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Abstract 

 
Sequence alignment is a fundamental problem in 

the computational biology.  Many alignment methods 
have been proposed in the literature, such as pair-wise 
sequence alignment (2SA), syntenic alignment, 
multiple sequence alignment (MSA) and constraint 
multiple sequence alignment, etc.  Three-sequence 
alignment (3SA) problem has been proposed and 
discussed in the computational biology and proved 
that the alignment results from 3SA are better than 
those from 2SA under some conditions.  However, 3SA 
problem is less discussed over the past decade due to 
the computer capability.  3SA problem now is worthy 
to discuss due to the powerful computer and more and 
more genome and protein sequences.  In this paper, an 
efficient parallel algorithm (P3SA) is proposed to solve 
3SA problem.  The P3SA method requires O(n2/p) 
space complexity and O(n3/p) time complexity.  The 
experimental results show that P3SA algorithm is 
applicable and achieves a satisfied speed-up. 
Index Terms- dynamic programming, computational 
biology, sequence alignment, Hirschberg’s technique, 
time and space complexities. 
 
 

1. Introduction 
 

Sequence alignment is a fundamental problem in the 
computational biology [7].  Many alignment methods 
have been proposed in the literature, such as pair-wise 
sequence alignment (2SA, [18, 20, 23]), multiple 
sequence alignment (MSA, [4, 5, 17, 19, 25]), syntenic 
alignment [6], and constraint multiple sequence 
alignment [24], etc. The 2SA method typically used the 
dynamic programming scheme in which one or 
multiple tables are filled through a scoring mechanism.   
 
*The work of this paper was partially supported by 
NSC under contract NSC94-2745-P-007-001 and 
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Once the best score in the tables is found a trace back 
procedure is involved for finding the optimal alignment. 
Let n be the maximum length of two sequences aligned.  
Several tables with the size of (n+1)×(n+1) are filled to 
find an optimal path for 2SA.  It takes both O(n2) time 
and space complexities.  Myers and Miller [15] applied 
the divide-and-conquer technique of Hirschberg [8] to 
reduce the space requirement to the linear space 
complexity. 

Three-sequence alignment (3SA) problem has been 
proposed and discussed in the computational biology [1, 
9, 13, 14, 16, 21].  Some methods and definitions have 
been presented and proved that the alignment results 
from 3SA are better than those from 2SA under some 
conditions.  3SA method also can be solved both in 
O(n3) time and space complexity by using a dynamic 
programming scheme [1], where n is the maximum 
length of these three sequences be aligned.  Huang [13] 
extended the Myers and Miller’s algorithm [15] for 
2SA method to 3SA method.  The 3SA method was 
done by filling several tables with the size of (n+1)×
(n+1)×(n+1).  3SA method can be solved in O(n3) time 
complexity and O(n2) space complexity.  However, 
3SA problem is less discussed over the past decade due 
to the computer capability.  3SA problem now is 
worthy to discuss due to the powerful computer and 
more and more genome and protein sequences released.  
Although the space requirement is reduced to quadratic 
space, the time complexity of 3SA method still limits its 
applicability.  Hence, to reduce the time complexity of 
3SA method becomes an important issue.   

In this paper, an efficient parallel algorithm (P3SA) 
for 3SA problem is proposed to reduce the time 
complexity.  We adopt the definitions of 3SA problem 
used in the Huang’s algorithm and the divide-and-
conquer technique of Hirschberg [10] to extend the 
3SA method to P3SA method.  The P3SA method 
requires O(n2/p) space complexity and O(n3/p) time 
complexity, where p is number of processors and less 
than n.  Both theoretical analysis and experimental tests 
are presented.  The experimental results show that a 



good performance and a satisfied speed-up are 
achieved by P3SA method. 

The rest of the paper is organized as follows: In 
Section 2, a brief survey of related work is presented.  
Section 3 describes the definitions and algorithms of 
3SA and P3SA methods.  In Section 4, theoretical 
analysis of P3SA method is given.  In Section 5, the 
experimental tests are presented. 

