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Abstract 

In our previous work, we have studied three data 
distribution schemes, Send Followed Compress (SFC), 
Compress Followed Send (CFS), and Encoding- Decoding 
(ED), for sparse arrays based on the traditional matrix 
representation (TMR) scheme.  Since multi-dimensional 
arrays can also be represented by the extended Karnaugh 
map representation (EKMR) scheme, in this paper, we first 
apply the SFC/CFS/ED schemes based on the EKMR 
scheme.  Then, we compare the performance of these 
three schemes with those based on the TMR scheme.  
Both theoretical analysis and experimental test were 
conducted.  In theoretical analysis, we analyze the 
SFC/CFS/ED schemes based on the TMR/EKMR schemes 
in terms of the data distribution time and the data 
compression time.  In experimental test, we implement 
these three schemes on an IBM SP2 parallel machine.  
The theoretical analysis and experimental results first 
show that the ED scheme is superior to the CFS scheme 
that is superior to the SFC scheme.  Second, these three 
schemes based on the EKMR scheme outperform those 
based on the TMR scheme. 

1. Introduction 

Array operations are useful in a large number of important 
scientific codes, such as molecular dynamics [4], finite- 
element methods [9], climate modeling [19], atmosphere 
and ocean sciences [5], etc.  Many data parallel 
programming languages, such as Fortran D [7], High 
Performance Fortran (HPF) [10], and Vienna Fortran [20], 
have been proposed and used by users to write efficient 
data parallel programs.  However, it is a challenging 
problem to provide an efficient data distribution for 
irregular problems [18] on distributed memory 
multicomputers.  In the literature [3, 20, 21], many 
methods have been proposed and were all performed in the 

following order, the data partition phase, then the data 
distribution phase, followed by the data compression phase, 
and called the Send Followed Compress (SFC).  These 
methods are all focused on sparse arrays based on the 
traditional matrix representation (TMR) [12].  Since 
parallel multi-dimensional array operations [3, 5, 11, 12, 
14-16] have been an extensively investigated problem, to 
propose efficient data distribution schemes for them 
becomes an important issue. 

In our previous work [13], we have proposed the 
Compress Followed Send (CFS) and the Encoding- 
Decoding (ED) schemes based on the TMR scheme.  The 
extended Karnaugh map representation (EKMR) [12] is 
another array representation scheme for multi-dimensional 
arrays.  We also have proposed the EKMR-Compressed 
Row Storage (ECRS) and the EKMR-Compressed Column 
Storage (ECCS) [15] data compression methods based on 
the EKMR scheme.  We have shown that some sparse 
array operations based on the ECRS/ECCS methods 
outperform those based the CRSCCS [2] methods based on 
the TMR scheme.  Hence, in this paper, first, we apply the 
SFC/CFS/ED schemes based on the EKMR scheme.  
Then, we compare the performance of them based on the 
EKMR scheme with those based on the TMR scheme. 

In order to evaluate these three schemes, in the data 
partition phase, the 2D mesh partition [14] with load- 
balancing method is used.  In this paper, we use the load- 
balancing method proposed by Zapata et al. [20].  In the 
data distribution phase, local sparse arrays are sent to 
processors in sequence.  In the data compression phase, 
the ECRS/ECCS methods or formats are used for the 
SFC/CFS/ED schemes. 

Both theoretical analysis and experimental test were 
conducted.  In theoretical analysis, we analyze the SFC/
CFS/ED schemes based on the TMR/EKMR schemes in 
terms of the data distribution/data compression time.  
Here, we do not consider the data partition time since the 
comparisons of these three schemes are all based on the 

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04) 
1087-4089/04 $ 20.00 © 2004 IEEE 



same partition method.  In experimental test, we 
implement these three schemes on an IBM SP2 parallel 
machine.  The theoretical analysis and the experimental 
results show that the ED scheme outperforms the CFS
scheme that outperforms the SFC scheme.  Besides, the 
SFC/CFS/ED schemes based on the EKMR scheme 
outperform those based on the TMR scheme. 

2. Related Work 

Many methods have been proposed to implement data 
distributions of sparse arrays in the literature.  Zapata et
al. [20] have proposed Block Row Scatter (BRS) and 
Multiple Recursive Decomposition (MRD) schemes for 
two-dimensional sparse arrays.  In the BRS/MRD
schemes, the data partition phase is performed first, then 
the data distribution phase, followed by the data 
compression phase.  Ziantz et al. [21] proposed a 
run-time technique that was applied to sparse arrays for 
array distributions and off-processor data fetching to 
reduce the communication and computation time.  They 
used the block data distribution scheme with a bin-packing 
algorithm to distribute a global sparse array to processors.  
Lee et al. [3] presented a library to speed up sparse array 
computations with Fortran 90 [1] array intrinsic functions 
for multi-dimensional arrays.  They provided a data 
distribution scheme by extending the MRD scheme to 
multi-dimensional sparse arrays.  Therefore, these 
schemes above all belong to the SFC scheme. 

