
Middleware of Taiwan UniGrid

Po-Chi Shih1, Hsi-Min Chen2, Yeh-Ching Chung1, Chien-Min Wang3, Ruay-Shiung Chang4,
Ching-Hsien Hsu5, Kuo-Chan Huang6, Chao-Tung Yang7

shedoh@sslab.cs.nthu.edu.tw, seeme@selab.csie.ncu.edu.tw, ychung@cs.nthu.edu.tw, cmwang@iis.sinica.edu.tw,
rschang@mail.ndhu.edu.tw, chh@chu.edu.tw, kchuang@mail.ntcu.edu.tw, ctyang@thu.edu.tw

1Department of Computer Science

National Tsing Hua University
4Department of Computer Science and

Information Engineering
National Dong Hwa University

7Department of Computer Science and
Information Engineering

Tunghai University

2Department of Computer Science and
Information Engineering

National Central University
5Department of Computer Science and

Information Engineering
Chung Hua University

3Institute of Information Science
Academia Sinica

6Department of Computer and Information
Science

National Taichung University

ABSTRACT
Taiwan UniGrid (Taiwan University Grid) is a Grid computing
platform, which is founded by a community of educational and
research organizations interested in Grid computing technologies
in Taiwan. In this paper, we present the design and development
of a middleware for Taiwan UniGrid. Taiwan UniGrid
middleware consists of three primary modules: 1) UniGrid Portal,
2) Computing Service, and 3) Data Service. We explain the major
design issues that we suffered from the development of these
three modules and propose the corresponding approaches to them.
The detailed system architecture, software components and
features are elaborated. Finally, an example of a workflow
consisting of MPI parallel jobs demonstrates that users can utilize
Grid resources with ease via our middleware platform.

Keywords
Grid middleware, portal, computing grid, data grid.

1. INTRODUCTION
With the rapid growth of computing power, storage capacity and
network speed, many researchers and scientists have been
concentrated on the development of various Grid systems to
efficiently utilize distributed computing and storage resources for
large scale applications in the last decade. In Taiwan, a
community of educational and research organizations interested in
Grid computing technologies founded a Grid computing platform,
called Taiwan UniGrid (abbreviation of Taiwan University Grid)
[1]. These organizations devote their computers/clusters to
Taiwan UniGrid for sharing and collaboration with each other.
The objective of Taiwan UniGrid is to provide education and

research organizations with a powerful computing platform where
they can study Grid-related issues, practice parallel programming
on Grid environments and execute computing/data-intensive
applications. So far, over than 30 institutes participate in Taiwan
UniGrid and contribute their resources with approximately 80
hosts and 180 CPUs.
Taiwan UniGrid is constituted of three primary modules: 1)
UniGrid Portal, 2) Computing Service, and 3) Data Service. In the
following, we will present the major issues that we suffered from
the development of these three modules and propose the
corresponding approaches to them.

UniGrid Portal is a Web interface that bridges users and
underlying services and resources. It serves as a Grid desktop
providing users with working spaces to submit jobs, manage
archived data, and check statuses of resources and submitted jobs.
The first development consideration of Portal is the issue of
Single Sign-On. Without Single Sign-On, users have to keep a list
of accounts for each machine by themselves. This becomes an
obstacle for users to use Grid systems. The other consideration of
Portal development is workflows of jobs. Since large-scale
applications may consist of a number of structured jobs executed
in sequential or in parallel, it is inconvenient for users to submit
jobs one by one manually.

Computing Service deals with job execution processes from
submissions to obtaining results. It organizes distributed and
heterogeneous computing resources and performs job scheduling
to select suitable resources for job requests. For various service
purposes, Computing Service integrates a set of existing
production software. In order to organize scattered computing
resources as a unified computing platform and interact with other
Grid systems, we adopt Globus Toolkit [3] as our underlying
computing middleware. We use Ganglia [4] and NWS (Network
Weather Service) [5] to provide detailed static and dynamic
resource information (ex. number of CPUs, CPU loading,
provided and available memory) and network states for job
scheduling. We also install Condor-G [6] on each site for local
fault-tolerance. Although Globus Toolkit provides GRAM (Grid
Resource Allocation Management) service to facilitate job