 

2. Related Work 
 

Many schemes for reducing the complexities of 
alignment methods have been proposed. Hirschberg 
[10] first proposed a linear space algorithm for 
computing longest common subsequences problem.  
Myers and Miller [15] applied the Hirschberg’s 
technique to Gotoh’s algorithm [8].  After applying the 
Hirschberg’s technique [10], the space complexity of 
2SA method is reduced from O(n2) to O(n) and 
introduces a small constant (about 2) slowdown to O(n2) 
time complexity.  Huang [12] extended the above 
algorithm to local sequence alignment problem.  Since 
the size of biological sequences could be very large, 
these algorithms are very important that make 2SA 
method applicable.  Although space-optimal algorithms 
reduce the space requirement for large sequence 
alignment, it still is a time-consuming problem.  Some 
parallel algorithms to reduce the computational cost 
have been proposed.  Huang [11] presented a P2SA 
algorithm that uses optimal O((m+n)/p) space 
complexity and suboptimal O((m+n)2/p) time 
complexity, where m and n are the lengths of two 
sequences aligned.  Aluru et al. [2] presented another 
parallel algorithm with optimal O((mn)/p) time 
complexity but uses O(m+(n/p)) space complexity.  
Afterward a space and time optimal, O((m+n)/p) space 
complexity and O((mn)/p) time complexity, P2SA 
algorithm was presented by Rajko and Aluru [20].  
Huang [13] extended the Myers and Miller’s algorithm 
[15] to optimal 3SA with affine gap penalties.  The 3SA 
algorithm simultaneously aligns three sequences by 
using a dynamic programming approach to find an 
optimal path in O(n2) space complexity and O(n3) time 
complexity. 
 

3. Method 
 

In this section, 3SA problem will be formalized first.  
Then a dynamic programming algorithm with a divide-
and-conquer technique [10] for solving 3SA problem 
which proposed by Huang [13] will be introduced.  
Finally, the P3SA method will be presented. 
 

 
Figure 1. An example of the result for aligning 
sequences A, B and C. 
 
 
3.1. 3SA problem 
 

Let A = a1, a2, …, am, B = b1, b2, …, bn and C = c1, 
c2, …, cl be three sequences over an alphabet Σ.  Let ‘-
‘ be a unique symbol not in Σ, denoted as a gap.  Some 
definitions [13] are shown in the following. 
 
Definition 1.  An aligned triple consists of three 
ordered elements in Σ∪{-}. 
 
Definition 2.  An alignment of three sequences A, B 
and C is a finite sequence of aligned triples. 

 
For each triple, the first element is always from 

sequence A or a gap (‘-‘), the second element is always 
from sequence B or a gap and the third element is 
always from sequence C or a gap. 
 
Definition 3.  A null triple is consisted of three gaps. 

 
In here, we only consider the alignments without 

null triple.  Therefore, there are seven types for non-
null aligned triples according to the number and the 
position of appearances of gaps (‘-‘).  An example of 
the result for 3SA is illustrated in Figure 1.  Figure 1 
shows these three sequences A, B and C, and the result 
of aligning them.  Each column in the alignment is an 
aligned triple. 
 
Definition 4.  A block in an alignment is a contiguous 
subsequence of aligned triples of the same type 
bounded by aligned triples of other types or the end of 
the alignment. 
 
Definition 5  An i-gap block is a block consisting of 
triples in which gap appears exactly i times. 

 
There are only 1-gap blocks and 2-gap blocks in an 

alignment of three sequences as shown in Figure 1 
since we only consider the alignments without null 
triple here.  For example, in Figure 1, an aligned triple 
(-, S, -) is a 2-gap block and another triple (H, -, H) is a 



1-gap block.  Given a scoring function f: Σ×Σ→R that 
assigns a value to each combination of two elements in 
alphabet Σ of a triple and a gap penalty function, the 
score of an alignment is the sum of the values of each 
aligned triple assigned by f minus gap penalties.  For 
example, it can be simply defined that function f as 
f(a,a) = 10 for each a in Σ or f(a, b) = -20 for all a, b in 
Σ with a≠b.  For protein sequences, the function f is 
usually defined through a scoring matrix such as 
PAM250 or BLOSUM62. 

