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Abstract

In our previous work, we have studied three data
distribution schemes, Send Followed Compress (SFC),
Compress Followed Send (CFS), and Encoding- Decoding
(ED), for sparse arrays based on the traditional matrix
representation (TMR) scheme. Since multi-dimensional
arrays can also be represented by the extended Karnaugh
map representation (EKMR) scheme, in this paper, we first
apply the SFC/CFS/ED schemes based on the EKMR
scheme. Then, we compare the performance of these
three schemes with those based on the TMR scheme.
Both theoretical analysis and experimental test were
conducted.  In theoretical analysis, we analyze the
SFC/CFS/ED schemes based on the TMR/EKMR schemes
in terms of the data distribution time and the data
compression time. In experimental test, we implement
these three schemes on an IBM SP2 parallel machine.
The theoretical analysis and experimental results first
show that the ED scheme is superior to the CFS scheme
that is superior to the SFC scheme. Second, these three
schemes based on the EKMR scheme outperform those
based on the TMR scheme.

1. Introduction

Array operations are useful in a large number of important
scientific codes, such as molecular dynamics [4], finite-
element methods [9], climate modeling [19], atmosphere
and ocean sciences [5], etc. = Many data parallel
programming languages, such as Fortran D [7], High
Performance Fortran (HPF) [10], and Vienna Fortran [20],
have been proposed and used by users to write efficient
data parallel programs. However, it is a challenging
problem to provide an efficient data distribution for
irregular problems [18] on distributed memory
multicomputers. In the literature [3, 20, 21], many
methods have been proposed and were all performed in the
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following order, the data partition phase, then the data
distribution phase, followed by the data compression phase,
and called the Send Followed Compress (SFC). These
methods are all focused on sparse arrays based on the
traditional matrix representation (TMR) [12].  Since
parallel multi-dimensional array operations [3, 5, 11, 12,
14-16] have been an extensively investigated problem, to
propose efficient data distribution schemes for them
becomes an important issue.

In our previous work [13], we have proposed the
Compress Followed Send (CFS) and the Encoding-
Decoding (ED) schemes based on the TMR scheme. The
extended Karnaugh map representation (EKMR) [12] is
another array representation scheme for multi-dimensional
arrays. We also have proposed the EKMR-Compressed
Row Storage (ECRS) and the EKMR-Compressed Column
Storage (ECCS) [15] data compression methods based on
the EKMR scheme. We have shown that some sparse
array operations based on the ECRS/ECCS methods
outperform those based the CRSCCS [2] methods based on
the TMR scheme. Hence, in this paper, first, we apply the
SFC/CFS/ED schemes based on the EKMR scheme.
Then, we compare the performance of them based on the
EKMR scheme with those based on the TMR scheme.

In order to evaluate these three schemes, in the data
partition phase, the 2D mesh partition [14] with load-
balancing method is used. In this paper, we use the load-
balancing method proposed by Zapata et al. [20]. In the
data distribution phase, local sparse arrays are sent to
processors in sequence. In the data compression phase,
the ECRS/ECCS methods or formats are used for the
SFC/CFS/ED schemes.

Both theoretical analysis and experimental test were
conducted. In theoretical analysis, we analyze the SFC/
CFS/ED schemes based on the TMR/EKMR schemes in
terms of the data distribution/data compression time.
Here, we do not consider the data partition time since the
comparisons of these three schemes are all based on the
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same partition method. In experimental test, we
implement these three schemes on an IBM SP2 parallel
machine. The theoretical analysis and the experimental
results show that the ED scheme outperforms the CFS
scheme that outperforms the SFC scheme. Besides, the
SFC/CFS/ED schemes based on the EKMR scheme
outperform those based on the TMR scheme.

2. Related Work

Many methods have been proposed to implement data
distributions of sparse arrays in the literature. Zapata et
al. [20] have proposed Block Row Scatter (BRS) and
Multiple Recursive Decomposition (MRD) schemes for
two-dimensional sparse arrays. In the BRS/MRD
schemes, the data partition phase is performed first, then
the data distribution phase, followed by the data
compression phase. Ziantz et al. [21] proposed a
run-time technique that was applied to sparse arrays for
array distributions and off-processor data fetching to
reduce the communication and computation time. They
used the block data distribution scheme with a bin-packing
algorithm to distribute a global sparse array to processors.
Lee et al. [3] presented a library to speed up sparse array
computations with Fortran 90 [1] array intrinsic functions
for multi-dimensional arrays. They provided a data
distribution scheme by extending the MRD scheme to
multi-dimensional sparse arrays. Therefore, these
schemes above all belong to the SFC scheme.

