
SARIDS: A Self-Adaptive Resource Index and Discovery System

Yi-Hsiang Lin† Wu-Chun Chung‡ Kuan-Chou Lai¥ Kuan-Ching Li§ Yeh-Ching Chung‡

† Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
‡ Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

¥ Department of Computer and Information Science, National Taichung University, Taichung, Taiwan, R.O.C.
§ Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan, R.O.C.

Email: {†yslin, ‡wcchung}@sslab.cs.nthu.edu.tw, ¥kclai@ntcu.edu.tw, §kuancli@pu.edu.tw, ‡ychung@cs.nthu.edu.tw

Abstract—Recently, the resource sharing systems apply the
P2P technique to provide scalable multi-attribute range
queries. However, due to the heterogeneity of resources and
the variation of sharing policies in different providers, current
P2P-based resource discovery systems may suffer the load
imbalance problem in a large scale distributed system. In this
paper, we propose a self-adaptive resource index and discovery
system (SARIDS) to achieve load balancing. SARIDS adopts a
two-tier architecture based on the structured P2P overlay. The
intra-overlay is constructed by normal peers with the same
attribute via the locality preserving hash function; and, the
inter-overlay is constructed by super-peers with classified
attributes in different intra-overlays. SARIDS supports not
only the multi-attribute range queries but also the self-adaptive
mechanisms for load balancing in the intra-overlay and among
the intra-overlays. The simulation results show that SARIDS is
scalable and efficient for load balancing even in the non-
uniform peer range environment.

Keywords: Grid, Resource discovery, Multi-attribute query,
Range query, Load balancing

I. INTRODUCTION
The large scale distributed resource sharing systems such

as the Grid or Peer-to-Peer (P2P) computing system provide
mechanisms for sharing and accessing mass heterogeneous
resources [6]. To discover resources satisfying user
requirements efficiently is a key service in large scale
distributed resource sharing systems.

Traditional approaches use a centralized server or a set of
hierarchical servers to index resource information. Through
these servers, users can find resources matching their
requirements. However, the centralized or hierarchical
approach has some limitations in terms of scalability, fault
tolerance, and self-organizing. To overcome these drawbacks,
the decentralized model [12, 17] is proposed for indexing
and discovering resource information, e.g., the Peer-to-Peer
manner.

The P2P strategy can be classified as unstructured and
structured. The unstructured P2P networks, such as Gnutella
[4] and KaZaA [9], usually search resources by flooding
messages with Time-To-Live (TTL). However, the message
flooding results in a large volume of unnecessary network
traffic. On the other hand, the structured P2P networks, e.g.,
Chord [7], CAN [16], Pastry [14] and Tapestry [3], use a

distributed indexing service which is based on the
Distributed Hash Table (DHT). The structured P2P systems
are more scalable than the unstructured ones; and, the
structured approach guarantees to find the requested resource
in logarithmic bounds if the resource exists. Because the
DHT looks up a resource exactly matching the given key,
supporting complex queries (e.g., multi-attribute range
queries) is the weakness of the structured approach.

In order to support complex queries in the structured P2P
network, some resource discovery systems [1, 10, 11, 15]
were proposed. However, they don’t consider the impact on
the load imbalance. The causes of the load imbalance include:
a) the various attribute categories which caused by the
different sharing policies or the resource heterogeneities, and
b) the distribution of an attribute value isn’t uniform because
some values of an attribute are common and popular.
Therefore, it is a challenge to provide a distributed resource
sharing system for load balancing.

In this paper, we propose a self-adaptive resource index
and discovery system, named SARIDS, to support multi-
attribute range queries and to achieve the load balancing. The
SARIDS is a two-tier architecture based on the structured
P2P overlay. The intra-overlay is constructed by normal
peers while the inter-overlay is constructed by super-peers.
Normal peers in the intra-overlay index the values of the
same attribute. Each super-peer acts as an entry point of an
intra-overlay for a specific attribute. When a query or
publishing information is issued, the query or publishing
information routes in the inter-overlay according to the
attribute, and then locates the specific range in the intra-
overlay depending on the attribute value.

To support the multi-attribute range queries, the
randomizing hash function and the locality preserving hash
function are adopted to map the attribute information to
specific normal peers. Moreover, since the resource attribute
category is arbitrarily changed, this paper introduces an
adaptive mechanism for dynamically constructing and
destructing the intra-overlay. To overcome the non-uniform
data distribution among peers and the load imbalance, we
also propose load balancing mechanisms to balance the load
of normal peers in the intra-overlay and redistribute normal
peers among different intra-overlays.