For gap penalties, an affine gap penalty function is 
commonly used in practice.  Let q1 be a gap-open 
penalty for each 1-gap block and let r1 be a gap-
extension penalty for each triple of 1-gap block, where 
q1 and r1 are two non-negative numbers.  The affine 
gap penalty function takes p1 for a triple of 1-gap block, 
where p1 is defined as: 
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The score of an alignment is the sum of the score x 
of each triple.  For example, the score of the alignment 
for sequences A, B and C shown in Figure 1 is 246 if 
f(a,a) = 10 for each a in Σ, f(a, b) = -20 for all a, b in Σ 
with a≠b, q1 = q2 = 12 and r1 = r2 = 2.  The goal of 3SA 
problem is to find an alignment with best score, which 
is called an optimal alignment. 
 
3.2. 3SA algorithm 
 

Once a scoring mechanism is given, the optimal 
alignment of three sequences can be found by using the 
dynamic programming approach.  Let S(m, n, l) be the 
score of an optimal alignment of three sequences A1,m, 
B1,n and C1,l with lengths m, n and l, respectively.  The 
score of S(i, j, k) can be computed along with auxiliary 
matrices according to the recurrences [8].  In the 
recurrences, the matrices E, F and G save the scores 
that a gap opens at position j of sequence B, position i 
of sequence A, and position k of sequence C, 
respectively.  The matrices H, I and J save the scores 
that position i of sequence A, position j of sequence B 
and position k of sequence C match two-gaps, 
respectively.  Once S(m, n, l) is computed, an optimal 
alignment of best score S(m, n, l) can be found by a 
trace back procedure.  Since the entire matrices have to  

{ }
{ }
{ }

{ }

{ }

{ }

{ }

{ }

{ }



>−−−−
=−

=





>−−−−
=−

=





>−−−−
=−

=







>>−+−−−−−
==−

=







>>−+−−−−−
==−

=





>>−+−−−−−
==−

=























>>>
















+−−−

>>=
>=>
=>>

>==+−
=>=+−
==>+−

===

=

0 if                               )1,,(),1,,(max

0 if                                                                       2),,(
),,(

0 if                               ),1,(),,1,(max

0 if                                                                       2),,(
),,(

0if                            ),,1(),,,1(max

0 if                                                                      2),,(
),,(

0 and 0i if   ),(),1,1(),,1,1(max

0or  0 if                                                                        ),,(
),,(

0 and 0 if   ),()1,1,(),1,1,(max

0or  0 if                                                                        ),,(
),,(

0 and 0i if   ),()1,,1(),1,,1(max

0or  0 if                                                                        ),,(
),,(

0 and 0,0 if   

),,()1,1,1(

),,,(),,,(),,,(

),,,(),,,(),,,(

max

0 and 0,0 if              ),,(),,,(),,,(max

0 and 0,0 if             ),,(),,,(),,,(max

 0 and 0,0 if             ),,(),,,(),,,(max

0 and 0,0 if                                          )*(

0 and 0,0 if                                          )*(

0 and 0,0 if                                           )*(

0and00if                                                              0

),,(

22

22

22

11

1

11

1

11

1

22

22

22

krqkjiSkjiJ

kqkjiS
kjiJ

jrqkjiSkjiI

jqkjiS
kjiI

 irqkjiSkjiH

iqkjiS
kjiH

jrbafqkjiSkjiG

jiqkjiS
kjiG

kjrcbfqkjiSkjiF

kjqkjiS
kjiF

krcafqkjiSkjiE

kiqkjiS
kjiE

kji

cbaxkjiS

kjiJkjiIkjiH

kjiGkjiFkjiE

kjikjiJkjiIkjiF

kjikjiJkjiHkjiE

kjikjiIkjiHkjiG

kjikrq

kjijrq

kjiirq

 k ,j i

kjiS

ji

kj

ki

kji

 
 

midk

midi

midj  
Figure 2. Schematic diagram of divide-and-conquer 
approach. 
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Figure 3. The concept of partitioning a 2D matrix by 
using Block partition scheme. 



