
A Tree-Turn Model for Irregular Networks

Jiazheng Zhou, Xuan-Yi Lin, and Yeh-Ching Chung1

Department of Computer Science, National Tsing Hua University,
Hsinchu, Taiwan 30013, R.O.C

Email: {jzzhou, xylin, ychung}@cs.nthu.edu.tw

1 The corresponding author

Abstract

In this paper, we propose a general turn model,
Tree-turn model, for irregular topology. In Tree-turn
model, links are classified as either tree or cross and six
directions are associated with channels of links. From
these six directions, we prohibit some turns such that an
efficient deadlock-free routing algorithm, Tree-turn
routing, can be derived. There are three phases to
construct the Tree-turn routing. First, build up a
coordinated tree for a given topology. Second, construct
a communication graph of the topology and the
corresponding coordinated tree. Third, set up the
forwarding table by using the all-pairs shortest path
algorithm according to the prohibited turns derived from
the Tree-turn model and the directions of the channels in
communication graph. To evaluate the performance, we
implement the Tree-turn routing algorithm along with the
up*/down* routing algorithm and the L-turn routing
algorithm on a software simulator. The simulation
results show that Tree-turn routing outperforms other two
routing algorithms for all test cases.

1. Introduction

Efficient routing algorithms can achieve high
performance in switched-based networks such as Myrinet
[1], ServerNet [5], and InfiniBand [6]. For wormhole
switching [12], the deadlock is occurred when cyclic
waiting of messages. How to design an efficient
deadlock-free [2] routing algorithm is important to such
networks. Many methods to prevent deadlocks have
been proposed in the literature [3][10][11][15]. The turn
model proposed in [4] was a tool to deliver deadlock-free
routing algorithms for regular topologies. It analyzes the
directions of messages and prohibits enough turns to break
the turn cycles to avoid deadlocks.

The up*/down* routing [14] was the first tree-based
routing algorithm for irregular topology. In up*/down*

routing, there are only two directions, up and down, for
channels. A legal route of up*/down* routing follows
the rule: it must traverse zero or more links in the up
direction followed by zero or more links in the down
direction. Although the up*/down* routing is simple, the
performance is not good since there exists many traffic
congestions at root of a spanning tree called hot spots
[13][16].

To overcome the drawbacks of the up*/down* routing,
the L-turn routing was proposed in [9] based on the 2D
turn model [8]. In L-turn routing, there are four
directions, left-up, left-down, right-up, and right-down,
for channels. The routing is based on the L-R tree. By
carefully setting up the prohibited turns for each node, one
can obtain a more even distribution of traffic load and
shorter routing paths compared to the up*/down* routing.
However, in L-turn routing, the tree links (edges in a
spanning tree) and the cross links (edges not in the
spanning tree) are considered as the same type of links.
It is possible that the hot spots will still occur around the
root under some L-R trees. It is also possible that the
opposite prohibited turn pairs exist on a node and make
traffic load unbalancing.

In this paper, we first propose a general turn model,
Tree-turn model, for irregular topologies. In the
Tree-turn model, the directions of channels can be
classified into left-up, left, left-down, right-up, right, and
right-down directions. It has two more directions, left
and right, than the 2D turn model. With two more
directions, there are more choices of routing paths. In
addition, tree links and cross links are associated with
different definitions (directions). The tree links can only
have left-up and right-down directions and the cross links
have left, left-down, right-up, and right directions. By
giving different definitions to tree links and cross links,
we can use cross links to push the traffic downward in a
spanning tree and release hot spots.

Based on the Tree-turn model, we propose an efficient
tree-based routing algorithm, Tree-turn routing, for
irregular topologies. The principle of Tree-turn routing
is to provide more bandwidth and push the traffic

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

downward to leaves to prevent hot spots. Given an
irregular topology G = (V, E), to construct the Tree-turn
routing, we first build up the corresponding coordinated
tree CT = (V, E’) of G followed by constructing the
communication graph CG = (V, E) from G and CT.
Then we can obtain the forwarding tables of nodes by
using the all-pairs shortest path algorithm according to the
prohibited turns derived from the Tree-turn model and the
directions of the channels in CG.

To evaluate the performance of Tree-turn routing, we
compare it with up*/down* routing and L-turn routing.
We implement a wormhole routing simulator for these
three routing algorithms. We use six network sizes as
test cases to evaluate the three routing algorithms. The
simulation results show that Tree-turn routing
outperforms other two routing algorithms for all test
cases.

