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Abstract 
 

Obtaining location information by localization 
schemes for sensor nodes makes applications of wireless 
sensor networks (WSNs) more meaningful.  Most of 
localization schemes only use the information gathered 
during the execution of the localization scheme.  In this 
paper, we proposed a location model based on Bayesian 
Network [18] with proximity measurement, the 
deployment information, and the deployment knowledge 
to describe the relations of the locations of sensor nodes 
deployed in a grid topology with the probabilistic 
graphical model.  Based on the location model, we 
present a cooperative localization algorithm, the 
CLPKBN scheme, to do the localization for a WSN.  To 
evaluate the proposed scheme, we implement the 
CLPKBN scheme and the Probability Grid scheme on a 
simulator.  The experimental results show that the 
CLPKBN scheme outperforms the Probability Grid 
scheme in most of test cases.   

 
 

1. Introduction 
 

For a WSN application, the power management, sensor 
deployment, and localization are important issues that 
need to be dealt with.  Among them, the localization 
issue is essential for most of WSN applications.  Without 
the location information of sensor nodes, the application 
does not make any sense since we need to know where the 
event occurred in order to take proper actions.  As a 
result, a localization scheme is needed for sensor nodes to 
know their locations. 

Many localization schemes have been proposed in the 
literature.  In general, they can be classified into two 
categories, range-based [1][2][3][5][9][12][13][14] and 
range-free [4][7][11][16][17][19].     

In this paper, we want to solve the localization issue 
for a WSN in which sensor nodes will be deployed as a 
grid topology.  In the above range-free schemes, the 
Probability Grid scheme [17] is a solution for the problem 

that we want to solve.  However, the Probability Grid 
scheme uses the hop-count information to reduce the 
number of anchor nodes used.  It needs to get the 
shortest hop-count to the anchor nodes by flooding the 
information of the anchor nodes, which costs a lot of 
networking bandwidth.  Also, the accuracy of the 
locations of sensor nodes obtained by the Probability Grid 
scheme depends on the deployment of anchor nodes and 
the number of anchor nodes.   

To overcome the drawbacks of the Probability Grid 
scheme, in this paper, we propose a range-free 
localization scheme, cooperative localization with 
pre-knowledge using Bayesian Network (CLPKBN), to 
achieve high accuracy of locations of sensor nodes 
without hop-count information and high density of anchor 
nodes for a WSN.  The CLPKBN scheme is based on a 
location model using the Bayesian Network [18] with 
proximity measurement, the deployment information 
(such as grid distance, grid size, etc.), and the deployment 
knowledge (such as neighbors of a sensor node, the 
connectivity betweens two sensor nodes, etc.) to describe 
the relations of the locations of sensor nodes deployed in 
a grid topology with the probabilistic graphical model.  
With the proposed localization scheme, a sensor node can 
act as an anchor node after observing some evidences 
(such as the location of an anchor/sensor node, etc.).  
Therefore, we do not need to deploy high density of 
anchor nodes when we construct a WSN.  Instead, we 
can deploy a few anchor nodes initially.  For those 
sensor nodes that are neighbors of anchor nodes, they can 
compute their locations based on the locations and the 
number of neighbors of anchor nodes.  Then those 
neighbors of anchor nodes can act as anchor nodes for 
their neighbor sensor nodes.  This sensor node to anchor 
node process can be repeated until all sensor nodes 
compute their locations and the need of the hop-count 
information can be eliminated.   

To evaluate the proposed scheme, we implement the 
CLPKBN scheme and the Probability Grid scheme [17] 
on a simulator.  Several parameters, including different 
deployment sizes, different ratio of anchor nodes, 
different deployment for anchor nodes, different 



 

  

shadowing effects, and different transmission signal 
power, are used as measurement metrics.  From the 
experimental results obtained from the simulator, the 
CLPKBN scheme outperforms the Probability Grid 
scheme in all test cases except the case where the ratio of 
anchor nodes is set to 0.05.  

