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Abstract—Recently, the resource sharing systems apply the 
P2P technique to provide scalable multi-attribute range 
queries. However, due to the heterogeneity of resources and 
the variation of sharing policies in different providers, current 
P2P-based resource discovery systems may suffer the load 
imbalance problem in a large scale distributed system. In this 
paper, we propose a self-adaptive resource index and discovery 
system (SARIDS) to achieve load balancing. SARIDS adopts a 
two-tier architecture based on the structured P2P overlay. The 
intra-overlay is constructed by normal peers with the same 
attribute via the locality preserving hash function; and, the 
inter-overlay is constructed by super-peers with classified 
attributes in different intra-overlays. SARIDS supports not 
only the multi-attribute range queries but also the self-adaptive 
mechanisms for load balancing in the intra-overlay and among 
the intra-overlays. The simulation results show that SARIDS is 
scalable and efficient for load balancing even in the non-
uniform peer range environment. 

Keywords: Grid, Resource discovery, Multi-attribute query, 
Range query, Load balancing 

I.  INTRODUCTION 
The large scale distributed resource sharing systems such 

as the Grid or Peer-to-Peer (P2P) computing system provide 
mechanisms for sharing and accessing mass heterogeneous 
resources [6]. To discover resources satisfying user 
requirements efficiently is a key service in large scale 
distributed resource sharing systems.  

Traditional approaches use a centralized server or a set of 
hierarchical servers to index resource information. Through 
these servers, users can find resources matching their 
requirements. However, the centralized or hierarchical 
approach has some limitations in terms of scalability, fault 
tolerance, and self-organizing. To overcome these drawbacks, 
the decentralized model [12, 17] is proposed for indexing 
and discovering resource information, e.g., the Peer-to-Peer 
manner. 

The P2P strategy can be classified as unstructured and 
structured. The unstructured P2P networks, such as Gnutella 
[4] and KaZaA [9], usually search resources by flooding 
messages with Time-To-Live (TTL). However, the message 
flooding results in a large volume of unnecessary network 
traffic. On the other hand, the structured P2P networks, e.g., 
Chord [7], CAN [16], Pastry [14] and Tapestry [3], use a 

distributed indexing service which is based on the 
Distributed Hash Table (DHT). The structured P2P systems 
are more scalable than the unstructured ones; and, the 
structured approach guarantees to find the requested resource 
in logarithmic bounds if the resource exists. Because the 
DHT looks up a resource exactly matching the given key, 
supporting complex queries (e.g., multi-attribute range 
queries) is the weakness of the structured approach. 

In order to support complex queries in the structured P2P 
network, some resource discovery systems [1, 10, 11, 15] 
were proposed. However, they don’t consider the impact on 
the load imbalance. The causes of the load imbalance include: 
a) the various attribute categories which caused by the 
different sharing policies or the resource heterogeneities, and 
b) the distribution of an attribute value isn’t uniform because 
some values of an attribute are common and popular. 
Therefore, it is a challenge to provide a distributed resource 
sharing system for load balancing. 

In this paper, we propose a self-adaptive resource index 
and discovery system, named SARIDS, to support multi-
attribute range queries and to achieve the load balancing. The 
SARIDS is a two-tier architecture based on the structured 
P2P overlay. The intra-overlay is constructed by normal 
peers while the inter-overlay is constructed by super-peers. 
Normal peers in the intra-overlay index the values of the 
same attribute. Each super-peer acts as an entry point of an 
intra-overlay for a specific attribute. When a query or 
publishing information is issued, the query or publishing 
information routes in the inter-overlay according to the 
attribute, and then locates the specific range in the intra-
overlay depending on the attribute value.  

To support the multi-attribute range queries, the 
randomizing hash function and the locality preserving hash 
function are adopted to map the attribute information to 
specific normal peers. Moreover, since the resource attribute 
category is arbitrarily changed, this paper introduces an 
adaptive mechanism for dynamically constructing and 
destructing the intra-overlay. To overcome the non-uniform 
data distribution among peers and the load imbalance, we 
also propose load balancing mechanisms to balance the load 
of normal peers in the intra-overlay and redistribute normal 
peers among different intra-overlays. 