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

489

submissions, it does not support job scheduling in global level and
leaves it to the development of upper-layer service. To solve this
problem, we propose a global scheduler to discover resources and
allocate proper ones for submitted job

Data Service [8] is built on top of SRB (Storage Resource Broker)
[9], which is a general data management tool integrating
distributed and heterogeneous storage resources and providing
virtualized access interface. SRB has been a production data
management tool and adopted by several Grid projects. Thus, we
decide to build our Data Service based on SRB while developing
additional features that are not well supported by SRB. These
features includes 1) high-performance data transfer which speed
up the data transfer rate in data replication, downloading, moving,
and copying; 2) data sharing which helps users share their data in
a manner of forming user groups and specifying admission
control on each data object; 3) graphic data management client
by which users can manage their data transparently as using local
file systems.

The remainder of the paper is organized as follows. In Section 2,
we explain the literature related to Grid middleware. Section 3
describes the middleware architecture and its features in detail. A
workflow example is demonstrated in Section 4. Finally, we
present some concluding remarks in the last section.

Figure 1. Component diagram for Taiwan UniGrid.

2. Related Work
InteGrade [10] is an object-oriented Grid middleware that
leverages the idle computing power of shared commodity
machines to perform parallel applications. It adopts CORBA
technology to enable communications between distributed service
components via CORBA IDL interfaces. Taiwan UniGrid
middleware is based on standard Web Service technology [11, 12,
13] and WSRF [14] that define standard conventions to
implement services and resources so that they can be easily
integrated. On the other hand, since InteGrade targeted at a
lightweight Grid middleware, the issues of user authentication and
data management, such as data replication and file movement, are
not well addressed.

MyGrid [15] is a service-based Grid middleware to support in
silico experiments in biology. The advanced feature of MyGrid is
that it uses semantic web technology to manage annotation,
ontologies and semantic discovery. The services of workflow
management and distributed database query are provided by
MyGrid to form biological experiments. The major difference
between MyGrid and Taiwan UniGrid is that the workflow
supported by MyGrid is composed of services wrapping
bioinformatics tools, while that supported by Taiwan UniGrid is
made up of general jobs.
GridLab [16] is another service-based Grid middleware funded by
EU. GridLab divides system hierarchy into two spaces: user space
in high layer and capability space in low layer. Capability space
consists of services and resources, while Grid Application Toolkit
(GAT) API is resided in user space to manage and invoke
underlying resources and services for Grid applications. However,
data management supported by GridLab is limited in comparison
with SRB adopted by Taiwan UniGrid.

3. SYSTEM ARCHITECTURE
Figure 1 shows the detailed component diagram of Taiwan
UniGrid middleware. The blue blocks provide Web interfaces for
users to utilize underlying resources. The orange blocks are
software services that manage Grid resources and cooperate with
each other to provide computing and data manipulation
functionalities. Green blocks list the software installed on each
participated machine. Beside these components, we exploit
MySQL database [17] to store all required information accessed
by services. The functionality of each component is described as
follows:

 Portal – a Web interface to submit job (form as workflow) to
workflow manager.

 Data Management Portal – a Java Web-Start client interface
to upload/download data to/from underlying storage system.

 Job Monitor – a Web interface to check out the historical job
statuses or cancel jobs in execution.

 Resource Monitor – a Web interface to display detailed text
and graphical resource information.

 Authentication & Authorization – provides Single Sign-On
mechanism to validate users.

 Workflow Manager (WM) – handles job dependency and
flow control, and submits jobs to Global Queue.

 Information System (IS) – collects resource information
accessed by other components

 Global Queue (GQ) – provides a centralized queue for all
independent jobs received from Workflow Manager and
schedules them by using Scheduling Policy System.

 Scheduling Policy System (SPS) – performs job scheduling
and resource allocation algorithms on global queue and
dispatches scheduled jobs to Computational Resource Broker.

 Computational Resource Broker (CRB) – processes job
allocation to scheduled condor server and feedback real-time
job execution statuses to Job Monitor.

 Data Management System (DMS) – performs data
management operations.

 Condor – local job scheduler installed in each individual site
controlling which local resources are allocated to execute jobs.