The rest of this paper is organized as follows.  In 
Section 2, we will present the related work.  In the 
Section 3, we will describe our location model.  In 
Section 4, we will present the CLPKBN scheme in detail.  
The experiment results of the CLPKBN scheme will be 
given in Section 5. 

 
2. Related Work 
 
2.1 Range-based schemes 
 

In [1], the authors use the angle of arrival (AOA) to 
estimate the angle of received signal.  They use a set of 
directional beacon nodes to transmit the signal to the 
whole network.  When the sensor nodes of a network 
receive the beacon signals, the sensor node evaluates its 
location by triangulation.  This method requires high 
cost beacon nodes to do the localization. 

The GPS [3] uses the time of arrival (TOA) to measure 
the difference in the time of arrival of signals from several 
satellites and use the triangulation to infer the position.  
However, using GPS to locate sensor nodes may not 
feasible due to cost, energy prohibition, and indoor 
constraints.   

In [2], the time difference of arrival (TDOA) technique 
is used to estimate the difference time of two sensor nodes.  
The authors measure the time difference between two 
simultaneously transmitted radio signal and ultrasound 
signals.  Based on the time difference, the distance of 
two sensor nodes can be calculated by multiplying the 
time difference and the speed of sound.  The TDOA 
technique does not depend on the synchronization of the 
transmitting time of two sensor nodes.  Like TOA 
technique, TDOA relies on additional hardware that is 
high cost and energy consuming.   

The RADAR system [13] uses RSSI technique to 
estimate the distance to some known landmarks (anchor 
nodes).  It first records the received signal strengths with 
respect to the landmarks at various locations.  It then 
computes the location of the sensor node by finding the 
best fit data of the received signal strengths.  Since the 
radio signal strength is unstable and varied under different 
environments, it is difficult to measure the distance.   

 
2.2 Range-free schemes 
 

In Centroid scheme [11], each sensor node locates 
itself to the centroid of the anchor nodes that the sensor 
node can directly communicate with.  This scheme is 

easy to be implemented.  The APIT scheme [19] uses 
anchor nodes to divide a sensing area into triangular 
regions.  A sensor node locates itself according to 
whether it is inside or outside these triangular regions.  
Both Centroid and APIT schemes need anchor nodes 
equipped with powerful radios and a high density of 
anchor nodes deployment in a WSN to achieve better 
accuracy of locations.   

In DV-Hop scheme [4], each sensor node first tries to 
find the shortest hop-count to the anchor nodes and 
estimates the distance to each anchor node by multiplying 
averaging hop-distance and the hop-count.  Then each 
sensor node uses triangulation to estimate its location.  
The GRIPHON scheme [7], the Probability Gird scheme 
[17], and the Amorphous scheme [16] also use hop-count 
to estimate the distance to the anchor nodes.  The 
GRIPHON scheme is similar to the RADAR system.  In 
the GRIPHON scheme, each sensor node estimates the 
shortest-hop to the anchor nodes rather than signal 
strengths.  The Probability Grid scheme, in addition to 
the hop-count information, also exploits the deployment 
information, such as the grid distance and grid size, to 
estimate the location of the sensor node accurately.  The 
Amorphous scheme can calculate more accurate 
hop-distance by assuming that the sensor nodes know the 
sensor node density of a WSN.     

 
3. Location Model 
 

In this section, we will discuss the location model used 
in the CLPKBN scheme in details.  The location model 
is a 4-tuple LM = (DI, PK, E, BR), where DI is a set of 
deployment information of a WSN, PK is a set of 
pre-knowledge that transformed from DI, E is a set of 
evidences that get from run-time, and BR is the Bayes rule 
used to calculate the probabilities of the locations of a 
sensor node.  In the following, we will describe each of 
them in details.   

 
3.1 Preliminaries 
 

In the following, we will give the definitions used in 
this paper.   