3. Preliminary Concepts 

We describe the EKMR scheme and the ECRS/ECCS
methods for three-dimensional arrays.  The details of 
them for multi-dimensional arrays can be found in [12, 15]. 
We use the TMR(n)/EKMR(n) for an n-dimensional array 
based on the row-major data layout [14].  In the EKMR
scheme, a multi-dimensional array is represented by a set 
of two-dimensional arrays.  Let A[k][i][j] denote a 3×4×5 
array based on the TMR(3).  The corresponding array 
A'[4][15] based on the EKMR(3) is shown in Figure 1.  
The ECRS/ECCS methods use a set of three one- 
dimensional arrays R, CK, and V to compress a multi- 
dimensional sparse array based on the EKMR scheme.  
Given a sparse array A based on the EKMR(3), the ECRS
(ECCS) method compresses all of non-zero array elements 
along the rows (columns for ECCS).  Array R stores the 
number of non-zero array elements of each row (column 
for ECCS).  The number of non-zero array elements in 
the ith row (jth column for ECCS) can be obtained by 
subtracting the value of R[i] from R[i+1].  The column 
(row for ECCS) indices and the values of non-zero array 
elements are stored in arrays CK and V store.  The base 
of these three arrays is 0.  An example of the 
ECRS/ECCS methods is given in Figure 2. 

i'

1

i=0 

j'

1

2

3

j=0 1             2              3             4 

k=  0    1   2     0   1    2    0    1   2    0    1    2    0    1   2 

Figure 1: An array based on the EKMR(3).
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Figure 3: A sparse array A' based on the EKMR(3).

4. The SFC, CFS and ED Schemes 

We describe the SFC/CFS/ED schemes based on the 
EKMR scheme.  Assume that a sparse array A' based on 
the EKMR(3) shown in Figure 3 is stored in a host 
processor.  Our goal is to distribute array A' to 2×2 
processor array. 

4.1 The SFC Scheme

In the data partition phase, array A' is partitioned into four 
local sparse arrays shown in Figure 4(a).  In theory, each 
local sparse array has the same number of non-zero array 
elements.  However, it may be impossible as Figure 4(a) 
in practice.  The reason is that we can not partition a row 
or a column into two parts according to the load-balancing 
method.  Since array elements of local sparse arrays are 
not stored in consecutive memory locations, they need to 
be packed before sending to processors.  In the data 
distribution phase, packed local sparse arrays are sent to 
processors in sequence.  Figure 4(b) shows the local 
sparse array received by each processor.  In the data 
compression phase, the received local sparse array is 
compressed by the ECCS method in Figure 4(c).   

4.2 The CFS Scheme

The three phases are performed in the following order, the 
data partition phase, then data compression phase, 
followed by the data distribution phase.  In the data 
partition and data compression phases, the processes are 
the same as those of the SFC scheme.  However, the 
values stored in array CK are global array indices.  In the 
data distribution phase, arrays R, CK, and V of each local 
sparse array are packed and then sent to its corresponding 
processor.  Each processor unpacks the buffer to get 
arrays R, CK, and V.  Each processor Pi,j converts the 
values stored in array CK to local array indices by 
subtracting � from them, where � is the total number of 
columns (rows for ECCS) in processors Pi,0, Pi,1, …, Pi,j-1
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(P0,j, P1,j, …, Pi-1,j for ECCS).  An example of the CFS
scheme for array A' using the ECCS method is given in 
Figure 5.  Figure 5(c) only shows the data distribution 
phase for processor P1,0.   

4.3 The ED Scheme

The data compression phase can be divided into two steps, 
encoding and decoding.  The data partition phase is 
performed first, then the encoding step, followed by the 
data distribution phase and the decoding step.  In the data 
partition phase, the process is the same as that of the SFC
scheme.  In the encoding step, each local sparse array is 
encoded into a buffer B shown in Figure 6.  Each C’

i,j is a 
global array index.  In the data distribution phase, these 
buffers B are sent to processors in sequence.  In the 
decoding step, a buffer B is decoded to get arrays R, CK,
and V in each processor.  To get array R, R[0] is first 
initialized to 1.  Then, other values of array R are 
computed according to the formula R[i+1]=R[i]+R’

i.  To 
get arrays CK and the V, we move all C’

i,j and V’
i,j stored in 

buffer B to arrays CK and V.  Each processor Pi,j converts 
each C’

i,j to the local array index by subtracting � from 
them, where � is the total number of columns (rows for 
ECCS) in processors Pi,0, Pi,1, …, Pi,j-1 (P0,j, P1,j, …, Pi-1,j

for ECCS).  An example of the ED scheme for array A'

using the ECCS format is given in Figure 7.  Figure 7(d) 
only shows the decoding step for processor P1,0.  For the 
four- or higher dimensional sparse arrays, the SFC/CFS/
ED schemes are similar to those for the three-dimensional 
sparse array. 