 Storage Service – SRB server.
 Information Service – Ganglia gmond service.

490

3.1 UniGrid Portal
In essence, services and resources within a Grid system are
distributed in different organizations and managed independently.
Each organization has its own security policy. Without Single
Sign-On, users have to keep a list of accounts for each machine
by themselves. This becomes an obstacle for users to use Grid
systems. Therefore, we propose a Single Sign-On mechanism, as
shown in Figure 2, based on GSI [2] to generate proxy certificate
for each individual user and store it in Globus MyProxy server.
By doing so, users only need to login once in Portal and utilize
services and resources without concerning the authentication
settings of them. Computational Resource Broker and Data
Management System will take care of certificate mapping and
validations for users.

The second consideration of Portal development is workflows of
jobs. Since large-scale applications may consist of a number of
structured jobs executed in sequential or in parallel, it is
inconvenient for users to submit jobs one by one manually.
Inspiring from this requirement, we build a workflow
management tool in our middleware. Through the tool, users can
edit job requests to form a workflow in Portal and submit the
workflow to be executed automatically by back-end computing
services. The workflow structure is constructed by stages and jobs
where each stage contains independent jobs and the relations
between stages are dependent (the jobs in next stage must be
submitted only when all jobs in current stage are finished). While
users press “submit” bottom from Portal, an XML-formatted
workflow is sent to Workflow Manager which parses the
workflow and controls the job execution.

Figure 2. Single sign-on mechanism.

3.2 Computing Service
Computing Service is responsible for all job-related operations
through the collaboration of three components, i.e. Global Queue,
Computational Resource Broker, and Scheduling Policy System.
Workflow Manager stores all independent jobs into Database.
Then, Global Queue provide a service, called JobDBCrawler, will
periodically query Database for new incoming jobs and put them
in a job queue. While any new job queried, SPSController service
will be notified by JobDBCrawler to request Scheduling Policy
System for scheduling. Besides, SPSController can also be
notified when any pre-executed job finished since allocated
resources can be released for another resource match opportunity.

The design of isolating Workflow Manager and Computing
Service via Database provides failure recover capability for
underlying computing services. For instance, if Global Queue,
Computational Resource Broker, or Scheduling Policy System is
failed, jobs submitted by users can still store in DB with job status
marked as waiting. As long as computing services recover on-line,
Global Queue resume crawling jobs from Database, and then all
pre-scheduled and executed but unfinished jobs will be

rescheduled by Computational Resource Broker and Scheduling
Policy System.

Scheduling Policy System is designed to handle scheduling and
allocation processes. Scheduling controls the job order in queue
and allocation decides which resource to be allocated. The
required resource information is queried from Information Service
to filter out resources that does not satisfy job requirements. This
component plays a major role on system performance so that the
design of the algorithm was another major research topic which is
discussed in [7]. In short, we implement FCFS and narrowest job
first (the job request least CPUs) scheduling algorithm and best-
fit/fastest single (allow parallel execution on single site)/cross
(allow for cross-site parallel execution) site algorithm for system
administrator to choose proper configuration.

After scheduling, the scheduled jobs will be dispatched to
Computational Resource Broker for proceeding job dispatch and
execution. Computational Resource Broker is implemented with
multiple threads that each thread is responsible for serving one
single job until it finished. The job execution flow includes 1)
obtain user proxy certificate, 2) transfer required files, 3) execute
job, and 4) retrieve result. All screen outputs will be treated as job
results and all output files specified in job requirements will be
saved into Data Service after job finish.

Figure 3 shows the sequence diagram describing the interactions
between components of Computing Service. The red line
indicates false notification that could be ignored. Besides,
parameters related to environment and system are defined in a
configuration file by which developers can migrate middleware to
different platform (ex. service ip, port, or file location) with
flexibility and adjust system behavior more adaptable (ex. number
of job queue or running thread, failure retry times, or proxy life
time).

Figure 3. Sequence diagram of computing service.