To verify the performance of our proposed approach, this
paper evaluates the routing performance, the improvement of

2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks

978-0-7695-3908-9/09 $26.00 © 2009 IEEE

DOI 10.1109/I-SPAN.2009.21

521

load balance, and the impacts of various workloads on
SARIDS. The experimental results prove that the SARIDS is
efficient and could improve the load balancing.

The remainder of this paper is organized as follows. In
Section II, we discuss related works. Then, we briefly
describe the system overview in Section III and give the
detailed design of the SARIDS in Section IV. The simulation
results are presented in Section V. We give final conclusions
in Section VI.

II. RELATED WORK
Many P2P-based resource sharing schemes have been

proposed in the literature to overcome the shortcomings of
centralized or hierarchical approaches. Recently, the
structured P2P network model is widely adopted for resource
discovery approaches in large scale distributed systems.
Many structured P2P approaches [1, 10, 11, 15] use the
locality preserving hash function to support multi-attribute
range queries.

In the MAAN approach [10], one DHT is constructed for
each attribute and all of these DHTs are mapped onto the
same overlay. However, the MAAN knows the distribution
of the attribute values in advance for balancing the load
among peers. In the SWORD strategy [11], each attribute is
assigned a different sub-region of a common DHT. However,
the load balancing mechanism in SWORD is less efficient in
an environment with a non-uniform distribution of peer
ranges. In the Mercury approach [1], one DHT is constructed
for each attribute, and each of these DHTs is randomly
mapped to a subset of peers in this system. However, the
Mercury doesn’t support the functions of adding and
removing attributes in the system and doesn’t consider the
load balance among intra-overlays. In the Squid strategy [15],
one DHT is constructed for all attributes and the Squid uses
the dimensionality reducing indexing scheme to map the
multi-dimensional information space to physical peers while
preserving the lexical locality and supporting complex
queries. However, when the dimensionality of the
information space is greater than five, the locality preserving
property of Spacing Filling Curve (SFC) begins to
deteriorate and the querying response time increases.

Compared to the aforementioned, SARIDS can
dynamically adapt the load balancing according to the real
situation of system load. Besides, SARIDS can balance the
load even in the environment with a non-uniform distribution
of peer ranges, support the functions of adding and removing
attributes in the system, and consider the load balance among
intra-overlays.

In this paper, we propose two load balancing mechanisms
for our two-tier architecture in the large scale resource
sharing system with different sharing policies and
heterogeneous resources. The intra-overlay load balancing
mechanism adopts a leave-rejoin-style protocol which is
similar to that in [8, 13]. However, this protocol only works
well when it can contact each peer randomly. When the
distribution of peer ranges is highly-skewed in an overlay,
this approach is far from trivial. The previous study [8]
proposes two solutions to solve the above problem. One is to
enable every peer to maintain a virtual peer without storing

any data item and without changing its position. Then, the
proposed mechanism [8] can select a random peer by a
random ID and route this random ID to the corresponding
virtual peer. The other is to use the random skip list as an
alternate routing infrastructure, such as Skip Graphs [2] or
SkipNet [5]. However, these approaches need to maintain an
additional overlay with extra cost. In this paper, we propose
a leave-rejoin-style protocol based on a random-walk for the
intra-overlay load balancing. This mechanism works well
even in an environment with highly-skewed peer range
distribution, and brings no extra overhead.

III. SARIDS OVERVIEW
This section presents an overview about the SARIDS.

We begin with a briefly introduction of the system
architecture before describing the detailed mechanisms.

A. System Architecture
The SARIDS is constructed by a two-tier architecture, as

shown in Fig. 1. The inter-overlay is constructed by super-
peers while the intra-overlay is constructed by normal peers.
A super-peer represents an entry for one intra-overlay. When
a query or publishing information is issued, it starts to route
in the inter-overlay for finding the super-peer with the
specified attribute. Then, the request is routed to the
dedicated intra-overlay through that super-peer and locates
the normal peers with the matched values.

In SARIDS, each resource is described by a set of
attribute-value pairs. Each pair is a form of (attribute name,
value, resource location). For example, a pair (CPU_Speed,
2GHz, 192.168.1.11) represents the resource with 2GHz
CPU speed. This pair describes the values of a resource
attribute and the provider. Although we use the IP address as
the resource location in this example, this field could be
extended to present the other forms for the resource location.