The rest of the paper is organized as follows. Some
definitions and terms used in this paper will be given in
Section 2. In Section 3, we will describe the Tree-turn
model. The Tree-turn routing derived from Tree-turn
model will be given in Section 4. The experimental test
will be given in Section 5. We give the conclusions in
Section 6.

2. Preliminaries

In this section, we will give some definitions and terms
used in this paper.

Definition 1 (Graph): Given a switch-based network,
it can be represented as a graph G = (V, E), where V is the
set of the switches and E is the set of the bidirectional
links between switches, and G is the network topology.
For link e = (vi, vj) in E, it consists of two communication
channels <vi, vj> and <vj, vi> such that node vi can send
message to node vj through <vi, vj> and node vj can send
message to node vi through <vj, vi>. For channel <vi, vj>,
vi and vj are called start and sink nodes of the channel,
respectively. <vi, vj> is called the output channel and
input channel of vi and vj, respectively.

Definition 2 (Coordinated tree): Given G = (V, E), a
coordinated tree (CT) is a breath first search (BFS)
spanning tree of G, where CT = (V, E’) and E’ ⊆ E. For
each node v in a coordinated tree, node v is associated
with a two-dimensional coordinate v(x, y). We use X(v)
and Y(v) to denote the x and y coordinates of node v,
respectively, that is, X(v) = x and Y(v) = y. Y(v) is
defined as the level of node v in the coordinated tree, and
X(v) is defined as the order of preorder traversal of the
coordinated tree starting from the root to node v.

Due to two or more children nodes can be selected as
the next preorder traversal node, several coordinated trees
can be built from the same network topology. To obtain
the unique coordinated tree of a given network topology,
the node with smaller network ID will be selected first

when performing the preorder traversal.
Definition 3 (Tree link and cross link): Given G = (V,

E) and a coordinated tree CT = (V, E’) of G, E’ and E − E’
are the sets of tree links and cross links of G with respect
to CT, respectively

Definition 4 (Communication graph (CG)): Given G
= (V, E) and a coordinated tree CT = (V, E’) of G, the
communication graph CG = (V, E) is a directed graph
with respect to G and CT, where E is the set of all
communication channels of E.

Definition 5 (Direction): Given a communication
graph CG = (V, E), for each channel e = <vi, vj> ∈ E ,
we define

(1) vj is the left-up node of vi if X(vj) < X(vi) and Y(vj) <
Y(vi).

(2) vj is the left node of vi if X(vj) < X(vi) and Y(vj) =
Y(vi).

(3) vj is the left-down node of vi if X(vj) < X(vi) and Y(vj)
> Y(vi).

(4) vj is the right-up node of vi if X(vj) > X(vi) and Y(vj)
< Y(vi).

(5) vj is the right node of vi if X(vj) > X(vi) and Y(vj) =
Y(vi).

(6) vj is the right-down node of vi if X(vj) > X(vi) and
Y(vj) > Y(vi).

For each channel e = <vi, vj>, the direction of e ,
denoted as ()d e , is defined as LU, L, LD, RD, R, and RD
if vj is the left-up node, the left node, the left-down node,
the right-up node, the right node, and the right-down node
of vi, respectively.

Definition 6 (Turn): Given a communication graph
CG = (V, E), the directions of eα and eβ form a turn
for vj if eα = <vi, vj> and eβ = <vj, vk>. We use

(), ()d e d eT
α β

 to denote the turn formed by the directions of

eα and eβ .
Definition 7 (Turn cycle): Given a communication

graph CG = (V, E), a turn cycle TC =
(

1 2(), ()d e d eT ,
2 3(), ()d e d eT , …,

1(), ()k kd e d eT
+

) is a sequence of
turns in which the sink node of the first channel is also the
sink node of the last channel in the turn sequence, that is,
the start node of 2e is the sink node of 1ke + .

Definition 8 (Direction graph (DG)): The direction
graph DG = (,)D T with respect to a communication

graph CG = (V, E) is a complete directed graph, where D
is the set of directions defined in CG and T = { ,i jd dT | for

all di, dj ∈ D and di ≠ dj} is the set of all possible turns that
can be defined in CG. A DG is called the complete
direction graph (CDG) if D = {LU, L, LD, RU, R, RD}.