3.3 Data Service
Figure 4 shows the framework of Data Service. In the server side,
the left bottom of the framework is a set of physical storage
resources, including hard disks, tapes and databases, contributed
by the members of Taiwan UniGrid. We adopt SRB as a data
management middleware to integrate these scattered storage
resources. Although SRB has furnished an efficient data transfer

491

approach by using multiple TCP streaming, we propose an
alternative, called Self Adaptation [18], to achieve a higher data
transfer rate in comparison with the original one. We also add the
alternative (Self Adaptation patch) into the original functions of
SRB. A set of extended SRB APIs are built on top of SRB and the
Self Adaptation patch..

The right of the server side of the framework is a number of Web
services used for data management. We adopt Web services
technologies [9, 10, 11] in our Data Service to integrate other
software developed by third parties. There are two services
implemented in the current system: AutoReplicator service and
Account Management service. Grid users can utilize
AutoReplicator service to set various replication policies. Account
Management service wraps up the functions of user authentication
in UniGrid Portal for enabling Single Sign-On.

In the client side, the bottom is the data management library for
Taiwan UniGrid which connects to the corresponding server-side
extended SRB APIs and data management services. We
implemented two versions of the library. One is Java-based and
another is C-based. The data management library provides a
uniform interface of data and storage management by which
programmers can build various Grid applications to access the
underling storage resources.

According to the literature survey, we found that Grid users
usually need an environment where they can work collaboratively.
Although most Data Grid middleware provides the sharing of
storage resources, data sharing for collaborative work is not well
supported. Therefore, in our system, we develop a collaborative
mechanism in our Data service through the combinations of
forming user groups and specifying access permissions on each
data object.

Figure 5 presents the deployment of our Data Service. Since there
is a huge amount of storage resources distributed in Taiwan
UniGrid, using a single information server to maintain the
metadata regarding users, data and storages may cause the
problems of server overloading and single point of failure. To
avoid these problems, we divided all storage resources in Taiwan
UniGrid into five zones. Each zone has a MCAT (SRB Metadata
Catalog) server installed for maintaining the metadata. To enable
the flexibility of sharing, the administrators of a MCAT server
can specify their own sharing policies. In addition, each MCAT
server periodically synchronizes its metadata with each other to
keep the metadata consistency among zones. By synchronization,
Grid users registered in one zone can access any storage resources
located in other zones and retrieve sharing data timely.

Figure 4. The framework of the virtual storage system for
Taiwan UniGrid.

Figure 5. The deployment of the virtual storage system for

Taiwan UniGrid.

4. DEMOSTRATION
In this section, we use a workflow example, which composes of
two stages as depicted in Figure 6, to demonstrate our middleware.
An MPI parallel job is executed in stage 1, and a sequential job
written in C is run in stage 2. The rectangle box represents the
executable jobs and ellipse box represent the data file.

Figure 7 shows the workflow management interface and detailed
job description in stage 1. The scheduler option indicates that a
job is submitted to local condor scheduler rather than GRAM.
Sort Key is used for SPS to determine which resource is
preferable for this job. There are three options, CPU bound,
memory bound, and network bound to support decision making.
Run Type determines which kind of application the job is since
different instructions are required to perform job execution. SRB
Directory indicates if the file is stored in SRB server. If checked,
CRB will transfer the specified file from user home directory of
SRB to the scheduled resources before job execution. Similarly, if
output filename is specified, CRB will save the specified file from
the scheduled site back to user home directory of SRB after the
job is executed successfully. Machine Select is an option for users
to manually select resources without SPS.
In order to demonstrate cross site parallel execution, we manually
select two physically distributed sites iisgrid (from Academia
Sinica in Taipei) with 4 CPUs and zeta1 (from THU in Tainchung)
with 2 CPUS. This hellompi_out1 MPI program will save the
hostname on each executed resource to data1.out file. The job in
stage 2 inout merges the content of two files specified in
argument and generate result.out file.
After building up the workflow, there are three actions that users
have to perform:, 1)upload the input file (via the data
management client provided by Data Service as shown in Figure
9), 2)submit the workflow (simply click submit button in
Portal),and 3)wait for results. Figure 8 shows the monitoring page
of job status which lists all historical job information submitted
by users including job name, job start and end time, current status,
and result. The result is saved as file which could be seen in
Figure 9.