Definition 1: Given a rectangle sensing area AxB, a 
grid deployment scheme divides the sensing area into 
MxN grid points where sensor nodes can be placed on.  
Each grid point gi is associated with a coordinate (gi(x), 
gi(y)), where gi(x) and gi(y) are the x-axis and y-axis 
coordinates of gi, respectively, 0 < gi(x) < M, and 0 < gi(y) 
< N.  We call GS = MxN the grid size and GDU = A/M 
(or B/N) the grid distance unit of a deployment scheme. 

Definition 2: The distance of two grid points gi and gj, 
denoted as GD(gi, gj), is defined as GDU ×

2))()((2))()(( yjgyigxjgxig −+− . 



 

  

Definition 3: The location of sensor node Na, Loc(Na), 
is defined as the coordinate of the grid point gi wheret Na 
is placed on, that is, Loc(Na) = (gi(x), gi(y)). 

Definition 4: The distance of sensor nodes Na and Nb, 
denoted as Dist(Na, Nb), is define as the distance of their 
locations, that is, Dist(Na, Nb) = GD(gi, gj), where Loc(Na) 
= gi and Loc(Nb) = gj. 

Definition 5: Let S be the set of sensor nodes deployed 
on a sensing area.  Given a sensor node Na and Loc(Na), 
the set of sensor nodes S－{Na} can be partitioned into 
several disjoint groups, denoted as S － {Na} 

= ∪k
j idaNGDist1 ),(= , according to the distances of 

sensor nodes in S－{Na} to Loc(Na), where k is the 
number of partitioned groups and GDist(Na, di) is the set 
of sensor nodes whose distance to Loc(Na) is di.   

Definition 6: We define TSP(Na) as the transmission 
signal power that sensor node Na used to send a packet out.  
The default value is 100 for each sensor node. 

Definition 7: Two sensor nodes Na and Nb are 
connected, denoted as Conn(Na, Nb), if sensor node Na can 
receive the transmission signal from sensor node Nb and 
vice versa. 

Definition 8: Sensor node Na is a neighbor of sensor 
node Nb if Conn(Na, Nb).  We use NEI(Loc(Na)) to denote 
the set of neighbors of sensor node Na.  Then, the 
number of neighbors of sensor node Na (or the degree of 
sensor node Na) Deg(Na) = |NEI(Loc(Na))|.    

Definition 9: Given NEI(Loc(Na)), NEI(Loc(Na)) can 
be partitioned into several disjoint groups, NEI(Loc(Na)) 
= ∪ ))((

1 ),(aNLocGNEI
i idaNGDNEI= , according to the 

distances of sensor nodes in NEI(Loc(Na)) to Loc(Na), 
where GNEI(Loc(Na)) is the number of partitioned groups 
and GDNEI(Na, di) is the set of sensor nodes whose 
distance to Loc(Na) is di.  Note that GDNEI(Na, di) is a 
subset of GDist(Na, di). 

In the following, we will give notations used in this 
paper.   

Definition 10: We define NNDL(Na, Nb, Deg(Nb), 
Loc(Nb) as the message that sensor node Na received from 
sensor node Nb.  The message contains the information 
of the number of neighbors and the location of sensor 
node Nb.   

Definition 11: Assume that the probability of sensor 
node Nc at Loc(Nc) is Pc.  We define KL(Na, Nb, Loc(Nc), 
Pc) as the message that sensor node Na gets Pc from its 
neighbor Nb.  

 
3.2 DI 
 

In this paper, we want to solve the localization issue 
for a WSN in which sensor nodes will be deployed as a 
grid topology and each sensor node has a RF 
communication device.  We assume that one grid point 

has at most only one sensor node.  Therefore, the set DI 
should contain the information of GDU, GS, the 
shadowing effect and the path-loss exponent.  The 
shadowing effect and the path-loss exponent of a RF 
device are modeled in the Gaussian radio model.   

 
3.3 PK 
 

The pre-knowledge is defined as the knowledge that 
can be derived from the deployment information.  For 
example, we can derive the probability of the connectivity 
between two sensor nodes when the distance of the two 
sensor nodes is given.  From the connectivity probability, 
we can derive the probability of a sensor node that has n 
neighbors, where n ≥ 0.   