Definition 9 (Direction dependency graph (DDG)):

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

Given a DG, any subset of DG is defined as the direction
dependency graph (DDG) of DG.

Definition 10 (Acyclic direction dependency graph
(ADDG)): Given a CG, the DG of CG, and a DDG of DG,
for each node v in CG, if the edges of DDG are the only
available turns allowed at v and no turn cycle can be
formed in CG, then the DDG is called acyclic DDG.

Definition 11 (Maximal acyclic direction dependency
graph (Maximal ADDG)): Given a CG, the DG of CG, an
ADDG of DG is called the maximal ADDG if adding any
edge that in DG but not in ADDG to the ADDG will result
in turn cycles in CG.

Lemma 1: Given a CG and a DDG of CG, if there is
no cycle in the DDG, then it is impossible to have turn
cycles in CG when the edges of DDG are the only
available turns allowed at each node in CG.

Proof: We want to show that if there is a turn cycle in a
CG, then there is a cycle in DDG. Assume that there is a
turn cycle TC = (

1 2(), ()d e d eT ,
2 3(), ()d e d eT , …,

1(), ()k kd e d eT
+

) in
CG. The turn cycle TC can be simply represented as
TC’(

21,ddT ,
32 ,ddT , …,

1,ddk
T) in the corresponding DDG,

where d1 = d(1e) = d(1+ke), d2 = d(2e), d3 = d(3e), …,

and dk = d(ke). TC’(
1 2,d dT ,

32 ,ddT , …,
1,ddk

T) is a cycle
in the DDG.

We now give an example to explain above definitions.
In Figure 1(a), we use a graph G = (V, E) to represent a
switched-based network, where V = {v1, v2, v3, v4, v5} and
E = {(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v3, v4), (v3, v5), (v4,
v5)}. In Figure 1(b), a BFS spanning tree of the network
in Figure 1(a) is shown. The root in the BFS spanning
tree is node v1. The coordinated tree of G is shown in
Figure 1(c). In Figure 1(c), according to Definition 2,
we have Y(v1) = 0, Y(v2) = 1, Y(v3) = 1, Y(v4) = 1, and Y(v5)
= 2,. When performing preorder traversal, we have X(v1)
= 0. Nodes v2, v3, v5, and v4 are traversed in order since
we choose the node with smaller ID as the next node.
We have X(v2) = 1, X(v3) = 2, X(v5) = 3, and X(v4) = 4.
Node v3 is the right-down, right, left, and left-up node of
nodes v1, v2, v4, and v5, respectively.

Figure 1(d) shows the communication graph of Figure
1(a) and Figure 1(c). We use thick links and thin links in
Figure 1(d) to represent tree links and cross links,
respectively. We can find that the directions of tree links
are either LU or RD, and the directions of cross links are L,
LD, RU, or R. In Figure 1(d), the directions d(<v1, v2>) =
RD, d(<v2, v1>) = LU, d(<v2, v3>) = R, d(<v3, v2>) = L,
d(<v4, v5>) = LD, and d(<v5, v4>) = RU.

2 1 1 3(,), (,)d v v d v vT < > < >

= ,LU RDT is a turn and TC = {
2 1 1 3(,), (,)d v v d v vT < > < > ,

1 3 3 2(,), (,)d v v d v vT < > < > ,
3 2 2 1(,), (,)d v v d v vT < > < > } = { ,LU RDT , ,RD LT ,

,L LUT } is a turn cycle.
In Figure 1(e), the direction graph DG of Figure 1(d) is

shown. It is a complete direction graph since it consists
of six directions. Figure 1(f) shows a direction
dependency graph DDG of Figure 1(e). There are two
turns ,RD LUT and ,LU RDT in the DDG. Turn cycles
{ ,RD LUT , ,LU RDT } and { ,LU RDT , ,RD LUT } are formed in
the DDG. Figure 1(g) shows an acyclic direction
dependency graph ADDG of Figure 1(e). It has two
turns ,L RDT and ,RD LT . If we only allow these two turns
in Figure 1(d), the two turns form a cycle but not a turn
cycle. We can see that a cycle in an ADDG will not
result in a turn cycle in CG.

v1

v3

v5v4

v2

i node i
(switch)

link
v3

v5

v1

v4v2

(a) A network topology G (b) The spanning tree
 of G

v3

v5

v1

v4v2

(0, 0)

(1, 1) (2, 1)

(3, 2)

(4, 1)

(x, y)
x: x coordinate
y: y coordinate

(c) A coordinated tree of G

v3

v5

v1

v4v2

RULU

LD RD

RL

LU RU

LD RD

L R

(d) The CG of G (e) The DG of CG

RD LU L RD

(f) A DDG (g) An ADDG
Figure 1. An example for definitions.