A query is also described by a set of attribute-value pairs,
such as (attribute name, min value, max value). Besides,
each query has an additional field which is the number of
results satisfying the user’s requirement. This approach can
also easily support the operators as follows: ≦, ≧, ＜, ＞
and ＝.

Figure 1. Overview of SARIDS overlay architecture.

522

B. Hash Function
In SARIDS, the ID of a peer or attribute information has

three parts, as shown in Fig. 2. The first part represents the
key of an attribute name applied in the inter-overlay. The
second part represents the key of an attribute value. The third
part is organized by random bits for distributing the popular
values of an attribute to achieve load balance. The second
part and the third part are applied in the intra-overlay.

The SARIDS applies the randomizing hash function and
the locality preserving hash function. The randomizing hash
function generates a key for the attribute name, such as
SHA-1 (That is, every attribute name only has a unique hash
key). Besides, the locality preserving hash function can
generate keys of continuously attribute values along the
intra-overlay to support range queries. Finally, SARIDS
appends random bits to the tail of the key. While a peer
maintains a more popular value of an attribute, this peer may
result in the load imbalance. The proposed mechanism
enables a popular attribute value to be queried and published
among different peers in a load balancing fashion.

The locality preserving hash function in the SARIDS is
similar to that in the MAAN [10]. However, when the
distribution of attribute values is not uniform, it would
produce a non-uniform distribution of hashing values, and
lead to load imbalance. To address this problem, MAAN
proposes a uniform locality preserving hashing function that
can always produces a uniform distribution of hashing values.
However, it only works if the distribution of input attribute
values is known in advance. In SARIDS, we propose a
random-walking-based leave-rejoin-style protocol for load
balancing of the intra-overlay.

IV. SELF-ADAPTIVE RESOURCE INDEX AND DISCOVERY
The discovery operation in SARIDS can be classified as

the inter-overlay routing and the intra-overlay routing. For
the explanation of our routing mechanism, let AttrQ denote
the set of attributes in a query Q, AttrI denote the set of
attributes in resource information I, and AOa denote the intra-
overlay for the attribute a. The query Q would be passed to
one intra-overlay AOi, where i א AttrQ. The attribute i is
randomly chosen from AttrQ. The resource information I
would be published to all intra-overlays AOj, where j א AttrI,
to locate all the relevant resources in any of the intra-
overlays.

Each normal peer within an intra-overlay AOa maintains
a continuous range ra of attribute values. The function, fa,
produces the value or the range of a particular attribute a in a
query or publishing. A normal peer in charge of the range ra
resolves a query Q for which fa(Q)∩ra≠ψ, and this peer
stores resource information I for which fa(I)∩ra. The intra-
overlay routing is done as follows. The resource information
I would be routed to the peer with the value fa(I). In the case
of a query Q, fa(Q) produces values in a range. Hence, for
routing queries, SARIDS routes Q to the random peer in
fa(Q). Then, SARIDS uses the bidirectional searching
method to resolve range queries.

The bidirectional searching method is a sequential
searching solution to resolve the range queries in the intra-

overlay and to balance the routing load among normal peers.
SARIDS routes a random key of the requested range to the
corresponding normal peer. Then, the query continuously
lookups next value in the right-hand side of the
corresponding normal peer in the intra-overlay. This
discovery procedure continues until it meets the normal
peer’s ID which is larger than the hashing key with the
maximum value in the requested range. If the number of
requested results is not enough after routing the right-hand
side, the query lookups the values in the left-hand side of the
corresponding normal peer. This procedure stops when the
number of requested results is sufficient or meets the next
normal peer’s ID which is less than the hashing key with the
minimum value in the requested range. The number of
requested results is defined by users for the bidirectional
searching method to avoid visiting too many peers. Thus,
this approach can discover the candidate resources in a
sequential searching resolution with a limitation.

Figure 2. Example of super-peer ID, attribute ID and normal peer ID.

Figure 3. Example of query routing and information publishing.

523

Fig. 3 shows an example for our routing mechanism. The
query with the key 113167 routes to the super-peer which is
correspond to the CPU speed with ID = 110000 at first. Then,
the query would be passed to the normal peer with ID =
113511. Then, the peer discovers its right-hand side and left-
hand side for the requested range by the bidirectional
searching method. On the other hand, when a peer tries to
provide resource information, it would publish the
information to all corresponding intra-overlays according to
its providing information. In this case, the resource
information would be passed to the super-peers with ID =
680000 and 110000, and is stored at the corresponding
normal peers ID = 684156 and 119245, respectively.