be kept, the trace back procedure requires O(mnl) 
space.  Note that it only takes four two-dimensional 
(2D) matrices and a few one-dimensional (1D) arrays if 
only the best score S(m, n, l) is needed.  For reducing 
the space requirement to O(mn), assumed that l is 
larger than m and n, the divide-and-conquer technique 
of Hirschberg [10] is applied.  The central idea is to 
determine a middle point (imid, jmid, kmid), which is a 
point on an optimal path from S(0, 0, 0) to S(m, n, l).   

After determining a middle point (imid, jmid, kmid), the 
original 3SA problem can be divided into two smaller 
3SA problems.  Then these smaller 3SA problems are 
divided recursively.  Finally, an optimal 3SA is 
obtained by merging the series of the computed middle 
points.  Figure 2 illustrates this idea. 

For details, recall that S(m, n, l) is the score of an 
optimal alignment of three sequences A1,m, B1,n and C1,l, 
the matrices introduced above are computed in 
increasing order of indices.  Another set of matrices 
can be defined symmetrically.  Let R, U, V, W, X, Y, 
and Z be the set of matrices which are computed in 
decreasing order of indices, where R corresponds to S, 
U corresponds to E, V corresponds to F, W corresponds 
to G, X corresponds to H, Y corresponds to I, Z 
corresponds to J.  Therefore, R(0, 0, 0), equal to S(m, n, 
l), is the score of an optimal alignment of three 
sequences Am,1, Bn,1 and Cl,1.  To find the middle point 
(imid, jmid, kmid), first set kmid to  2/l .  In the forward 

phase, compute the matrices S through J for 0≤i≤m, 
0≤j≤n and 0≤k≤kmid, and save four 2D matrices S(i, j, k), 
E(i, j, k), F(i, j, k) and J(i, j, k).  Note that, kmid is a 
character in sequence C, we do not have to consider the 
cases in which kmid is a gap.  In the reverse phase, 
compute the matrices R through Z for 0≤i≤m, 0≤j≤n 
and kmid≤k≤l, and save four 2D matrices R(i, j, k), U(i, j, 
k), V(i, j, k) and Z(i, j, k).  The middle point (imid, jmid, 
kmid) of an optimal alignment of three sequences A, B 
and C is one which has the score: 
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Note that we need to add a gap-open penalty q1 or q2 

to some pairs of matrix because an extra q1 or q2 is 
charged when two gaps of the same type merged into a 
single gap.  Here, only some 2D matrices and some 1D 
arrays are used to find the middle point (imid, jmid, kmid).  
Once the middle point (imid, jmid, kmid) is found, we 
recursively compute an optimal alignment of 
subsequences A1, imid, B1, jmid and C1, kmid and another 
one of subsequences Am, imid+1, Bn, jmid +1 and Cl, kmid +1, 
respectively.  The optimal 3SA is obtained by merging 

the series of the computed middle points.  It is obvious 
that the space required by this algorithm with a divide-
and-conquer technique is O(mn).  Here, we briefly 
prove the time complexity of this algorithm retains 
O(mnl).  Let T be the time required to compute the 
middle point (imid, jmid, kmid), T will be cmnl, where c is 
a constant coefficient.  Once the middle point is found, 
the original problem T(m, n, l) is divided into two sub-
problems T(m, n,  2/l ) and T(m, n,  2/l ).  The time 

required to compute the middle points of the two 
subproblems is T/2.  We can see that the time required 
to compute the middle points of subproblems is half the 
time of original problems.  The total time required to 
compute the optimal alignment is T(m, n, l) = T + T(m, 
n,  2/l ) + T(m, n,  2/l ) ≤ 2T and consequently the 

time complexity of this algorithm is still O(mnl). 
 