3. The Tree-turn Model

The Tree-turn model is a general turn model for
irregular topology. Given an irregular topology G, in the
Tree-turn model, based on Definitions 2, 3, 4, and 5, the
directions of channels can be classified into six directions,
left-up, left, left-down, right-up, right, and right-down
directions. The Tree-turn model has two more directions,
left and right, than the 2D turn model. With these two

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

more directions, there are more choices of routing paths.
In addition, since the coordinated tree of G is skewed and
we define tree links as the links of the coordinated tree,
for each channel e in tree links, the direction of e is
either LU or RD, that is, ()d e ∈ {LU, RD}. For each
channel e in cross links, the direction of e is L, LD,
RU, or R, that is, ()d e ∈ {L, LD, RU, R, RD}. Tree
links and cross links are associated with different
directions in the Tree-turn model. By giving different
directions to tree links and cross links, we can use cross
links to push the traffic downward in a spanning tree and
release hot spots.

In order to avoid deadlocks, in the Tree-turn model, a
maximal ADDG is derived from the CDG that contains six
directions. Since no turn cycle can be formed in a
maximal ADDG and the DG of a topology G contains at
most six directions, when apply the prohibited turns
derived from the construction of a maximal ADDG of the
CDG to nodes of G, a deadlock-free routing can be
preserved. There are two issues to find the maximal
ADDG from the CDG. The first issue is to decide what
edges should be removed (prohibited) from the CDG.
The second issue is the routing algorithm derived from the
found maximal ADDG should perform efficiently. For
the first issue, we use an incremental method to remove
edges step by step from the CDG to obtain a maximal
ADDG. For the second issue, when removing edges
from a DDG in each step, we will try to prevent the traffic
from flowing to the root of a CG and push the traffic
downward to the leaves of a CG. The process of finding
the maximal ADDG from the CDG consists of the
following three steps:

Step 1. Find the maximal ADDGs ADDG1, ADDG2,
and ADDG3 from DGs of nodes LU and RD, nodes LD
and RU, and nodes L and R from the CDG, respectively.

Step 2. Combine ADDG1 with ADDG2 by adding edges
between nodes in ADDG1 and ADDG2 to form a new
DDG and find a maximal ADDG, ADDG4, from the new
formed DDG.

Step 3. Combine ADDG3 with ADDG4 by adding edges
between nodes in ADDG3 and ADDG4 to form a new
DDG and find a maximal ADDG, ADDG5, from the new
formed DDG. The found ADDG5 is a maximal ADDG
of the CDG.

In the following, we will describe these three steps in
details.

A. Step 1

In this step, we will find the maximal ADDGs ADDG1,
ADDG2, and ADDG3 from DGs of nodes LU and RD,
nodes LD and RU, and nodes L and R from the CDG,
respectively. The reason we choose these node pairs is
that the DG of each node pair contains edges with

opposite directions. These edges form a cycle that may
lead to a turn cycle. Figure 2 shows the DGs of these
node pairs and their corresponding possible turn cycles.

To prevent the cycles of DGs shown in Figure 2, we
must remove one edge from each DG. In Figure 2(a), we
remove the edge ,RD LUT and this is the only choice.
The reason is to maintain the connectivity of a topology.
Since the LU and RD directions are defined for tree links,
if the topology is a tree and we remove edge ,LU RDT , there
is no way for all nodes to communicate with each other if
one node is not the ancestor or the child of the other node.
By removing edge ,RD LUT from Figure 2(a), we can get
ADDG1 shown in Figure 3(a). In Figure 2(b), we can
break the cycle by removing either edge of the DG. For
each node v in the CG, the direction LD means that the
traffic flow is going downward from node v to other nodes
whose Y coordinate is less than that of node v. Edge

,LD RUT means that the traffic flow is going downward
before going upward. In order to push to traffic
downward, we keep edge ,LD RUT . By removing edge

,RU LDT from Figure 2(b), we can get ADDG2 shown in
Figure 3(b). In Figure 2(c), the cycle is formed by
directions L and R. Since it does not affect the traffic
flow going downward or upward by removing either edge,
we remove edge ,R LT in this case. By removing edge

,R LT from figure 2(c), we can get ADDG3 shown in
Figure 3(c).