A. Intra-overlay Construction and Destruction
Because the categories of attributes are different in

distinct sharing policies, we propose an adaptive mechanism
for constructing and destructing the intra-overlay. In general,
the resource information is published to the corresponding
intra-overlay. In the case of an attribute is only published or
provided by very few providers, there is no corresponding
intra-overlay. Because the load of the attribute is very light,
this attribute is only stored temporality on a super-peer with
a following attribute key. Therefore, this paper defines the
temporary attribute as an attribute with a light load, and the
primary attribute as an attribute for a dedicated intra-overlay.

To accommodate the dynamic construction and
destruction of the overlay, each super-peer estimates the
global average load ρ which denotes the number of data
items and the parameter β which denotes the threshold of
deciding the current load status of the intra-overlay. If the
number of resource information of a temporary attribute in a
super-peer is greater than ሺ1 ൅ ߩሻߚ , where β < 1, this
attribute would be a primary attribute. Then, the super-peer
would select a new super-peer from an under-loaded intra-
overlay. This new super-peer maintains the new primary
attribute and given a new ID by hashing this primary
attribute name. The other loads of temporary attributes which
IDs are less than this new primary attribute would also be
transferred to this new super-peer. Then, the new selected
super-peer joins the inter-overlay resulting in a new intra-
overlay. When the load of partial temporary attributes is
greater than ሺ1 ൅ the super-peer only chooses a new ,ߩሻߚ
super-peer as its predecessor and transfers these loads of
temporary attributes to that predecessor.

In some cases, SARIDS would destruct the
corresponding intra-overlay when the load of a primary
attribute is vanished. If the total load of this peer is less than
ሺ1 െ the intra-overlay would be destructed. The load of ,ߩሻߚ
this peer includes the load of the primary attribute and the
load of temporary attributes. Then, this primary attribute
would be degraded to a temporary attribute. All resource
information in this peer would be transmitted to its successor
in the inter-overlay. After the transferring operation uses the
underlying Chord infrastructure, this peer rejoins the system.

B. Load Balancing
The SARIDS proposes an inter-overlay load balancing

mechanism to redistribute peers among intra-overlays and

also enhances the leave-rejoin-style mechanism to balance
the load in the intra-overlay with a non-uniform distribution
of peer ranges. We introduce the collection approaches for
the load information in the SARIDS before describing the
detailed load balancing mechanisms.

1) Clockwise Information Collecting Method: Each
super-peer uses a clockwise information collecting method
to gather the load information in its intra-overlay. This load
information includes the total number of peers and the total
number of resource information.

To gather the load information, a message is issued from
a super-peer and then continuously passed to the successor in
the intra-overlay until this message is sent back to the
requested super-peer. This message computes the total
number of peers and aggregates the total number of resource
information in the intra-overlay. According to the collected
information, super-peers can calculate the local average load
and the global average load. Besides, this method is
compatible with the stabilization process or the predecessor
checking process of the Chord without extra overhead. When
a peer joins or leaves the intra-overlay, it would notify its
super-peer for precisely gathering the local average load.
Then, the super-peer re-computes the local average load.

2) Inter-overlay Load Balancing Mechanism: The load
balancing mechanism in the inter-over has two operations
for generating the global average load by random sampling,
and for redistributing peers in different intra-overlays
according to the average local/global load.

In the first operation, each super-peer generates random
keys and routes these keys to the corresponding super-peers.
Then, these super-peers reply the load information of its
intra-overlay. The experimental results show that the inter-
overlay load balancing mechanism works well by sampling
log ܰ peers randomly. Our mechanism adopts the similar
method in [1] to collect most recent log ܰ global average
load, where N is the size of inter-overlay. The global average
load equals the total number of resource information divided
by the total number of peers in the most recent samples.

In the second operation, SARIDS defines a bound β as
the threshold to decide the load status of an intra-overlay.
The β can help the system to bear dynamic peer joining and
leaving, and to avoid unnecessarily redistributing a peer for
resource information publishing and vanishing. To simply
describe the status of an intra-overlay, let fLOAD denote as the
following:

 oadGlobalAvgLoadGlobalAvgLadLocalAvgLofLOAD /−= .