In the location model, five kinds of pre-knowledge are 
used.  We have PK = {P(Conn(Na,Nb)), P(Loc(Na)), 
P(Deg(Na)|Loc(Na)), P(NNDL(Na,Nb,Deg(Nb),Loc(Nb)) 
|Loc(Na)), P(KL(Na,Nb,Loc(Nc),Pc)|Loc(Na))}, where 
P(Conn(Na,Nb)) is the probability of connectivity of two 
sensor nodes Na and Nb under the Gaussian radio model, 
P(Loc(Na)) is the probability of a sensor node on a grid 
point, P(Deg(Na)|Loc(Na)) is the probability of sensor 
node Na that has Deg(Na) neighbors given location 
Loc(Na), P(NNDL(Na, Nb, Deg(Nb), Loc(Nb)) | Loc(Na)) is 
the probability that sensor node Na whose neighbor Nb has 
Deg(Nb) neighbors given location Loc(Na), and P(KL(Na, 
Nb, Loc(Nc), Pc) | Loc(Na)) is the probability that sensor 
node Na knows Pc and the location of sensor node Nc via 
sensor node Nb given location Loc(Na). 

 
3.4 E and BR 

 
The relations of the location of a sensor node based on 

DI and PK can be modeled as a Bayesian Network as 
shown in Figure 1.  A Bayesian network is a form of 
probabilistic graphical model, including nodes and arcs.  
Nodes represent variables and arcs represent the 
dependence relations among the variables.  In Figure 1, 
there are four nodes and three dependence relations.  The 
Loc variable has three arcs to the NNDL variable, the Deg 
variable and the KL variable since under different location 
we will have different number of neighbors or receive 
different messages from neighbors.  The values of NNDL, 
Deg and KL are evidences in our location model.  We 
use v(NNDL), v(Deg), and v(KL) to denote the values of 
NNDL, Deg and KL, respectively.   We have E = 
{v(NNDL), v(Deg), v(KL)}.  The Loc variable is a query 
variable, which we want to know the probability after 
observing some evidences such as a value of NNDL, Deg 
or KL.   



 

  

 

Figure 1. A Bayesian network depicts the relation 
about Loc variable. 

When a sensor node observes new evidences, the sensor 
node can update the posterior probability of the location 
with new evidences by Bayes rule and then use this 
posterior probability as a new prior probability to 
calculate next posterior probability.   

 
4. The CLPKBN Algorithm 

 
In this section, we will introduce the CLPKBN 

algorithm based on the location model we proposed in 
Section 3.  The CLPKBN algorithm consists of five 
steps.  In the following, we explain each step in details. 

The first step is to initialize CandidateLocations.  
CandidateLocations is a set of the possible locations of a 
sensor node, and contains the probability of each location.  
When a sensor node knows the number of its neighbors, it 
will update the posterior probabilities of the locations in 
CandidateLocations according to the location model we 
proposed.   

In the second step, a sensor node receives a message 
and extracts evidences from the message.  This step is to 
wait any NNDL or KL evidences.  The evidence of the 
Deg variable is affirmative because the connections 
between all sensor nodes are stable.  Thus, in the first 
step, a sensor node just computes the posterior 
probabilities of the locations in CandidateLocations once 
and uses the posterior probabilities as new prior 
probabilities when the sensor node knows the number of 
its neighbors.   

In the third step, a sensor node will test whether the 
location of one sensor node is the same as the location of 
another sensor node.  When the sensor node has high 
belief in their locations, which means that the MaxBelief 
of the sensor node is greater than THRESHOLD, the 
sensor node will check any contradiction between its 
location and the evidences.   THRESHOLD value is set 
to 0.8.  MaxBelief is the maximum probability of the 
locations in CandidateLocations.  If a sensor node finds 
its location is the same as the location of another sensor 
node, it will compare its TrustworthyValue with the 
TrustworthyValue of another sensor node.  If the 

TrustworthyValue of the sensor node is greater than the 
TrustworthyValue of another sensor node, it will discard 
this evidence and return to step 2 to wait new evidences.  
Otherwise, it will update the CandidateLocations 
according to the evidence.  TrustworthyValue states that 
how confident of the location of a sensor node is.   

