwarding tables
store the output port information for each destination LIDs

in the subnet.

IBA specification allows arbitrary topology given by

user. In the simulator, an m-port n-tree InfiniBand

network is modeled as an IBA subnet in which there

are 2 (2)nm× processing nodes and ()
1

(2 1) / 2
n

n m

−

− ×

switches. Each switch has m bi-directional

communication ports that are attached to either switches or

processing nodes. Each switch has a crossbar connecting

 8

all the input ports to the output ports that allowing multiple

packets to be transferred without interference. According

to IBA, InfiniBand switches can support up to 16 virtual
lanes, (one management lane and at most 15 data lanes).

In the simulator we have also implemented the virtual

lanes mechanism, and each virtual lane of a port uses

separate input and output buffers. The size of input buffer

and output buffer of a virtual lane are the same for a packet,

means that the buffer can only store a packet at a time.
Each switch in an m-port n-tree InfiniBand network is

assigned a linear forwarding table according to the routing

scheme. Packets arrive in input ports of a switch will be

forwarded through the crossbar to their corresponding

output ports based on the forwarding table lookup. The

packet will be forwarded from an input port buffer through
the crossbar to a corresponding output port buffer if the

output port buffer is available. Otherwise the packet must

wait in the input port buffer until the output buffer is

available. The virtual cut-through switching technique [4]

is used. To do the flow control, we have implemented the

credit based link level flow control mechanism of IBA.

5.2 The Simulation Results

To evaluate the performance of the SLID and MLID

routing schemes, we have run these two schemes on
different sizes of m-port n-tree InfiniBand networks as

shown in Table 1. We assume that the flying time of a

packet between devices (endnode-to-switch and

switch-to-switch) is 20ns. The routing time of a packet

from one input port to one output port of the crossbar in a

switch is 100ns, including forwarding table lookup,
arbitration, and message startup time. The byte injection

rate is 4ns assume that a 1X link configuration (2.5 Gbps)

is used. The packet size is 32 bytes. The number of

virtual lanes is set to 1, 2, and 4. For each virtual lane, the

input/output buffer size is 32 bytes.

����������	��
��
����
���������
��
���
����

�������������
������� �

�������

�	
�����
�

������

��
�

�����������

���������

�
	��������

�	����

�� �� ��� ���

�� �� � � !���

!�� �� �� � ! ���

��� �� ��� �!��

Two traffic patterns were simulated. One is a uniform

traffic pattern in which each processing node sends a

packet to a randomly selected destination processing node

in a given time unit based on a data injection rate. The

other is 10% centric traffic pattern in which each

processing node has a 10% chance to select one particular
destination processing node, that is, 10 out of 100 packets

will be sent from all source processing nodes to this

particular processing node. In each simulation run, we

assume that the packet generation rate is constant and the
same for all processing nodes. Different packet

generation rates are simulated in order to get the

performance data from low network load to saturation.

One of the collected performance data is the accepted

traffic measured in bytes/nanosecond per processing node

(bytes/ns/processing node). The other performance data
is the average message latency of all received packets,

measured in nanosecond. The message latency is the time

elapsed since the packet transmission is initiated until the

packet is received at the destination node.

The simulation results are shown in Figures 12 to 15.

In Figures 12 to 15, the x-axis indicates the accepted traffic
and the y-axis indicates the average message latency.

From Figures 12 to 15, we have the following

observations:

Observation 1: For the uniform traffic pattern, if the

port number of a switch is not large (4-port or 8-port), the

throughput of the MLID scheme is a little higher or equal
to that of the SLID scheme for all simulated cases. If the

port number of a switch is large (16-port or 32-port), the

throughput of the MLID scheme is higher than that of the

SLID scheme for all simulated cases.

Observation 2: For the uniform traffic pattern, when
the network traffic is low, the average message latency of

the MLID scheme, in general, is less than or equal to that of

the SLID scheme. When the traffic is high, the average

message latency of the MLID scheme under the same

offered traffic (packet generation rate) is higher than that of

the SLID scheme. This is because the bandwidth
utilization of the MLID scheme is higher than that of the

SLID scheme, that is, in a given time period, the total

packets reside in the network under the MLID scheme is

more than that under the SLID scheme. These packets

will spent more time waiting in the input buffer until output

buffer is available in a switch.
Observation 3: For the 10% centric traffic pattern, the

throughput of the MLID scheme is much higher than that

of the SLID scheme when only one virtual lane is available.