To verify the performance of our proposed approach, this 
paper evaluates the routing performance, the improvement of 
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load balance, and the impacts of various workloads on 
SARIDS. The experimental results prove that the SARIDS is 
efficient and could improve the load balancing. 

The remainder of this paper is organized as follows. In 
Section II, we discuss related works. Then, we briefly 
describe the system overview in Section III and give the 
detailed design of the SARIDS in Section IV. The simulation 
results are presented in Section V. We give final conclusions 
in Section VI. 

II. RELATED WORK 
Many P2P-based resource sharing schemes have been 

proposed in the literature to overcome the shortcomings of 
centralized or hierarchical approaches. Recently, the 
structured P2P network model is widely adopted for resource 
discovery approaches in large scale distributed systems. 
Many structured P2P approaches [1, 10, 11, 15] use the 
locality preserving hash function to support multi-attribute 
range queries. 

In the MAAN approach [10], one DHT is constructed for 
each attribute and all of these DHTs are mapped onto the 
same overlay. However, the MAAN knows the distribution 
of the attribute values in advance for balancing the load 
among peers. In the SWORD strategy [11], each attribute is 
assigned a different sub-region of a common DHT. However, 
the load balancing mechanism in SWORD is less efficient in 
an environment with a non-uniform distribution of peer 
ranges. In the Mercury approach [1], one DHT is constructed 
for each attribute, and each of these DHTs is randomly 
mapped to a subset of peers in this system. However, the 
Mercury doesn’t support the functions of adding and 
removing attributes in the system and doesn’t consider the 
load balance among intra-overlays. In the Squid strategy [15], 
one DHT is constructed for all attributes and the Squid uses 
the dimensionality reducing indexing scheme to map the 
multi-dimensional information space to physical peers while 
preserving the lexical locality and supporting complex 
queries. However, when the dimensionality of the 
information space is greater than five, the locality preserving 
property of Spacing Filling Curve (SFC) begins to 
deteriorate and the querying response time increases. 

Compared to the aforementioned, SARIDS can 
dynamically adapt the load balancing according to the real 
situation of system load. Besides, SARIDS can balance the 
load even in the environment with a non-uniform distribution 
of peer ranges, support the functions of adding and removing 
attributes in the system, and consider the load balance among 
intra-overlays. 

In this paper, we propose two load balancing mechanisms 
for our two-tier architecture in the large scale resource 
sharing system with different sharing policies and 
heterogeneous resources. The intra-overlay load balancing 
mechanism adopts a leave-rejoin-style protocol which is 
similar to that in [8, 13]. However, this protocol only works 
well when it can contact each peer randomly. When the 
distribution of peer ranges is highly-skewed in an overlay, 
this approach is far from trivial. The previous study [8] 
proposes two solutions to solve the above problem. One is to 
enable every peer to maintain a virtual peer without storing 

any data item and without changing its position. Then, the 
proposed mechanism [8] can select a random peer by a 
random ID and route this random ID to the corresponding 
virtual peer. The other is to use the random skip list as an 
alternate routing infrastructure, such as Skip Graphs [2] or 
SkipNet [5]. However, these approaches need to maintain an 
additional overlay with extra cost. In this paper, we propose 
a leave-rejoin-style protocol based on a random-walk for the 
intra-overlay load balancing. This mechanism works well 
even in an environment with highly-skewed peer range 
distribution, and brings no extra overhead. 

III. SARIDS OVERVIEW 
This section presents an overview about the SARIDS. 

We begin with a briefly introduction of the system 
architecture before describing the detailed mechanisms. 