3.3. P3SA algorithm 
 

In this section, P3SA algorithm is proposed.  The 
critical cost of 3SA algorithm is the part of computation 
of 2D matrices, such as matrices S, E, F and J.  Hence, 
it is worthy to reduce computational time and space 
requirement for this part.  The P3SA algorithm will 
partition each of 2D matrices into p parts by using 
Block partition scheme first.  Then, each processor will 
execute 3SA algorithm with corresponding matrices.  
Finally, the result of three sequences alignment will be 
given by merging partial results from each processor.  
The P3SA algorithm can be divided into four parts, 
initiation and allocation phase, forward phase, reverse 
phase and determine a middle point phase.  In the 
following, each phase will be illustrated, respectively. 
 
A. initiation and allocation phase 

 
After determining an initial middle point, the 

original 3SA problem can be divided into two smaller 
problems, called forward phase and reverse phase.  In 
the forward phase, four 2D matrices S, E, F, J and 
other 1D array G, H, I need to be computed.  In the 
reverse phase, four 2D matrices R, U, V, Z and other 
1D array W, X, Y need to be computed.  Therefore, in 
this phase, eight 2D matrices S, E, F, J, R, U, V and Z 
will be partitioned into p parts.  Figure 3 shows the 
concept of partitioning a 2D matrix by using Block 
partition scheme. 

Each processor only needs to compute the 
corresponding part of matrices in the forward and 
reverse phases and then determine the candidate middle 
point according to their partial results.  The real middle 
point will be determined by merging all candidate 



middle points.  The steps of this phase are shown 
below: 

 
Initiation and allocation: 
Step0: Initialize p processors from rank_0 to rank_p-1. 
Step1: Input sequences A, B and C with lengths m, n 

and k, respectively. 
Step2: set kmid is  2/l  as an initial middle point.  

Step3: Allocate eight 2D matrices and other 1D arrays 
for each processor rank_0 to rank_p-1. 

 
B. Forward and Reverse phases 

 
In these two phases, each processor only needs to 

compute the partial 2D matrices and other 
corresponding 1D arrays.  Due to the dependency of 
dynamic programming, each processor can compute the 
partial matrix after receive the necessary data from its 
neighbor.  It will be a pipelining technique.  The steps 
of these two phases are shown below, respectively: 

 
Forward phase: 
For k=0 to k=kmid do 

Processor rank_0: 
Step0: Compute all partial 2D matrices and 1D 

arrays. 
Step1: Send the last columns of each 2D matrices to 

rank_1. 
Processor rank_(i), for 21 −≤≤ pi : 

Step0: Receive the last columns of each 2D matrices 
from rank_(i-1). 

Step1: Compute all partial 2D matrices and 1D 
arrays. 

Step2: Send the last columns of each 2D matrices to 
rank_(i+1). 

Processor rank_p-1: 
Step0: Receive the last columns of each 2D matrices 

from rank_p-2. 
Step1: Compute all partial 2D matrices and 1D 

arrays. 
End for 
 
Reverse phase: 
For k=l to k=kmid do 

Processor rank_p-1: 
Step0: Compute all partial 2D matrices and 1D 

arrays. 
Step1: Send the last columns of each 2D matrices to 

rank_p-2. 
Processor rank_(i), for 21 −≤≤ pi : 

Step0: Receive the last columns of each 2D matrices 
from rank_(i+1). 

Step1: Compute all partial 2D matrices and 1D 
arrays. 

Step2: Send the last columns of each 2D matrices to 
rank_(i-1). 

Processor rank_0: 
Step0: Receive the last columns of each 2D matrices 

from rank_1. 
Step1: Compute all partial 2D matrices and 1D 

arrays. 
End for 
 
C. Determine a middle point phase 

 
After the forward and reverse phases, a new middle 

point can be determined from all processors.  Each 
processor can find a candidate middle point with best 
score by merging its results of forward and reverse 
phases first.  Then, each processor send its candidate 
middle point to processor rank_0.  Finally, processor 
rank_0 will determine a new middle point by 
comparing the scores of all candidates to find a real 
best one.  The steps of this phase are shown below. 

 
Determine a middle point 
For processor Rank_1 to Rank_p-1 

Step0: Find a middle point with best score by 
merging its results of forward and reverse 
phases. 