When fLOAD is equal to or less than β, the load status of
intra-overlay is balancing; when fLOAD is larger than β and the
local average load is less than the global average load, the
load status of the intra-overlay is light; when fLOAD is larger
than β and the local average load is also larger than the
global average load, the load status of the intra-overlay is
heavy.

Each super-peer decides the load status in its intra-
overlay. Then, the super-peer with the heavily loaded intra-

524

overlay would generate a random key and route this key to
the corresponded super-peer in the inter-overlay. If this
corresponding super-peer belongs to the lightly loaded or the
balanced intra-overlay, then this super-peer would randomly
choose a peer from its overlay to rejoin the heavy one to
balance their load. Only super-peers with heavily loaded
intra-overlays would periodically and randomly probe other
super-peers.

3) Intra-overlay Load Balancing Mechanism: To
balance the load in the intra-overlay, we enhance the leave-
rejoin-style protocol to enable SARIDS to work well even
in an environment with a non-uniform distribution of peer
ranges. The SARIDS contacts a random-selected peer by a
random-walking-based routing protocol. Each normal peer
balances its load in an intra-overlay by this enhanced load
balancing protocol. This approach routes the probing
message with TTL by a successor list and a finger table of
the Chord.

For describing our approach, let Llocal denote the load on
the requested peer, Li denote the load of peer i that is met
along the routing path and C ൈ Li denote the degree of load
balancing where C is a constant coefficient. If C ൈ Li is equal
to or larger than Llocal, the requested peer leaves its current
location to be a neighboring peer i. Then, the load of peer i is
partitioned into two peers. Each intra-overlay has a good
load balancing property by this enhanced leave-rejoin-style
protocol for adapting to any resource distribution.

V. EXPERIMENTAL RESULTS
To verify the performance of our system, we implement a

simulator in JAVA and adopt the Chord to be our overlay
structure. We evaluate the effectiveness of the routing
mechanism and the load balancing mechanisms with
different workload in the inter-overlay and the intra-overlay.

A. Routing Performance
Since the SARIDS applies the Chord as a routing

infrastructure, the number of routing hops for finding the
super-peer with the specified attribute in the inter-overlay is
log ଵܰ, where N1 is the size of an inter-overlay. On the other
hand, the number of routing hops for locating the normal
peer with the matched value is log ଶܰ, where N2 is the size of
the specified intra-overlay. Hence, the number of routing
hops to publish an attribute is log ଵܰ ൅ log ଶܰ , and the
number of routing hops to search resources is log ଵܰ ൅
log ଶܰ ൅ ݇, where k is the number of routing hops of the
bidirectional searching method. The variable k is calculated
as the number of requested results divided by the average
load of a peer.

B. Sampling Analysis
In our system, each super-peer randomly probes other

super-peers as samples and obtains their resource
information. This information is gathered for balancing the
load in the inter-overlay. In this experimental environment,
we randomly assign peers and loads to each intra-overlay in
a uniform distribution. Then, we generate 100 global average
loads by different sample numbers to compute the standard

deviation. Fig. 4 shows that when the number of samples is
greater than log ܰ, where N is the number of intra-overlays,
the sampling accuracy would not be influenced obviously.

C. Load Balancing
The experiment results of load balancing include the

inter-overlay effect and the intra-overlay performance. In the
inter-overlay load balancing experiment, the system assumes
that there are 1,000 intra-overlays and each intra-overlay
initials 100 normal peers. We setup the load to each intra-
overlay in the Zipf distribution with α = 0.95. Then, every
super-peer in SARIDS runs the inter-overlay load balancing
mechanism to redistribute peers among intra-overlays. Fig. 5
depicts that SARIDS can balance the load of each intra-
overlay effectively. We set the load status of each intra-
overlay by assigning different bounds β of the inter-overlay
load balancing mechanism. Obviously, the smaller bound
would balance the system load more evenly.

In the intra-overlay load balancing experiment, we setup
an intra-overlay with 1,000 peers and assign the load to each
peer from 0 to 1,000 in a uniform distribution. Then, we set
the value of C to be 0.5 and evaluate the effectiveness of our
mechanism under a highly-skewed distribution of peer
ranges (the α of Zipf distribution is 0.95). As shown in Fig. 6,
our leave-rejoin-style protocol based on the random-walk
can balance the system load in an environment with a non-
uniform distribution of peer ranges.

Figure 4. Sampling accuracy under different samples and network size.