A. System Architecture 
The SARIDS is constructed by a two-tier architecture, as 

shown in Fig. 1. The inter-overlay is constructed by super-
peers while the intra-overlay is constructed by normal peers. 
A super-peer represents an entry for one intra-overlay. When 
a query or publishing information is issued, it starts to route 
in the inter-overlay for finding the super-peer with the 
specified attribute. Then, the request is routed to the 
dedicated intra-overlay through that super-peer and locates 
the normal peers with the matched values. 

In SARIDS, each resource is described by a set of 
attribute-value pairs. Each pair is a form of (attribute name, 
value, resource location). For example, a pair (CPU_Speed, 
2GHz, 192.168.1.11) represents the resource with 2GHz 
CPU speed. This pair describes the values of a resource 
attribute and the provider. Although we use the IP address as 
the resource location in this example, this field could be 
extended to present the other forms for the resource location.  

A query is also described by a set of attribute-value pairs, 
such as (attribute name, min value, max value). Besides, 
each query has an additional field which is the number of 
results satisfying the user’s requirement. This approach can 
also easily support the operators as follows: ≦, ≧, ＜, ＞ 
and ＝. 

 
Figure 1.  Overview of SARIDS overlay architecture. 
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B. Hash Function 
In SARIDS, the ID of a peer or attribute information has 

three parts, as shown in Fig. 2. The first part represents the 
key of an attribute name applied in the inter-overlay. The 
second part represents the key of an attribute value. The third 
part is organized by random bits for distributing the popular 
values of an attribute to achieve load balance. The second 
part and the third part are applied in the intra-overlay. 

The SARIDS applies the randomizing hash function and 
the locality preserving hash function. The randomizing hash 
function generates a key for the attribute name, such as 
SHA-1 (That is, every attribute name only has a unique hash 
key). Besides, the locality preserving hash function can 
generate keys of continuously attribute values along the 
intra-overlay to support range queries. Finally, SARIDS 
appends random bits to the tail of the key. While a peer 
maintains a more popular value of an attribute, this peer may 
result in the load imbalance. The proposed mechanism 
enables a popular attribute value to be queried and published 
among different peers in a load balancing fashion.  

The locality preserving hash function in the SARIDS is 
similar to that in the MAAN [10]. However, when the 
distribution of attribute values is not uniform, it would 
produce a non-uniform distribution of hashing values, and 
lead to load imbalance. To address this problem, MAAN 
proposes a uniform locality preserving hashing function that 
can always produces a uniform distribution of hashing values. 
However, it only works if the distribution of input attribute 
values is known in advance. In SARIDS, we propose a 
random-walking-based leave-rejoin-style protocol for load 
balancing of the intra-overlay. 

IV. SELF-ADAPTIVE RESOURCE INDEX AND DISCOVERY 
The discovery operation in SARIDS can be classified as 

the inter-overlay routing and the intra-overlay routing. For 
the explanation of our routing mechanism, let AttrQ denote 
the set of attributes in a query Q, AttrI denote the set of 
attributes in resource information I, and AOa denote the intra-
overlay for the attribute a. The query Q would be passed to 
one intra-overlay AOi, where i א AttrQ. The attribute i is 
randomly chosen from AttrQ. The resource information I 
would be published to all intra-overlays AOj, where j א AttrI, 
to locate all the relevant resources in any of the intra-
overlays. 

Each normal peer within an intra-overlay AOa maintains 
a continuous range ra of attribute values. The function, fa, 
produces the value or the range of a particular attribute a in a 
query or publishing. A normal peer in charge of the range ra 
resolves a query Q for which fa(Q)∩ra≠ψ, and this peer 
stores resource information I for which fa(I)∩ra. The intra-
overlay routing is done as follows. The resource information 
I would be routed to the peer with the value fa(I). In the case 
of a query Q, fa(Q) produces values in a range. Hence, for 
routing queries, SARIDS routes Q to the random peer in 
fa(Q). Then, SARIDS uses the bidirectional searching 
method to resolve range queries. 