This demonstration is an example that illustrates how easy users
can utilize the large amount of Grid resources; meanwhile,
provide users with flexible configuration to submit various kinds
of applications.

492

Figure 6. Demo workflow.

Figure 7. Job description in stage 1.

Figure 8. Job status monitoring pages

Figure 9. A screenshot of the data management client.

5. CONCLUSION
In this paper, we present the design and development of a
middleware for Taiwan UniGrid. We explain the major design
issues that we suffered from the development of the middleware.
Single Sign-On and workflow management are two major
considerations we face in the development of UniGrid Portal. We
take the issues of integration of software and resources, and
global scheduling into account when we build Computing Service.
In Data Service, we concern with high performance data transfer
and data sharing. The detailed system architecture, software
components and features are elaborated. Finally, we use an
application example to demonstrate our middleware by which
users can access the resources in Taiwan UniGrid with ease. In
future work, we supposed to integrate peer-to-peer technology in

the design of grid middleware to enhance the fault-tolerance
capability and negate the disadvantages of centralize approach.

6. REFERENCES
[1] Taiwan UniGrid, http://www.unigrid.org.tw
[2] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A

Security Architecture for Computational Grids,” In ACM
Conference on Computers and Security, ACM Press, 1998.

[3] Ian Foster and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit,” The International Journal of
Supercomputer Applications and High Performance
Computing, vol. 11, No. 2, 1997.

[4] Ganglia, http://www.ganglia.info/
[5] Network Weather Service (NWS), http://nws.cs.ucsb.edu/
[6] Condor-G, http://www.cs.wisc.edu/condor/condorg/
[7] Kuo-Chan Huang, P.C. Shih, and Y.C. Chung, ”Towards

Feasible and Effective Load Sharing in a Heterogeneous
Computational Grid,”, Second International Conference on
Grid and Pervasive Computing, 2007

[8] Chien-Min Wang, H.M. Chen, C.C. Hsu, J.J. Wu, “A High-
Performance Virtual Storage System for Taiwan UniGrid”,
Second International Conference on Grid and Pervasive
Computing, 2007

[9] Chaitanya Baru, R. Moore, A. Rajasekar and M. Wan, “The
SDSC Storage Resource Broker,” CASCON '98: Proceedings
of the 1998 conference of the Centre for Advanced Studies on
Collaborative research, Canada, 1998, also available at
http://www.sdsc.edu/srb.

[10] Andrei Goldchlegery, F Kon, A. Goldman, M. Finger, and G.
C. Bezerra, “InteGrade: Object-oriented Grid Middleware
Leveraging Idle Computing Power of Desktop Machines,”
Concurrency and Computation: Practice & Experience, Vol.
16, March, 2004. John Wiley and Sons.

[11] WSDL: Web Services Description Language 1.1. Available
at http://www.w3.org/TR/wsdl

[12] UDDI: Universal Description, Discovery and Integration.
Available at http://www.uddi.org, 2001.

[13] SOAP: Simple Object Access Protocol 1.1. Global Grid
Forum, available at http://www.w3.org/TR/soap

[14] Globus Alliance, IBM, and HP. Web Service Resource
Framework. http://www.globus.org/wsrf. 2004.

[15] L. B. Costa, L. Feitosa, E. Araujo, G. Mendes, R. Coelho, W.
Cirne, and D. Fireman, “MyGrid: A Complete Solution for
Running Bag-of-tasks Applications,” In Proc. of 22nd
Brazilian Symposium on Computer Networks – III Special
Tools Session, May 2004.

[16] Allen, G., K. Davis, K. N. Dolkas, N. D. Doulamis, T.
Goodale, T. Kielmann, A. Merzky, J. Nabrzyski, J. Pukacki,
T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor,
“Enabling Applications on the Grid - A GridLab
Overview,“ International Journal of High Performance
Computing Applications, 11, vol. 1, 2003..

[17] MySQL: http:// www.mysql.com/
[18] Chien-Min Wang, C.C. Hsu, H.M. Chen, J.J. Wu, “Efficient

Multi-source Data Transfer in Data Grids,” 6th IEEE
International Symposium on Cluster Computing and the Grid,
Singapore, May 2006

493