In the fourth step, a sensor node updates the posterior 
probabilities of the locations in CandidateLocations 
according to the location model.  Each sensor node 
knows DI. The PK can be calculated by each sensor node 
before the location estimation.   

In the fifth step, if a sensor node finds the probability 
of some locations in CandidateLocations is greater than 
THRESHOLD, it will send a message with id, MaxBelief, 
MaxBeliefLoc, kls and TrustworthyValue to its neighbors.  
MaxBeliefLoc is the location with the maximal probability 
in the CandidateLocations.  kls is a set of values of the 
KL evidences.  TrustworthyValue is calculated as follow: 

∑
≠

=
ji

jNiNDist
yValueTrustworth

2

),(
,   (1) 

where iN  and jN  are the sensor nodes of NNDL 
evidence.  In Equation (1), a sensor node sums up the 
distance between the locations of sensor nodes of NNDL 
evidences.  The evidences can help a sensor node to 
compute its location since more NNDL evidences means 
that the location has more evidences to support its 
location.  The action of sending message can help sensor 
nodes to do the location estimation and to verify whether 
there exists any contradiction.   

At the beginning of the execution of the CLPKBN 
scheme, the anchor nodes will send messages containing 
their id, MaxBeliefLoc(known by some manner), 
MaxBelief(1.0), and TrustworthyValue to their neighbors.  
Then the sensor nodes that receive the message start to 
process the messages.  When some sensor node knows 
its location with high probability, which is greater than 
THRESHOLD in the CLPKBN algorithm, the sensor node 
will send a message containing its id, MaxBeliefLoc, 
MaxBelief, TrustworthyValue, kls to its neighbors.  
Repeat this process, more and more sensor nodes will 
locate its location afterward. 

 
5. Performance Evaluations 

 
To evaluate the proposed scheme, we implement the 

CLPKBN scheme and the Probability Grid scheme [17] 
on a simulator JProwler [21].  We use the Gaussian radio 
model to simulate radio propagation [6].  We have 
anchor nodes and sensor nodes deployed in gird topology.  
The hardware of an anchor node is the same as that of a 
sensor node except that an anchor node knows its location 
initially.   

Several parameters, including grid size, transmission 



 

  

signal power, anchor percentage, shadowing effect, and 
deployment methods of anchor nodes are used as 
measurement metrics.  The settings of these parameters 
are as follows: 

 Grid Size (GSize): The grid size is set to {5x5, 10x10, 
15x15}. 
 Transmission Signal Power (TSP): The TSP is set to 
{80, 90, 100, 110, 120}. 
 Anchor Percentage (AP): The AP is the number of 
anchor nodes divides by the total number of sensor 
nodes and anchor nodes.  The AP is set to {0.05, 
0.075, 0.1}.   
 Shadowing Effect (SE): The SE is set to {0.0, 0.15, 
0.3}. 
 Deployment for Anchor Nodes (DAN): The DAN is 
set to {random, border}.  

In the simulation, we evaluate the performance of the 
CLPKBN scheme and the PG scheme according to the 
combinations of the settings of parameters.  For each 
combination, we randomly generate 700 wireless sensor 
network topologies as test cases.  In the following, we 
give the comparisons of the CLPKBN scheme and the PG 
scheme to the simulation results. 

 
5.1 Localization Errors under Various GSize and 

DAN  
 
In this experiment, we evaluate the effect of various 

GSize and DAN on localization errors.  GSize is set to 
{5x5, 10x10, 15x15} and DAN is set to {random, border}.  
AP is set to 0.1.  The number of anchor nodes placed on 
a sensing area with 5x5, 10x10 and 15x15 grid point is 3, 
10 and 23, respectively. 