LU RD
LU

RD

RD
LU

LD RU
LD

RU

RU

LD

 (a) LU and RD (b) LD and RU
L R

L

R R

L

(c) L and R
Figure 2. The DGs of node pairs and their
corresponding possible turn cycles.

LU RD LD RU L R

(a) ADDG1 (b) ADDG2 (c) ADDG3
Figure 3. The maximal ADDGs of DGs shown in
Figure 2.

B. Step 2

In this step, we want to combine ADDG1 with ADDG2
by adding edges between nodes in ADDG1 with ADDG2 to
form a new DDG and find ADDG4 from the new formed
DDG. The DDG by combining ADDG1 with ADDG2 is
shown in Figure 4(a). In Figure 4(a), there are four
cycles C1, C2, C3, and C4 that will result in turn cycles TC1

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

= { ,RD RUT , ,RU LUT , ,LU RDT }, TC2 = { ,LD RUT , ,RU LUT ,

,LU LDT }, TC3 = { ,RU RDT , ,RD LDT , ,LD RUT }, and TC4 =
{ ,RD LDT , ,LD LUT , ,LU RDT } in a CG as shown in Figures
4(b), 4(c), 4(d), and 4(e), respectively. To break these
four turn cycles, we need to remove some edges from the
DDG shown in Figure 4(a).

For cycles C1 and C2, they have a common edge
,RU LUT and this edge makes the traffic flow upward. In

order to push the traffic flow downward to leaves of a
corresponding CT, we remove this common edge and
break cycles C1 and C2. For cycles C3 and C4, they have
a common edge ,RD LDT . Since edge ,RD LDT makes the
traffic flow downward, we keep the edge. For other
edges ,RU RDT and ,LD RUT in cycle C3, ,RU RDT makes the
traffic flow upward then downward and ,LD RUT makes
the traffic flow downward then upward. In order to push
the traffic flow downward to leaves of a corresponding CT,
we remove edge ,RU RDT to break cycle C3. For other
edges ,LU RDT and ,LD LUT in cycle C3, since LU and RD
are directions of tree links, we cannot remove ,LU RDT for
connectivity reason as stated in Step 1. Therefore, we
remove edge ,LD LUT to break cycle C4. We then obtain
the ADDG4 as shown in Figure 4(f).

LU RU

LD RD
RD

RD

RU

RU

LU
LU

C1 TC1

LU RU

RD

(a) The DDG by (b) Cycle C1 and
 combining ADDG1 turn cycle TC1
 with ADDG2

LD

LD

LU

LU

RU
RU

C2 TC2
LU RU

LD

(c) Cycle C2 and turn cycle TC2

RU

RU

RD

RD

LD

LD

C3 TC3
RU

LD RD

(d) Cycle C3 and turn cycle TC3

LU

LU

LD

LD

RD

RD
C4 TC4

LU

LD RD

LU RU

LD RD

(e) Cycle C4 and turn cycle TC4 (f) ADDG4
Figure 4. Combine ADDG1 with ADDG2 to form
ADDG4.

C. Step 3

In this step, we want to combine ADDG3 with ADDG4
by adding edges between nodes in ADDG3 and ADDG4 to
form a new DDG and find ADDG5 from the new formed
DDG. For nodes in Figure 4(f), we have the following
observations:

Observation 1: Any combination of edges from
nodes LD and RD would not have upward directions in a
CG.

Observation 2: Any combination of edges from
nodes LU and RU would not have downward directions in
a CG.

Therefore, we divide ADDG4 into Region 1 and Region
2 as shown in Figure 5(a). For the ADDG3 shown in
Figure 3(c), edge ,L RT indicates that the traffic is flowing
between nodes in the same level of a corresponding CT.
To combine ADDG3 with Region 1 or Region 2 shown in
Figure 5(a), we have the following observations:

Observation 3: If we combine ADDG3 with Region 1
to form a DDG shown in Figure 5(b), no turn cycles can
be formed by applying edges of the DDG to nodes of a
given CG.