3. Preliminary Concepts

We describe the EKMR scheme and the ECRS/ECCS
methods for three-dimensional arrays. The details of

them for multi-dimensional arrays can be found in [12, 15].

We use the TMR(n)/EKMR(n) for an n-dimensional array
based on the row-major data layout [14]. In the EKMR
scheme, a multi-dimensional array is represented by a set
of two-dimensional arrays. Let A[k][{][j] denote a 3x4x5
array based on the TMR(3). The corresponding array
A'[4][15] based on the EKMR(3) is shown in Figure 1.
The ECRS/ECCS methods use a set of three one-
dimensional arrays R, CK, and V to compress a multi-
dimensional sparse array based on the EKMR scheme.
Given a sparse array A based on the EKMR(3), the ECRS
(ECCS) method compresses all of non-zero array elements
along the rows (columns for ECCS). Array R stores the
number of non-zero array elements of each row (column
for ECCS). The number of non-zero array elements in
the ith row (jth column for ECCS) can be obtained by
subtracting the value of R[i] from R[i+1]. The column
(row for ECCYS) indices and the values of non-zero array
elements are stored in arrays CK and V store. The base
of these three arrays is 0. An example of the
ECRS/ECCS methods is given in Figure 2.

1o ..

j=0 1

k= 0 1 2 0 1 2 0 1 2 0 1 2 0 12

Figure 1: An array based on the EKMR(3).

15913000000 O0 0OO0OO0OTO0 O
0000 O0OO0OOSO0ODOO 01101400 0 O
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300 0 47 00O0O0O0 OO0 8 1216
Figure 3: A sparse array A based on the EKMR(3).

4. The SFC, CFS and ED Schemes

We describe the SFC/CFS/ED schemes based on the
EKMR scheme. Assume that a sparse array A based on
the EKMR(3) shown in Figure 3 is stored in a host
processor. Our goal is to distribute array A to 2x2
processor array.

4.1 The SFC Scheme

In the data partition phase, array A is partitioned into four
local sparse arrays shown in Figure 4(a). In theory, each
local sparse array has the same number of non-zero array
elements. However, it may be impossible as Figure 4(a)
in practice. The reason is that we can not partition a row
or a column into two parts according to the load-balancing
method. Since array elements of local sparse arrays are
not stored in consecutive memory locations, they need to
be packed before sending to processors. In the data
distribution phase, packed local sparse arrays are sent to
processors in sequence. Figure 4(b) shows the local
sparse array received by each processor. In the data
compression phase, the received local sparse array is
compressed by the ECCS method in Figure 4(c).

4.2 The CFS Scheme

The three phases are performed in the following order, the
data partition phase, then data compression phase,
followed by the data distribution phase. In the data
partition and data compression phases, the processes are
the same as those of the SFC scheme. However, the
values stored in array CK are global array indices. In the
data distribution phase, arrays R, CK, and V of each local
sparse array are packed and then sent to its corresponding
processor.  Each processor unpacks the buffer to get
arrays R, CK, and V. Each processor P;; converts the
values stored in array CK to local array indices by
subtracting o from them, where « is the total number of
columns (rows for ECCS) in processors Pjg, P;1, ..., Pij,
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(Poj, Prj, ..., Py for ECCS). An example of the CFS
scheme for array A using the ECCS method is given in
Figure 5. Figure 5(c) only shows the data distribution
phase for processor P .

4.3 The ED Scheme

The data compression phase can be divided into two steps,
encoding and decoding. The data partition phase is
performed first, then the encoding step, followed by the
data distribution phase and the decoding step. In the data
partition phase, the process is the same as that of the SFC
scheme. In the encoding step, each local sparse array is
encoded into a buffer B shown in Figure 6. Each C 'i,j isa
global array index. In the data distribution phase, these
buffers B are sent to processors in sequence. In the
decoding step, a buffer B is decoded to get arrays R, CK,
and V in each processor. To get array R, R[0] is first
initialized to 1. Then, other values of array R are
computed according to the formula R[i+1]=R[i]+R ;. To
get arrays CK and the V, we move all C’,-,j and V',;j stored in
buffer B to arrays CK and V. Each processor P;; converts
each C',;j to the local array index by subtracting f from
them, where f is the total number of columns (rows for
ECCS) in processors P, P;,, ..., Pij.i (Poj, Pij ..., Piy
for ECCS). An example of the ED scheme for array A
using the ECCS format is given in Figure 7. Figure 7(d)
only shows the decoding step for processor P;,. For the
four- or higher dimensional sparse arrays, the SFC/CFS/
ED schemes are similar to those for the three-dimensional
sparse array.