The simulation results are shown in Figure 2.  From 
Figure 2(a), we can observe that the localization errors of 
the CLPKBN scheme are less than those of the PG 
scheme for all tested grid points.  From Figure 2(b), we 
have similar observations as those of Figure 2(a).   
Compare the simulation results shown in Figure 2(a) and 
Figure 2(b), we can observe that the performance of both 
schemes under DAN = random is superior that under DAN 
= border for most tested grid points.   

The only exception is the case where GSize = 5x5, the 
localization error of the CLPKBN scheme under DAN = 
random is higher than that of the CLPKBN scheme under 
DAN = border.  The reason is that the CLPKBN scheme 
is a cooperative scheme.  For the case GSize = 5x5 and 
the number of anchor nodes is 3, anchor nodes may not be 
able to cooperate to each other due to the random 
deployment scheme.   However, when these 3 anchor 
nodes are placed at border of the terrain, they can 
cooperate to each other and result in a better result.  

For the DAN= random case, the larger of the number of 
anchor nodes, the smaller of the localization errors of both 
the CLPKBN scheme and the PG scheme. For the 

DAN=border case, the larger of the number of anchor 
nodes, the larger of the localization errors of both the 
CLPKBN scheme and the PG scheme.   

 
Figure 2. Localization errors under various (a) 

DSize (b) DAN (c) TSP (e) AP (e) SE. 
 

5.2 Localization Errors under Various TSP 
 
Since the setting of DAN = random results in a better 

performance than that of DAN = border, in the following 
discussions, all simulation results are based on the case 
where DAN = random. 

The localization errors of the CLPKBN scheme and the 
PG scheme under different TSP are shown in Figure 2(c).  
From Figure 2(c), we can observe that the localization 
errors of the CLPKBN scheme are less that those of the 
PG scheme under for all tested TSP settings. 

 
5.3 Localization Errors under Various AP 

 
The localization errors of the CLPKBN scheme and the 

PG scheme under various AP are shown in Figure 2(d).  
The larger the value of AP, the more the number of 
anchor nodes.  For the DAN= random case, the larger of 
the number of anchor nodes, the smaller of the 
localization errors of both the CLPKBN scheme and the 
PG scheme. 

In Figure 2(d), for the AP = 0.05 case, the localization 
error of the CLPKBN scheme is higher than that of the 
PG scheme.  The reason is that the number of anchor 
nodes in this case is small.  Some anchor nodes may not 
be able to cooperate to each other due to the random 
deployment of anchor nodes.  For AP = {0.75, 0.1} cases, 
the localization errors of the CLPKBN scheme are less 
than those of the PG scheme.   



 

  

 
5.4 Localization Errors under various SE 

 
The localization errors of the CLPKBN scheme and the 

PG scheme under various SE are shown in Figure 2(e).  
In this experiment, if we set the shadowing effect to zero, 
the sensor nodes will build a perfect regular network 
topology.  When the shadowing effect increases, the 
number of neighbors of a sensor node is getting 
unpredictable, that is, the wireless sensor network 
topology is getting unpredictable.  From Figure 2(e), we 
can observe that the localization errors of the CLPKB 
scheme are less that those of the PG scheme under for all 
tested SE settings.  The localization error of the CLPKB 
scheme is sensitive to the value of SE while the PG 
scheme is not sensitive to the value of SE. 

 
6. Conclusions and Future Work 

 
In this paper, we have proposed a range-free 

localization scheme, cooperative localization with 
pre-knowledge using Bayesian Network (CLPKBN), to 
achieve high accuracy of locations of sensor nodes 
without hop-count information and high density of anchor 
nodes for a WSN.  To evaluate the proposed scheme, we 
have implemented the CLPKBN scheme and the 
Probability Grid scheme on a simulator.  From the 
experimental results obtained from the simulator, the 
CLPKBN scheme outperforms the Probability Grid 
scheme in most of test cases. 

In the future, we will extend the location model to run 
at approximate deployment topology, that is, the possible 
locations for the sensor nodes are not countable since the 
distribution of Loc variable becomes a continuous 
distribution.  The approximate deployment is more close 
to real deployment.  For this approximate deployment 
topology, we will use maximum likelihood estimation 
(MLE) to solve the problem. 
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