Observation 4: If we combine ADDG3 with Region 2
to form a DDG shown in Figure 5(c), no turn cycles can
be formed by applying edges of the DDG to nodes of a
given CG.

Observation 5: If we combine ADDG3 with ADDG4,
there are two possible ways to form turn cycles. One is
from node v in ADDG3 to nodes in Region 1, nodes in
Region 2, and goes back to node v. The other is from
node v in ADDG3 to nodes in Region 2, nodes in Region 1,
and goes back to node v.

Based on observations 3-5, in Figure 5(d), there are six
cycles C5, C6, C7 , C8, C9, and C10 that will result in turn
cycles TC5 = { ,L LUT , ,LU RDT , ,RD LT }, TC6 = { ,L LDT ,

,LD RUT , ,RU LT }, TC7 = { ,L RDT , ,RD RUT , ,RU LT }, TC8 =
{ ,R LDT , ,LD RUT , ,RU RT }, TC9 = { ,R LUT , ,LU RDT , ,RD RT },
and TC10 = { ,R LUT , ,LU LDT , ,LD RT } as shown in Figure
5(e), Figure 5(f), Figure 5(g), and Figure 5(h), Figure 5(i),
and Figure 5(j), respectively.

For cycle C5, edges ,L LUT and ,LU RDT make the
traffic flow upward. Since LU and RD are directions of
tree links, we cannot remove ,LU RDT for connectivity
reason. In order to push the traffic flow downward to
leaves of a corresponding CT, we remove edge ,L LUT to
break cycle C5. For cycles C6 and C7, they have a
common edge ,RU LT that makes the traffic flow upward.
In order to push the traffic flow downward to leaves of a
corresponding CT, we remove edge ,RU LT to break
cycles C6, and C7. For cycle C8, since only edge ,RU RT

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

makes the traffic flow upward (,LD RUT makes the traffic
flow downward then upward), in order to push the traffic
flow downward to leaves of a corresponding CT, we
remove edges ,RU RT to break cycle C8. For cycles C9

and C10, they have a common edge ,R LUT that makes the
traffic flow upward. In order to push the traffic flow
downward to leaves of a corresponding CT, we remove
edge ,R LUT to break cycles C9, and C10. We obtain
ADDG5 as shown in Figure 5(k).

From Step 1 to Step 3, we have removed 10 edges from
CDG. These removed edges are prohibited turns,
denoted as PT = { ,L LUT , ,LD LUT , ,RU LUT , ,R LUT , ,RD LUT ,

,RU LT , ,R LT , ,RU LDT , ,RU RT , ,RU RDT }, in the Tree-turn
model.

LU RU

LD RD

Region 2

Region 1

LU RU

LD RD

Region 2

Region 1

L R

(a) Two regions of (b) Combine ADDG3
ADDG4 with Region 1

LU RU

LD RD

Region 2

Region 1

L R

LU RU

LD RD

Region 2

Region 1

L R

(c) Combine ADDG3 with (d) Combine ADDG3 with
Region 2 ADDG4

LU

RD

L

L L

RD

RD

LU

LU

C5 TC5

(e) Cycle C5 and turn cycle TC5
RU

LD

L

C6
L L

RU

RU

LD

LD

TC6

(f) Cycle C6 and turn cycle TC6
RU

RD

L

C7 LL

RD

RD RU

TC7

RU

(g) Cycle C7 and turn cycle TC7

C8 TC8RU

LD

R

R R

LD

LD

RU

RU

(h) Cycle C8 and turn cycle TC8
C9 TC9LU

RD

R

R R

LU

LU

RD

RD

(i) Cycle C9 and turn cycle TC9
C10 TC10LU

LD

R

RR

LD

LD LU

LU

(j) Cycle C10 and turn cycle TC10
LU RU

LD RD

L R

 (k) ADDG5
Figure 5. Combine ADDG3 with ADDG4 to form
ADDG5.

4. The Tree-turn Routing

Based on the Tree-turn model, given an irregular
topology G = (V, E), we can derive the Tree-turn routing
by the following three phases:

Phase 1: Construct the corresponding coordinated tree
CT = (V, E’) of G.

Phase 2: Construct the communication graph CG = (V,
E) from G and CT.