Figure 5. Effectiveness of inter-overlay load balancing under different β.

β 0.5 1 1.5 Non-balanced
Std. deviation 2050.160118 2372.735969 2555.17836 20440.89531

525

Figure 6. Intra-overlay load balancing in the non-uniform distribution of

peer ranges.

VI. CONCLUSION
In this paper, we propose a self-adaptive resource index

and discovery system, named SARIDS, for large scale
distributed resource sharing systems with heterogeneous
resources and different sharing policies. Our SARIDS not
only supports the multi-attribute range queries but also
balances the system load efficiently. In SARIDS, we propose
a sampling-based mechanism to balance the load in the inter-
overlay, and introduce a leave-rejoin-style protocol based on
a random-walk for the intra-overlay load balancing. By these
mechanisms, the load of each peer is almost equal in the
whole system even in the environment with a highly-skewed
resource distribution. Our simulation results show that
SARIDS supports multi-attribute range queries with well
scalability and good load balance, and works well even in a
non-uniform distribution of peer ranges.

ACKNOWLEDGMENT
This work is partially supported by National Science

Council of the Republic of China under contract NSC 96-
2221-E-007-130-MY3 and NSC 97-3114-E-007-001. The
authors would like to express their gratitude to the
anonymous reviewers for their review and suggestions.

REFERENCES
[1] R. B. Ashwin, A. Mukesh, and S. Srinivasan, "Mercury: Supporting

Scalable Multi-Attribute Range Queries," in ACM SIGCOMM
Computer Communication Review. vol. 34, 2004, pp. 353-366.

[2] J. Aspnes and G. Shah, "Skip Graphs," in Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
2003, pp. 384-393.

[3] Y. Z. Ben, D. K. John, and D. J. Anthony, "Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing," TR
CSD-01-1141, University of California at Berkeley 2001.

[4] Gnutella,
"http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf".

[5] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,
"SkipNet: A Scalable Overlay Network with Practical Locality
Properties," in Proceedings of the Fourth USENIX Symposium on
Internet Technologies and Systems, 2003, pp. 113-126.

[6] A. Iamnitchi and I. Foster, "On Fully Decentralized Resource
Discovery in Grid Environments," in Grid Computing — GRID 2001,
2001, pp. 51-62.

[7] S. Ion, M. Robert, K. David, M. F. Kaashoek, and B. Hari, "Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications," in
Proceedings of the ACM SIGCOMM, 2001, pp. 149-160.

[8] D. R. Karger and M. Ruhl, "Simple Efficient Load-Balancing
Algorithms for Peer-to-Peer Systems," in Theory of Computing
Systems, 2006, pp. 787-804.

[9] Kazaa, "http://www.kazaa.com".
[10] C. Min, F. Martin, C. Jinbo, and S. Pedro, "MAAN: A Multi-

Attribute Addressable Network for Grid Information Services," in
Proceedings of the Fourth International Workshop on Grid
Computing, 2003, pp. 184-191.

[11] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, Scalable
Wide-Area Resource Discovery: TR CSD-04-1334, EECS
Department, University of California, Berkeley, 2004.

[12] R. Ranjan, A. Harwood, and R. Buyya, "Peer-to-Peer-Based Resource
Discovery in Global Grids: A Tutorial," IEEE Communications
Surveys & Tutorials, vol. 10, pp. 6-33, 2008.

[13] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
"Load Balancing in Structured P2P Systems," in Peer-to-Peer
Systems II, 2003, pp. 68-79.

[14] A. Rowstron and P. Druschel, "Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems," in
Proceedings of the Middleware, 2001, pp. 329-350.

[15] C. Schmidt and M. Parashar, "Squid: Enabling search in DHT-based
systems," Journal of Parallel and Distributed Computing, vol. 68, pp.
962-975, 2008.

[16] R. Sylvia, F. Paul, H. Mark, K. Richard, and S. Scott, "A Scalable
Content-Addressable Network," ACM SIGCOMM Computer
Communication Review, vol. 31, pp. 161-172, 2001.

[17] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini,
M. Pennanen, K. Popov, V. Vlassov, and S. Haridi, "Peer-to-Peer
Resource Discovery in Grids: Models and Systems," Future
Generation Computer Systems, vol. 23, pp. 864-878, 2007.

SARIDS Traditional Non-balanced
Std. deviation 85.04614172 246.9494724 292.4238574

526