The bidirectional searching method is a sequential 
searching solution to resolve the range queries in the intra-

overlay and to balance the routing load among normal peers. 
SARIDS routes a random key of the requested range to the 
corresponding normal peer. Then, the query continuously 
lookups next value in the right-hand side of the 
corresponding normal peer in the intra-overlay. This 
discovery procedure continues until it meets the normal 
peer’s ID which is larger than the hashing key with the 
maximum value in the requested range. If the number of 
requested results is not enough after routing the right-hand 
side, the query lookups the values in the left-hand side of the 
corresponding normal peer. This procedure stops when the 
number of requested results is sufficient or meets the next 
normal peer’s ID which is less than the hashing key with the 
minimum value in the requested range. The number of 
requested results is defined by users for the bidirectional 
searching method to avoid visiting too many peers. Thus, 
this approach can discover the candidate resources in a 
sequential searching resolution with a limitation. 

 
Figure 2.  Example of super-peer ID, attribute ID and normal peer ID. 

 
Figure 3.  Example of query routing and information publishing. 
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Fig. 3 shows an example for our routing mechanism. The 
query with the key 113167 routes to the super-peer which is 
correspond to the CPU speed with ID = 110000 at first. Then, 
the query would be passed to the normal peer with ID = 
113511. Then, the peer discovers its right-hand side and left-
hand side for the requested range by the bidirectional 
searching method. On the other hand, when a peer tries to 
provide resource information, it would publish the 
information to all corresponding intra-overlays according to 
its providing information. In this case, the resource 
information would be passed to the super-peers with ID = 
680000 and 110000, and is stored at the corresponding 
normal peers ID = 684156 and 119245, respectively. 

A. Intra-overlay Construction and Destruction 
Because the categories of attributes are different in 

distinct sharing policies, we propose an adaptive mechanism 
for constructing and destructing the intra-overlay. In general, 
the resource information is published to the corresponding 
intra-overlay. In the case of an attribute is only published or 
provided by very few providers, there is no corresponding 
intra-overlay. Because the load of the attribute is very light, 
this attribute is only stored temporality on a super-peer with 
a following attribute key. Therefore, this paper defines the 
temporary attribute as an attribute with a light load, and the 
primary attribute as an attribute for a dedicated intra-overlay. 

To accommodate the dynamic construction and 
destruction of the overlay, each super-peer estimates the 
global average load ρ which denotes the number of data 
items and the parameter β which denotes the threshold of 
deciding the current load status of the intra-overlay. If the 
number of resource information of a temporary attribute in a 
super-peer is greater than ሺ1 ൅ ߩሻߚ , where β < 1, this 
attribute would be a primary attribute. Then, the super-peer 
would select a new super-peer from an under-loaded intra-
overlay. This new super-peer maintains the new primary 
attribute and given a new ID by hashing this primary 
attribute name. The other loads of temporary attributes which 
IDs are less than this new primary attribute would also be 
transferred to this new super-peer. Then, the new selected 
super-peer joins the inter-overlay resulting in a new intra-
overlay. When the load of partial temporary attributes is 
greater than ሺ1 ൅  the super-peer only chooses a new ,ߩሻߚ
super-peer as its predecessor and transfers these loads of 
temporary attributes to that predecessor. 

In some cases, SARIDS would destruct the 
corresponding intra-overlay when the load of a primary 
attribute is vanished. If the total load of this peer is less than 
ሺ1 െ  the intra-overlay would be destructed. The load of ,ߩሻߚ
this peer includes the load of the primary attribute and the 
load of temporary attributes. Then, this primary attribute 
would be degraded to a temporary attribute. All resource 
information in this peer would be transmitted to its successor 
in the inter-overlay. After the transferring operation uses the 
underlying Chord infrastructure, this peer rejoins the system. 