Phase 3: Set up the forwarding tables of nodes in CG
by using the all-pairs shortest path algorithm according to
the 10 prohibited turns derived from the Tree-turn model
and the directions of the channels in CG.

In phase 3, for the all-pairs shortest path algorithm,
whenever we find a shorter routing path through node k,
and if the turn formed at node k is not a prohibited turn,
we will adjust the routing path and setup the forwarding
tables of the nodes on the routing path. Otherwise, we
will keep the original routing path. If there are several
routing paths with the same length, we add all of them to
the routing tables. Following is the detail of all-pairs
shortest path algorithm for Tree-turn routing.

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

Algorithm setup_forwarding_tables()
1. Let n be the number of nodes in the network.
2. Let routing_path[i][j] be the routing path from node i to
node j.
2. Let length[i][j] be the length from node i to node j.
3. Let direction(i, j) be the direction of channel <i, j>
formed by node i and node j.
4. Let turn(di, dj) be the turn form direction di and
direction dj.
5. /* Initialize the length[i][j] according to the adjacency
matrix. */
for i = 1 to n do

for j = 1 to n do
if (there exists one link between node i and node j)
then { length[i][j] = 1; }

6. /* Compute the length[i][j] and adjust the routing paths.
*/
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (length[i][k] + length[k][j] <=length[i][j]) then
{

Let node m be the (length[i][k] – 1)th node of
routing_path[i][k].
Let node n be the second node of
routing_path[k][j].
inDirection = direction(m, k);
outDirection = direction(k, n);
if (turn(inDirection, outDirection) is not

prohibited) then
{

length[i][j] = length[i][k] + length[k][j];
Adjust the routing paths and setup the
forwarding tables for the nodes on the routing
paths.

}
}

End_of_algorithm_setup_forwarding_tables

Theorem 1: The Tree-turn routing is deadlock-free
and there exists at least one path from one node to another
in a CG.

Proof: Based on Tree-turn model, there is at least one
prohibited turn to break each turn cycle in the CDG.
Therefore, this routing algorithm is deadlock-free. Since
the turn ,LU RDT is not prohibited for each node in a CG,
each packet from any source node to its destination node
can first go upward to their least common ancestor and
then goes downward to the destination node. Therefore,
there exists at least one path from one node to another.

5. Simulation Results

To evaluate the performance of the proposed routing
algorithm, we implement the Tree-turn routing algorithm
along with the up*/down* routing algorithm and the
L-turn routing algorithm on a wormhole routing simulator,
IRFlexSim [7]. In our network model, the topologies are
generated randomly by given number of switches and
links. Each switch is associated with a processor.
There are 8 ports in each switch, and each port is
associated with one input channel and one output channel.
We do not allow duplicated links between a pair of
switches, that is, there exists at most one link between a
pair of switches. The packet length is 128 flits. The
delay for a flit goes through a link is one clock. The
delay for the flit header to be routed and arbitrated to the
output channel is one clock. The delay for a data flit to
be transmitted from the input channel to the output
channel is one clock. The traffic pattern is uniform. To
simulate the irregular topology, we have six
configurations for different number of nodes (switches) n
and links l, that is, (n, l) ∈ {(128, 384), (128, 448), (128,
512)}.

Figure 6 shows the simulation results of these three
algorithms under different network configurations. In
Figure 6, the throughput is defined as the received data
per clock per node (flits/clock/node). The message
latency is measured in clocks. From the simulation
results, we can see that the performance of Tree-turn
routing is better than that of L-turn routing, and the
performance of L-turn routing is better than that of
up*/down* routing. That is, Tree-turn routing
outperforms L-turn routing and up*/down* routing. For
topologies used in Figures 6(a) to 6(c), they have the same
number of nodes, but different numbers of links. From
Figures 6(a) to 6(c), for all routing algorithms, we can see
that when the number of links increases, the throughputs
of routing algorithms are getting larger and the latencies
of routing algorithms are getting smaller.

6. Conclusions

In this paper, we have proposed a general Tree-turn
model for irregular topology. Based on the Tree-turn
model, we derive an efficient deadlock-free routing
algorithm, Tree-turn routing. To evaluate the
performance of the proposed routing algorithm, we have
implemented the Tree-turn routing algorithm along with
the up*/down* routing algorithm and the L-turn routing
algorithm on a software simulator. The simulation
results show that the proposed Tree-turn routing
outperforms other two routing algorithms for all the test
cases.