Step1: Send this middle point to Rank_0.  
For processor Rank_0: 

Step0: Find a middle point with best score by 
merging its results of forward and reverse 
phases. 

Step1: Receive middle points from other processors 
as candidate middle points. 

Step2: Determine the real middle point by 
comparing these candidates. 

 
When a new middle point is determined, each of 

subproblems can be divided into two smaller problems.  
The P3SA algorithm will execute these four phases 
recursively to find all of middle points as an optimal 
path from S(0, 0, 0) to S(m, n, l).  The optimal 
alignment of three sequences is given by this path. 
 
4. Analysis 
 

In this section, the time and the space complexities 
of P3SA method will be proved.  The theoretical 
performance of P3SA method by considering 
computation and communication time will be also 
analyzed.  From Figure 3, we can see that, in a (m+1)×
(n+1) matrix, each of p processors handles  pn /1+  



columns except processor rank_p-1.  Therefore, each 
processor takes O(mn/p) time complexity and requires 
O(mn/p) space complexity for each (m+1)*(n+1) 
matrices.  When the dimension k increases from 1 to l, 
each processor takes O(mn/p) time complexity.  
However, each processor only requires O(mn/p) space 
complexity by reusing the space for k = i to update the 
values for k= i+1 with an addition one-dimensional 
array as used in the Hirschberg’s technique.  In practice, 
each processor will compute eight 2D matrices and 
other 1D arrays and the dimension k will be divided 
into two parts recursively.  Hence, P3SA method takes 
O(mn/p) time complexity and O(mn/p) space 
complexity. 

The details of theoretical performance for P3SA 
method are analyzed below.  Some parameters are 
introduced here.  Let t1 be the computation time of one 
array element; let t2 be a startup time between two 
processors with a communication; let t3 be the 
transmission time of one array element in a 
communication channel.  In order to simplify the 
analysis, a (m+1)×(n+1) matrix will be regarded as a 
m×n matrix and m and n can be divided with p.  As 
mentioned in Section 3.3, in the forward phase (or 
reverse phase), processor rank_1 (or rank_p-2) can 
compute each two-dimensional matrix when it receive 
the data from processor rank_0 (or rank_p-1).  There is 
an idle time between processor rank_0 and rank_1 and 
the time is equivalent to the time of computing a matrix 
with size of mn/p by processor rank_0 adds the 
communication time of sending a column with size of 
m from processor rank_0 to processor rank_1.  The 
computing time is (mn/p)t1 and the communication time 
is (t2+t3m).  Similarly, processor rank_2 can compute 
the matrix when processor rank_1 computed its matrix 
and then send the last column of this matrix to 
processor rank_2.  Hence, last processor rank_p-1 
starts to compute its matrix when it is waiting for 
processor rank_p-2 completes its part and then send the 
column to processor rank_p-1.  The idle time of last 
processor is )1)(()/)1(( 321 −++− pmtttpmnp .  The 

last processor rank_p-1 will complete its matrix with 
the computing time (mn/p)t1.  In an ideal environment, 
when last processor rank_p-1 completed its part, the 
processor rank_p-2 also complete its next plane 
(dimension k increases).  The last processor rank_p-1 
can start to compute its next plane when it is waiting 
for processor rank_p-2 send the column to it (as a 
pipeline).  Therefore, the required time of last 
processor rank_p-2 for finishing forward phase is the 
computing time 1)2/()/( tlpmn ×  adds the 

communication time )1)2/)((( 32 −+ lmtt  after the idle  

: computation : communication : idle 
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Figure 4. The theoretical analysis concept. 
 
 
  

 
Figure 5. A random data set with complete match (a) 
and complete mismatch (b). 
 
 
time.  Figure 4 illustrates this theoretical analysis 
concept. 