B. Load Balancing 
The SARIDS proposes an inter-overlay load balancing 

mechanism to redistribute peers among intra-overlays and 

also enhances the leave-rejoin-style mechanism to balance 
the load in the intra-overlay with a non-uniform distribution 
of peer ranges. We introduce the collection approaches for 
the load information in the SARIDS before describing the 
detailed load balancing mechanisms. 

1) Clockwise Information Collecting Method: Each 
super-peer uses a clockwise information collecting method 
to gather the load information in its intra-overlay. This load 
information includes the total number of peers and the total 
number of resource information.  

To gather the load information, a message is issued from 
a super-peer and then continuously passed to the successor in 
the intra-overlay until this message is sent back to the 
requested super-peer. This message computes the total 
number of peers and aggregates the total number of resource 
information in the intra-overlay. According to the collected 
information, super-peers can calculate the local average load 
and the global average load. Besides, this method is 
compatible with the stabilization process or the predecessor 
checking process of the Chord without extra overhead. When 
a peer joins or leaves the intra-overlay, it would notify its 
super-peer for precisely gathering the local average load. 
Then, the super-peer re-computes the local average load. 

2) Inter-overlay Load Balancing Mechanism: The load 
balancing mechanism in the inter-over has two operations 
for generating the global average load by random sampling, 
and for redistributing peers in different intra-overlays 
according to the average local/global load.  

In the first operation, each super-peer generates random 
keys and routes these keys to the corresponding super-peers. 
Then, these super-peers reply the load information of its 
intra-overlay. The experimental results show that the inter-
overlay load balancing mechanism works well by sampling 
log ܰ  peers randomly. Our mechanism adopts the similar 
method in [1] to collect most recent log ܰ  global average 
load, where N is the size of inter-overlay. The global average 
load equals the total number of resource information divided 
by the total number of peers in the most recent samples. 

In the second operation, SARIDS defines a bound β as 
the threshold to decide the load status of an intra-overlay. 
The β can help the system to bear dynamic peer joining and 
leaving, and to avoid unnecessarily redistributing a peer for 
resource information publishing and vanishing. To simply 
describe the status of an intra-overlay, let fLOAD denote as the 
following: 

 oadGlobalAvgLoadGlobalAvgLadLocalAvgLofLOAD /−= .  

When fLOAD is equal to or less than β, the load status of 
intra-overlay is balancing; when fLOAD is larger than β and the 
local average load is less than the global average load, the 
load status of the intra-overlay is light; when fLOAD is larger 
than β and the local average load is also larger than the 
global average load, the load status of the intra-overlay is 
heavy. 

Each super-peer decides the load status in its intra-
overlay. Then, the super-peer with the heavily loaded intra-
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overlay would generate a random key and route this key to 
the corresponded super-peer in the inter-overlay. If this 
corresponding super-peer belongs to the lightly loaded or the 
balanced intra-overlay, then this super-peer would randomly 
choose a peer from its overlay to rejoin the heavy one to 
balance their load. Only super-peers with heavily loaded 
intra-overlays would periodically and randomly probe other 
super-peers. 

3) Intra-overlay Load Balancing Mechanism: To 
balance the load in the intra-overlay, we enhance the leave-
rejoin-style protocol to enable SARIDS to work well even 
in an environment with a non-uniform distribution of peer 
ranges. The SARIDS contacts a random-selected peer by a 
random-walking-based routing protocol. Each normal peer 
balances its load in an intra-overlay by this enhanced load 
balancing protocol. This approach routes the probing 
message with TTL by a successor list and a finger table of 
the Chord. 

For describing our approach, let Llocal denote the load on 
the requested peer, Li denote the load of peer i that is met 
along the routing path and C ൈ Li denote the degree of load 
balancing where C is a constant coefficient. If C ൈ Li is equal 
to or larger than Llocal, the requested peer leaves its current 
location to be a neighboring peer i. Then, the load of peer i is 
partitioned into two peers. Each intra-overlay has a good 
load balancing property by this enhanced leave-rejoin-style 
protocol for adapting to any resource distribution. 