5. Theoretical Analysis

Due to page limitation, we only analyze the performance 
for the SFC/CFS/ED schemes based on the EKMR scheme 
with the ECRS method.  In Table 1, we list the notations 
used in the theoretical analysis.  Assume that an n3 sparse 
array A’ based on the EKMR scheme is stored in a host 
processor and we want to distribute array A’ to r×q
processors.  The number of non-zero array elements in 
array A’ is sn3 and we assume that the sparse probability [8] 
for each array element is equal.  The number of non-zero 
array elements in each local sparse array is sn3/r×q.  The 
largest local sparse array is �’n3.   

5.1 The SFC Scheme

In the data distribution phase, each local sparse array is 
packed and then sent to a processor sequentially.  
TDistribution=r×q×TStartup+n3×TData+ n3×TOperation.  In the data 
compression phase, local sparse arrays in all processors 
are compressed simultaneously.  TCompression=
n3×(�'+3/r×qs)×TOperation.

(a) For the ECRS format 

(b) For the ECCS format 

Figure 6: The formats of the buffer B.

Table 1: The notations are used in this paper. 
Notation Descriptions 

TStartup The startup time for a communication channel 
TData The transmission time for sending an array element 

TOperation The average time of an array element to do an operation.   
TDistribution The data distribution time for the data distribution phase. 

TCompression The data compression time for the data compression phase. 

A’ A multi-dimensional sparse array based on the EKMR scheme 
r × q (p) The number of processors 

s The sparse ratio of a global sparse array 

�={�i|i=0,1, …,p-1} 
A set of space ratios of local sparse arrays.  The space ratio of 
the largest local sparse array is denoted as�’ and the size is r’×q’.

Table 2: The data distribution/data compression time. 
Scheme Method Complexity Cost 

TDistribution r×q×TStartup + N×TData+ N×TOperationSFC 
TCompression (N×(�'+Ms))×TOperation

TDistribution
r×q×TStartup + (ksN+qn+rq)×TData +
(N×(k+M)s+r'+qn+rq+1)×TOperationCFS 

TCompression (N×(1+(k+1)s))×TOperation

TDistribution r×q×TStartup + (ksN+qn)×TData

TMR 

ED 
TCompression (N×(1+(k+1+M)s)+r'+1)×TOperation

TDistribution r×q×TStartup + N×TData+ N×TOperationSFC 
TCompression (N×(�'+Qs))×TOperation

TDistribution
r×q×TStartup + (2sN+qnk-2+rq)×TData+

(N×(2+Q)s+r'nk-4+qnk-2+rq+nk-4)×TOperationCFS 
TCompression (N×(1+3s))×TOperation

TDistribution r×q×TStartup + (2sN+qnk-2)×TData

EKMR 

ED 
TCompression (N×(1+(3+Q)s)+r'nk-4+nk-4)×TOperation

5.2 The CFS Scheme

In the data compression phase, each local sparse array is 
compressed sequentially.  TCompression=n3×(1+3s)×TOperation.
In the data distribution phase, each local compressed array 
is packed and then sent to a processor sequentially.  
These buffers are unpacked to get arrays R, CK, and V
simultaneously.  TDistribution = r×q×TStartup + (2n3s+qn+rq)×
TData+ (n3×(2+3/r×q)s+r'+qn+rq+1)× TOperation.

5.3 The ED Scheme

In the encoding step, each local sparse array is encoded 
into the buffer B sequentially.  In the data distribution 
phase, each buffer B is sent to a processor sequentially.  
TDistribution=r×q×TStartup+(2n3s+qn)×TData.  In the decoding 
step, these buffers are decoded to get arrays R, CK, and V
simultaneously. TCompression = (n3×(1+(3+3/r×q)s)+r'+1)× 
TOperation.  Assume that an nk sparse array A’, where k > 2, 
is stored in a host processor.  Table 2 lists the data 
distribution/data compression time.  In order to simplify 
the results, we use symbols N, M, and Q to substitute 
symbols nk, (k+1)/r×q, and 3/r×q, respectively. 
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Figure 8: The data distribution/data compression time. 