The required time of last processor rank_0 for 
finishing reverse phase is equal to that of forward phase.  
After each processor completed the forward and 
reverse phases, each processor needs to add these two 
results to find a candidate middle point and then send it 
to the processor rank_0.  After processor rank_0 
received all candidate middle points, it will determine a 
new middle point.  The required time of processor 
rank_0 for determining a new middle point is 

)1)(()/( 321 −++ ptttpmn .  After the initial middle 

point (kmid is  2/l ), the total time for finding a new 

middle point is )12)(/(1 −+ plpmnt  + )53(2 −+ plt  

+ ]1)42([3 −+−+ pplmt .  The P3SA algorithm will 

execute these four phases recursively to find all of 
middle points for each matrix.  The time related to t1 
and t3 will be double.  The time related to t2 is direct 
proportional to the number of communications occur 
and it will be multiplied by a variable L, where L is a 
parameter proportional to the length of the optimal path, 

lnmLlnm ++≤≤),,max( .   

The total time required by P3SA method to find all 
of middle points for each matrix is 

2]}1)42([)12)(/({ 31 ×−+−++−+ pplntplpmnt + 

Lplt *)]53([ 2 −+ .  The time required by sequential 

3SA method to find all of middle points for each matrix 



is 1)(2 tmnl .  For sequential 3SA and P3SA methods, 

they both need to compute four 2D matrices.  The 
costof computing other 1D arrays is omitted here since 
it is very small if comparing it with the cost of 
computing 2D matrices.   

The speed-up ratio of P3SA method is 

Lpltpplntpl
p

mn
t

tmnl

*)]53([2*]}1)42([)12(({

)(2

231

1

−++−+−++−+

. 

 
5. Experimental Results 
 

The P3SA method has been implemented by MPI + 
C code, and tested on the NCHC Formosa Linux 
Cluster with a clock rate of 2.8G Hz, 2GB memory and 
1000Mbps switch.  A random data set with complete 
match and mismatch cases as those used in [20], shown 
in Figure 5, are used to evaluate P3SA method.  The 
runtime of P3SA method with various numbers of 
processors and various lengths of input three sequences 
are shown in Table 1.  From Table 1, (1) we can see 
that the 3SA method is not applicable when the 
sequence length is larger than 8k, however, it will be 
applicable for P3SA method.  (2) The runtime of 
complete match and complete mismatch cases both can 
be reduced when the number of processors increases.  
It shows that P3SA method is useful for the optimal 
alignment of three sequences.  Figure 6 shows the 
speed-up ratios of complete match and complete 
mismatch cases with various numbers of processors 
and various lengths of input three sequences.  From 
Figure 6, (1) we can see that the P3SA method obtains 
a satisfied speed-up ratio for complete match and 
complete mismatch cases.  (2) The speed-up ratio will 
increase when the sequence length increases. 
 
6. Conclusions 
 

In this paper, P3SA method is proposed to solve the 
3SA problem.  The P3SA method requires O(n2/p) 
space complexity and O(n3/p) time complexity.  Both 
theoretical analysis and experimental tests have been 
presented.  The experimental results show that a good 
performance and a satisfied speed-up are achieved by 
using P3SA method.  In the future, we plan to apply 
P3SA method to the following applications.  (1) 
Testing the performance of MSA by using P3SA 
method as a basic step instead of 2SA method.  It will 
help us to find the conditions used to chose the 3SA or 
2SA for practical applications.  (2) Finding important 
patterns or residues on DNA/protein sequences by 
using P3SA method. 
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Table 1. Runtime of P3SA method tested on Formosa Linux Cluster. 
No. of processors

Input Size 
1 2 4 8 16 32 

Complete match 
1k×1k×1k 85 64 37 21 15 11
2k×2k×2k 737 495 263 145 88 56
4k×4k×4k 5745 3965 2079 1076 582 336
8k×8k×8k 47620 32373 17340 8634 4484 2476

Complete mismatch 
1k×1k×1k 126 90 47 26 16 14
2k×2k×2k 1022 714 366 193 105 68
4k×4k×4k 8161 5673 2906 1482 777 442
8k×8k×8k 66828 46383 23174 11849 6388 3418

Time: second. 
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Figure 6. Speed-up ratios of P3SA method tested on Formosa Linux Cluster. 
 