When more than one virtual lane is available, the

throughput of the MLID scheme is still higher than that pf
the SLID scheme for all simulated cases. If the port

number of a switch is large (16-port or 32-port), the

throughput of the MLID scheme with one virtual lane is

higher than that of the SLID scheme with two virtual lanes.

Observation 4: For the 10% centric traffic pattern, if

the port number of a switch is not large (4-port or 8-port),
the average message latency of the MLID scheme is less

than that of the SLID scheme when only one virtual lane is

available. This indicates that the MLID scheme is more

capable of utilizing the offered bandwidth than the SLID

scheme for this case. For the case where more than one

virtual lane is available, we have similar observation as

 9

that of Observation 2.

Observation 5: The MLID scheme is more capable of

utilizing the offered bandwidth than the SLID scheme for a

given m-port n-tree InfiniBand network. The performance

improvement compare to the SLID scheme is more

noticeable while a network size is getting larger.

4-port 4-tree. 32-byte packets

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Traffic (bytes/ns/processing node)

A
v
e
ra
g
e
M
es
sa
g
e
 L
a
te
n
cy
 (
n
s)

SLID 1VL

SLID 2VL

SLID 4VL

MLID 1VL

MLID 2VL

MLID 4VL

4-port 4-tree. 32-byte packets

800

1200

1600

2000

2400

2800

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Traffic (bytes/ns/processing node)

A
v
e
ra
g
e
M
es
sa
g
e
 L
a
te
n
cy
 (
n
s)

SLID 1VL

SLID 2VL

SLID 4VL

MLID 1VL

MLID 2VL

MLID 4VL

.

� ��������	
���
����
������
��� ��������
���
�
��
����
������
���

�����������������
���������
�����
	����
��
���
�����������������
������

�

8-port 3-tree. 32-by te packets

600

800

1000

1200

1400

1600

1800

2000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Traffic (bytes/ns/processing node)

A
v
e
ra
g
e
 M

e
ss
a
g
e
 L
a
te
n
c
y
 (
n
s)

SLID 1VL

SLID 2VL

SLID 4VL

MLID 1VL

MLID 2VL

MLID 4VL

8-port 3-tree. 32-byte packets

600

800

1000

1200

1400

1600

0 0.004 0.008 0.012 0.016 0.02

Traffic (bytes/ns/processing node)

A
v
e
ra
g
e
 M

e
ss
a
g
e
 L
a
te
n
c
y
 (
n
s)

SLID 1VL

SLID 2VL

SLID 4VL

MLID 1VL

MLID 2VL

MLID 4VL

� ��������	
���
����
������
��� ��������
���
�
��
����
������
���

�������� ��������
���������
�����
	��!�
��
� �
�����������������
������

�

16-port 3-tree. 32-by te packets

600

800

1000

1200

1400

1600

1800

2000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Traffic (bytes/ns/processing node)

A
v
e
ra
g
e
 M

e
ss
a
g
e
 L
a
te
n
c
y
 (
n
s)

SLID 1VL

SLID 2VL

SLID 4VL

MLID 1VL

MLID 2VL

MLID 4VL

16-port 3-tree. 32-byte packets

600

1000

1400

1800

2200

2600

3000

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Traffic (bytes/ns/processing node)

A
v
e
ra
g
e
 M

e
ss
a
g
e
 L
a
te
n
c
y
 (
n
s)

SLID 1VL

SLID 2VL

SLID 4VL

MLID 1VL

MLID 2VL

MLID 4VL

.

� ��������	
���
����
������
��� ��������
���
�
��
����
������
���

�����������������
���������
�����
	���"�
��
� �
�����������������
������

�

 10

32-port 2-tree. 32-byte packets

400

600

800

1000

1200

1400

1600

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Traffic (bytes/ns/processing node)

A
v
er
a
g
e
M
es
sa
g
e
L
at
e
n
cy
 (
n
s)

SLID 1VL

SLID 2VL

SLID 4VL

MLID 1VL

MLID 2VL

MLID 4VL

32-port 2-tree. 32-byte packets

400

600

800

1000

1200

1400

1600

1800

2000

0 0.001 0.002 0.003 0.004 0.005 0.006

Traffic (bytes/ns/processing node)

A
v
er
ag
e
M
es
sa
g
e
L
at
en
cy
 (
n
s)

SLID 1VL

SLID 2VL

SLID 4VL

MLID 1VL

MLID 2VL

MLID 4VL

.