V. EXPERIMENTAL RESULTS 
To verify the performance of our system, we implement a 

simulator in JAVA and adopt the Chord to be our overlay 
structure. We evaluate the effectiveness of the routing 
mechanism and the load balancing mechanisms with 
different workload in the inter-overlay and the intra-overlay. 

A. Routing Performance 
Since the SARIDS applies the Chord as a routing 

infrastructure, the number of routing hops for finding the 
super-peer with the specified attribute in the inter-overlay is 
log ଵܰ, where N1 is the size of an inter-overlay. On the other 
hand, the number of routing hops for locating the normal 
peer with the matched value is log ଶܰ, where N2 is the size of 
the specified intra-overlay. Hence, the number of routing 
hops to publish an attribute is log ଵܰ ൅ log ଶܰ , and the 
number of routing hops to search resources is log ଵܰ ൅
log ଶܰ ൅ ݇, where k is the number of routing hops of the 
bidirectional searching method. The variable k is calculated 
as the number of requested results divided by the average 
load of a peer. 

B. Sampling Analysis 
In our system, each super-peer randomly probes other 

super-peers as samples and obtains their resource 
information. This information is gathered for balancing the 
load in the inter-overlay. In this experimental environment, 
we randomly assign peers and loads to each intra-overlay in 
a uniform distribution. Then, we generate 100 global average 
loads by different sample numbers to compute the standard 

deviation. Fig. 4 shows that when the number of samples is 
greater than log ܰ, where N is the number of intra-overlays, 
the sampling accuracy would not be influenced obviously. 

C. Load Balancing 
The experiment results of load balancing include the 

inter-overlay effect and the intra-overlay performance. In the 
inter-overlay load balancing experiment, the system assumes 
that there are 1,000 intra-overlays and each intra-overlay 
initials 100 normal peers. We setup the load to each intra-
overlay in the Zipf distribution with α = 0.95. Then, every 
super-peer in SARIDS runs the inter-overlay load balancing 
mechanism to redistribute peers among intra-overlays. Fig. 5 
depicts that SARIDS can balance the load of each intra-
overlay effectively. We set the load status of each intra-
overlay by assigning different bounds β of the inter-overlay 
load balancing mechanism. Obviously, the smaller bound 
would balance the system load more evenly. 

In the intra-overlay load balancing experiment, we setup 
an intra-overlay with 1,000 peers and assign the load to each 
peer from 0 to 1,000 in a uniform distribution. Then, we set 
the value of C to be 0.5 and evaluate the effectiveness of our 
mechanism under a highly-skewed distribution of peer 
ranges (the α of Zipf distribution is 0.95). As shown in Fig. 6, 
our leave-rejoin-style protocol based on the random-walk 
can balance the system load in an environment with a non-
uniform distribution of peer ranges. 

 
Figure 4.  Sampling accuracy under different samples and network size. 

 

 
Figure 5.  Effectiveness of inter-overlay load balancing under different β. 

β 0.5 1 1.5 Non-balanced
Std. deviation 2050.160118 2372.735969 2555.17836 20440.89531
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Figure 6.  Intra-overlay load balancing in the non-uniform distribution of 

peer ranges. 

VI. CONCLUSION 
In this paper, we propose a self-adaptive resource index 

and discovery system, named SARIDS, for large scale 
distributed resource sharing systems with heterogeneous 
resources and different sharing policies. Our SARIDS not 
only supports the multi-attribute range queries but also 
balances the system load efficiently. In SARIDS, we propose 
a sampling-based mechanism to balance the load in the inter-
overlay, and introduce a leave-rejoin-style protocol based on 
a random-walk for the intra-overlay load balancing. By these 
mechanisms, the load of each peer is almost equal in the 
whole system even in the environment with a highly-skewed 
resource distribution. Our simulation results show that 
SARIDS supports multi-attribute range queries with well 
scalability and good load balance, and works well even in a 
non-uniform distribution of peer ranges. 
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