5.4 Discussions

From Table 2, for the EKMR scheme, first, we can see that 
TDistribution(ED)<TDistribution(CFS).  Second, if s is less than 
0.5, we can see that TDistribution(ED) and TDistribution(CFS) is 
less than TDistribution(SFC).  In [15], we have shown that s
must be less than 0.5 if we want to use the ECRS/ECCS
methods.  Moreover, it shows that over 80% sparse array 
applications in which s is less than 0.1 according to the 
Harewell-Boeing Sparse Matrix Collection [5].  Hence, 
we have four Remark.

1. TDistribution(ED) < TDistribution(CFS) < TDistribution(SFC).
2. TCompression(SFC) < TCompression(CFS) < TCompression(ED).
3. The ED scheme outperforms the CFS scheme. 

4. The ED/CFS schemes outperform the SFC scheme if 
the conditions TData > (3s-�’/1-2s)TOperation and TData > 
(5s-�’/1-2s)TOperation are satisfied.  ( 11 ' �	 �rq )

In general, TData is larger than or equal to TOperation on a 
distributed memory multicomputer.  If we assume that 
TData is equal to TOperation, the conditions are rewritten to s < 
(1+�’)/5 and s<(1+�’)/7.  Since s in practical applications 
is very small (< 0.1), the conditions can be satisfied easily. 

From Table 2, for the TMR/EKMR schemes, we have 
three Remark.

5. The data distribution time of the SFC/CFS/ED
scheme based on the EKMR scheme is less than that based 
on the TMR scheme. 

6. The data compression time of the SFC/CFS/ED
schemes based on the EKMR scheme is less than that 
based on the TMR scheme. 

7. The SFC/CFS/ED schemes based on the EKMR
scheme outperform those based on the TMR scheme. 

The reasons are two-fold.  First, for the SFC scheme, 
the EKMR scheme can reduce the costs of packing non- 
continuous data blocks [14].  Second, for these three 
schemes, the time required to compress a sparse array can 
be reduced since the number of one-dimensional arrays 
used by the ECRS/ECCS methods does not increase as the 
dimension increases [15]. 

6. Experimental Results

In experimental test, we implement the SFC/CFS/ED
schemes based on the TMR/EKMR schemes on an IBM 
SP2 parallel machine.  All programs are written in C +
MPI (Message Passing Interface) [21] codes.  The sparse 
ratio is set to 0.1 for all test three-dimensional sparse 
arrays used as test samples.   

Figure 8 shows the data distribution/data compression 
time of the SFC/CFS/ED schemes based on the TMR
scheme with the CRS method and the EKMR scheme with 
the ECRS method using the 2D mesh partition with 
load-balancing method.  For the EKMR scheme, from 
Figure 8(a), the result matches Remark 1.  The reasons 
are two-fold.  First, for the CFS/ED schemes, we do not 
send entire local sparse arrays to processors.  Second, 
local compressed arrays do not need to be packed for the 
ED scheme.  From Figure 8(b), the result matches 
Remark 2.  The reason is that we do not compress entire 
global sparse array for the SFC scheme.  From Figure 
8(c), the result matches Remarks 3 and 4.  The reason is 
that the conditions, TData > (3-10�’/8)TOperation and TData > 
(5-10�’/8)TOperation, are satisfied.  From Figure 8 and 
Table 2, we can estimate that TData is close to 1.2×TOperation.
For the TMR/EKMR schemes, from Figure 8, these results 
match Remarks 5, 6, and 7.  From Figure 8, we can see 
that the experimental results match the theoretical analysis 
shown in Table 2. 
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7. Conclusions

In this paper, first, we applied the SFC/CFS/ED schemes 
based on the EKMR scheme.  Then, we have compared 
the performance of these three schemes with those based 
on the TMR scheme.  Both theoretical analysis and 
experimental test were conducted.  From the theoretical 
analysis and the experimental results, we can see that the 
ED scheme outperforms the CFS scheme that outperforms 
the SFC scheme.  Moreover, the SFC/CFS/ED schemes 
based on the EKMR scheme outperform those based on the 
TMR scheme. 
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Figure 2: The ECRS/ECCS methods based on the EKMR(3).
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(b) The data distribution phase 
(c) The data compression phase 

Figure 4: An example of the SFC scheme for array A'.
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(a) The data partition phase 

(b) The data compression phase

(c) The data distribution phase 

Figure 5: An example of the CFS scheme for array A'.
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Figure 7: An example of the ED scheme for array A'.
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