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

(a) 128-nodes and 384-links

(b) 128-nodes and 448-links

(c) 128-nodes and 512-links
Figure 6. Simulation results of different routing
algorithms with different network configurations.

Acknowledgement

The work of this paper is partially supported by
National Science Council, Ministry of Economic Affairs
of the Republic of China under contract NSC-
94-2213-E-007-080, NSC-95-2752-E-007-004-PAE and
MOEA-95-EC-17-A-04-S1-044.

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C.
L. Seitz, J. N. Seizovic, and W.-K. Su. “Myrinet: A
Gigabit-per-Second Local Area Network,” IEEE Micro, pp.
29-36, February 1995.

[2] W. J. Dally and C. L. Seitz, "Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks,"

IEEE Transactions on Computers, vol. 36, no. 5, pp.
547-553, May 1987.

[3] J. Duato, "A Necessary and Sufficient Condition for
Deadlock-Free Adaptive Routing in Wormhole Networks,"
IEEE Transactions on Parallel and Distributed Systems,
vol. 6, no. 10, pp. 1055-1067, October, 1995.

[4] C. J. Glass and L. M. Ni, “The Turn Model for Adaptive
Routing,” Journal of ACM, vol. 5, pp. 874-902, September
1994.

[5] R. Horst, “ServerNet Deadlock Avoidance and Fractahedral
Topologies,” Proceedings of 10th International Parallel
Processing Symposium, pp. 274-280, April 1996.

[6] InfiniBand Trade Association, "InfiniBand Architecture
Specification, Volume 1, Release 1.2," October 2004.
http://infinibandta.org/specs/.

[7] IRFlexSim 0.5. http://ceng.usc.edu/smart/tool.htm.
[8] A. Jouraku, M. Koibuchi, H. Amano, and A. Funahashi,

"Routing Algorithms Based on 2D Turn Model for Irregular
Networks." Proceedings of the IEEE International
Symposium on Parallel Architectures, Algorithms, and
Networks, pp. 254-259, May 2002.

[9] M. Koibuchi, A. Funahashi, A. Jouraku, and H. Amano,
“L-turn Routing: An Adaptive Routing in Irregular
Networks,” Proceedings of IEEE International Conference
on Parallel Processing, pp. 383-392, September 2001.

[10] X. Lin, P. K. McKinley, and L. M. Ni, "The Message Flow
Model for Routing in Wormhole-Routed Networks," IEEE
Transactions on Parallel and Distributed Systems, vol. 6,
no. 7, pp. 755-760, July 1995.

[11] X. Lin, P. K. McKinley, and L. M. Ni, "The Message Flow
Model for Routing in Wormhole-Routed Networks,"
Proceedings of 1993 IEEE International Conference on
Parallel Processing, pp. 294-297, August 1993.

[12] L. M. Ni and P. K. McKinley, “A Survey of Wormhole
Routing Techniques in Direct Networks,” IEEE Computer,
vol. 26, no. 2, pp. 62-67, February 1993.

[13] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Ni, W.
Rooney, T. Engbersen, R. Luijten, R. Krishnamurthy, and J.
Duato, "Solving Hot Spot Contention Using InfiniBand
Architecture Congestion Control," High Performance
Interconnects for Distributed Computing, July 2005.

[14] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R.
M. Needham, T. L. Rodeheffer, E. H. Satterthwaite, and C.
P. Thacker, “Autonet: A High-Speed, Self-Configuring
Local Area Network Using Point-to-Point Links,”
Technical Report SRC Research Report 59, DEC, April
1990.

[15] L. Schwiebert and D. N. Jayasimha, "A Universal Proof
Technique for Deadlock-Free Routing in Interconnection
Networks," Proceedings of Symposium on Parallel
Algorithms and Architectures, pp. 175-184, July 1995.

[16] X. Zhang, Y. Yan, and R. Castaneda, "Comparative
Performance Evaluation of Hot Spot Contention Between
MIN-based and Ring-based Shared-Memory
Architectures," IEEE Transactions on Parallel and
Distributed Systems, vol. 6, no. 8, pp. 872-886, August
1995.

Fifth IEEE International Symposium on Network Computing and Applications (NCA'06)
0-7695-2640-3/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