5. Theoretical Analysis

Due to page limitation, we only analyze the performance
for the SFC/CFS/ED schemes based on the EKMR scheme
with the ECRS method. In Table 1, we list the notations
used in the theoretical analysis. Assume that an n’ sparse
array A based on the EKMR scheme is stored in a host
processor and we want to distribute array A to rxq
processors. The number of non-zero array elements in
array A is sn’ and we assume that the sparse probability [8]
for each array element is equal. The number of non-zero
array elements in each local sparse array is sn’/rxq. The
largest local sparse array is a/n’.

5.1 The SFC Scheme

In the data distribution phase, each local sparse array is
packed and then sent to a processor sequentially.
TDix[rihutirm:r XQXTS[aI'tup+n3XTDa[a+ nSXTOpera[ion- In the data
compression phase, local sparse arrays in all processors
are  compressed  simultaneously.

3 \ TC omprexsi(m:
1 X(a+3/rxg$)XT operation-

(Gl Vsl e T TP [ e TR TV [ [ G T 7]
10 the row mdev I the jth non-zero array element
"2 the mumber of non-zero arrav clements 1 row 1
7 the column indes of j non-zero arrax cloments i row 1
V' the alue of jth norr-zero arrav cloments vt row s
(a) For the ECRS format
(I e I I 9 A I IV K I I I
i1 the column tdey i 1 the jth non-zero array element
R the namber of non-zero arran clements w column |
7 the columm indes of st non-zero arran clenments i column i
V' the value of st non-zero arrav clements i column 1
(b) For the ECCS format

Figure 6: The formats of the buffer B.

Table 1: The notations are used in this paper.

Notation Descriptions
Tstarup The startup time for a communication channel
Tpata The transmission time for sending an array element
Toperation The average time of an array element to do an operation.
Tpissri The data distribution time for the data distribution phase.
Tcompression The data compression time for the data compression phase.
A A multi-dimensional sparse array based on the EKMR scheme
rxq(p) The number of processors
s The sparse ratio of a global sparse array

A set of space ratios of local sparse arrays. The space ratio of

o={ai=0,1, ....p-1 X s R
todi -1} the largest local sparse array is denoted asa and the size is r xq .

Table 2: The data distribution/data compression time.

Scheme | Method | Complexity Cost
SFC T; rXGX T sarup + NXTpaat NXToperation
Tcompression (NX(a+M$)XT operation
7, XqXTsiarnp + (kKSN+qn+1q)XTpara +
TMR CFS Distribution (Nx(k+M)s+r'+qn+rq+1D)XT pperation
Tcompression (NX(1+(k+1)5)X T operation
ED T, rXGXTsiarup + (kSN+gM)XTpara
T Compression (Nx(A+(k+1+M)$)+1'+ D)X T operasion
SFC T IXGX T stariup + NXTpatat NXT operation
Tcompression (NX(0.+ONXT operation
T XX T siarup + (2SN+qn*+1g)XT poa+
EKMR CFS Diswibution | (Nx(2+Q)s+r'n* *+qn* *+rg+1n" )X T o ration
T Compression (Nx(1435))XToperation
ED T, IXGX T sarnp + (2SN+qn” )XTpusa
T compre (Nx(1+3+Q)8)+7'n" +1" )Xo pration
5.2 The CFS Scheme

In the data compression phase, each local sparse array is
compressed sequentially. TC(,mp,ession=n3x(1+3s)xT0pe,a,i0,,.
In the data distribution phase, each local compressed array
is packed and then sent to a processor sequentially.
These buffers are unpacked to get arrays R, CK, and V
simultaneously.  Tpisipusion = XGXTsiarap + (2n3s+qn+rq)x
Tpaat (n3 X(2+3/rxq)s+r'+qn+rq+1)X Toperation-

5.3 The ED Scheme

In the encoding step, each local sparse array is encoded
into the buffer B sequentially. In the data distribution
phase, each buffer B is sent to a processor sequentially.
TDistribution=rquTStartup+(2n3S+qn)xTDam' In the deCOding
step, these buffers are decoded to get arrays R, CK, and V
simultaneously. Teompression = (1°X(1+(3+3/rxq)s)+r'+1)x
Toperation-  Assume that an n* sparse array A, where k> 2,
is stored in a host processor. Table 2 lists the data
distribution/data compression time. In order to simplify
the results, we use symbols N, M, and Q to substitute
symbols n*, (k+1)/rxq, and 3/rxq, respectively.
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Figure 8: The data distribution/data compression time.