� ��������	
���
����
������
��� ��������
���
�
��
����
������
���

��������#��������
���������
�����
	�� ��
��
���
�����������������
������
�

�

6. Conclusions

In this paper, we have shown how to construct

fat-tree-based InfiniBand networks based on m-port n-trees.

We also designed an efficient routing scheme for the

constructed fat-tree-based InfiniBand networks. The

proposed routing scheme consists of processing node
addressing scheme, path selection scheme and forwarding

table assignment scheme. From the simulation results, we

have the following remarks:

Remark 1: The throughput of the MLID scheme is

higher than that of the SLID scheme for all simulated

cases.
Remark 2: When the network traffic is low, the average

message latency of the MLID scheme, in general, is less

than or equal to that of the SLID scheme. When the traffic

is high, the average message latency under the same

offered traffic of the MLID scheme is higher than that of

the SLID scheme.
Remark 3: The MLID scheme is able to utilize the

offered bandwidth by m-port n-tree efficiently when the

network scaling up to higher dimensions (higher n value)

that contains more switches and processing nodes.

References

[1] J. Duato, S. Yalamanchili, and L. Ni, Interconnection

Networks - An Engineering Approach, IEEE CS Press,

1997.

[2] Kai Hwang, Advanced Computer Architecture –

Parallelism, Scalability, Programmability, McGraw-Hill,

1993

[3] InfiniBand™ Trade Association, InfiniBand™ Architecture

Specification Volume 1, Release 1.1, November 2002.

[4] P. Kermani and L. Kleinrock, “Virtual cut-through: A new

computer communication switching technique,” Computer

Networks, Vol. 3, 1979, pp. 267-286.

[5] F. T. Leighton. Introduction to Parallel Algorithms and

Architectures: Arrays, Trees, Hypercubes. Morgan

Kaufmann Publishers, San Mateo, CA, USA, 1992.

[6] C. E. Leiserson, “Fat-Trees: Universal Networks for

Hardware-Efficient Supercomputing,” IEEE Transactions

on Computers, vol. 34, no.10, October 1985, pp. 892-901.

[7] P. López, J. Flich, and J. Duato, “Deadlock-Free Routing in

InfiniBand™ through Destination Renaming,” in

Proceedings of the International Conference on Parallel

Processing, ICPP '01, Sept. 2001, pp. 427-434.

[8] L. M. Ni, Y. Gui, and S. Moore, “Performance Evaluation

of Switch-Based Wormhole Networks,” IEEE Transactions

on Parallel and Distributed Systems, vol. 8, no. 5, May

1997, pp. 462-474.

[9] F. Petrini and M. Vanneschi, “Network Performance under

Physical Constraints,” in Proceedings of the International

Conference on Parallel Processing 1997, ICPP'97, August

1997, pp. 34-43.

[10] F. Petrini and M. Vanneschi, “k-ary n-trees: High

Performance Networks for Massively Parallel

Architectures,” in Proceedings of the 11th International

Parallel Processing Symposium, IPPS’97, April 1997, pp.

87-93.

[11] J. C. Sancho, J.Flich, A. Robles, P. López, and J. Duato,

“Analyzing the Influence of Virtual Lanes on the

Performance of InfiniBand Networks,” in Proceedings of

the International Parallel and Distributed Processing

Symposium (CD-ROM), IPDPS'02, April. 2002.

[12] J. C. Sancho, A. Robles, J.Flich, P. López, and J. Duato,

“Effective Methodology for Deadlock-Free Minimal

Routing in InfiniBand Networks,” in Proceedings of the

International Conference on Parallel Processing, ICPP '02,

Aug. 2002, pp. 48-57.

[13] J. C. Sancho, A. Robles, and J. Duato, “Effective Strategy

to Compute Forwarding Tables for InfiniBand Networks,”

in Proceedings of the International Conference on Parallel

Processing, ICPP '01, Sept. 2001, pp. 48-57.

[14] M. Valerio, L. Moser, and P. Melliar-Smith, “Recursively

Scalable Fat-Trees as Interconnection Networks,” in

Proceedings of the 13th IEEE International Phoenix

Conference on Computers and Communications, April

1994, pp. 40-46.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