5.4 Discussions

From Table 2, for the EKMR scheme, first, we can see that
TDistribution(ED)<TDistributian(CFS)- Second, if 5 is less than
O~53 we can see that TDix[rihutir)n(ED) and TDix[rihutirm(CFS) is
less than Tpisipuwion(SFC). In [15], we have shown that s
must be less than 0.5 if we want to use the ECRS/ECCS
methods. Moreover, it shows that over 80% sparse array
applications in which s is less than 0.1 according to the

Harewell-Boeing Sparse Matrix Collection [5].
we have four Remark.

1. TDistriburion(ED) < TDistriburion(CFS) < TDistriburion(SFC)-
2' TCompression(SFC) < TCompression(CFS) < TCompression(ED)‘

3. The ED scheme outperforms the CFS scheme.

IREEREEERRERERERRERERER

4. The ED/CFS schemes outperform the SFC scheme if
the conditions Tpue > (35-0/1-28)Toperaion and Tpua >
(5s-ar/ 1-25)Toperation are satisfied.  (1/rg<a’ <1)

In general, Tp,, is larger than or equal to Topergipn ON @
distributed memory multicomputer. If we assume that
Tpata 1s €qual to Toperarion, the conditions are rewritten to s <
(1+a)/5 and s<(1+a)/7. Since s in practical applications
is very small (< 0.1), the conditions can be satisfied easily.

From Table 2, for the TMR/EKMR schemes, we have
three Remark.

5. The data distribution time of the SFC/CFS/ED
scheme based on the EKMR scheme is less than that based
on the TMR scheme.

6. The data compression time of the SFC/CFS/ED
schemes based on the EKMR scheme is less than that
based on the TMR scheme.

7. The SFC/CFS/ED schemes based on the EKMR
scheme outperform those based on the TMR scheme.

The reasons are two-fold. First, for the SFC scheme,
the EKMR scheme can reduce the costs of packing non-
continuous data blocks [14]. Second, for these three
schemes, the time required to compress a sparse array can
be reduced since the number of one-dimensional arrays
used by the ECRS/ECCS methods does not increase as the
dimension increases [15].

6. Experimental Results

In experimental test, we implement the SFC/CFS/ED
schemes based on the TMR/EKMR schemes on an IBM
SP2 parallel machine. All programs are written in C +
MPI (Message Passing Interface) [21] codes. The sparse
ratio is set to 0.1 for all test three-dimensional sparse
arrays used as test samples.

Figure 8 shows the data distribution/data compression
time of the SFC/CFS/ED schemes based on the TMR
scheme with the CRS method and the EKMR scheme with
the ECRS method using the 2D mesh partition with
load-balancing method. For the EKMR scheme, from
Figure 8(a), the result matches Remark 1. The reasons
are two-fold. First, for the CFS/ED schemes, we do not
send entire local sparse arrays to processors. Second,
local compressed arrays do not need to be packed for the
ED scheme. From Figure 8(b), the result matches
Remark 2. The reason is that we do not compress entire
global sparse array for the SFC scheme. From Figure
8(c), the result matches Remarks 3 and 4. The reason is
that the conditions, Tp,, > (3-100//8)T0,,e,.a,,-m and Tp,, >
(5-100//8)T0,,e,.a,m,,, are satisfied. From Figure 8 and
Table 2, we can estimate that T}, is close to 1.2XT e qsion-
For the TMR/EKMR schemes, from Figure 8, these results
match Remarks 5, 6, and 7. From Figure 8, we can see
that the experimental results match the theoretical analysis
shown in Table 2.
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7. Conclusions

In this paper, first, we applied the SFC/CFS/ED schemes
based on the EKMR scheme. Then, we have compared
the performance of these three schemes with those based
on the TMR scheme. Both theoretical analysis and
experimental test were conducted. From the theoretical
analysis and the experimental results, we can see that the
ED scheme outperforms the CFS scheme that outperforms
the SFC scheme. Moreover, the SFC/CFS/ED schemes
based on the EKMR scheme outperform those based on the
TMR scheme.
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Figure 2: The ECRS/ECCS methods based on the EKMR(3).
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Figure 7: An example of the ED scheme for array A .
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