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Abstract—In a heterogeneous grid environment, there are two 
major factors which would severely affect overall system 
performance: speed heterogeneity and resource fragmentation. 
Moreover, the relative effect of these two factors changes with 
different workload and resource conditions. Processor 
allocation methods have to deal with this issue. However, most 
existing allocation methods focus on one of these two factors. 
This paper first analyzes the relative strength of different 
existing methods. Based on the analysis, we propose an 
intelligent processor allocation method which considers both 
the speed heterogeneity and resource fragmentation effects. 
Extensive simulation studies have been conducted to show that 
the proposed method can effectively deliver better 
performance under most resource and workload conditions. 

Keywords-grid; speed heterogeneity; resource fragmentation; 
processor allocation 

I.  INTRODUCTION 
Both job scheduling [12,15] and processor allocation [2,8] 

received a lot of research attention on earlier hypercube-
based parallel computers. Job scheduling determines the 
sequence of starting execution for the jobs waiting in the 
queue. On the other hand, processor allocation chooses an 
appropriate portion of the free processors in a system for 
allocating the first job in the queue. On a hypercube 
computer, allocating a job to different sub-cubes, although 
having little or no impact on that single job’s performance, 
might lead to diverse overall system performance. This is 
because different allocation decisions lead to different 
distributions of leftover processors and, in turn, different 
probabilities of successful allocation of subsequent jobs. The 
different probabilities of successful allocation usually comes 
from situations called resource fragmentation where no 
single sub-cube can accommodate a job while the total 
number of free processors in the system is equal to or larger 
than the requirement of the job. Therefore, good processor 
allocation methods, which can alleviate resource 
fragmentation, were helpful to system performance then. 

Later, when switch-based parallel computers and cluster-
based computing systems being widely used, job scheduling 
became a more important issue than processor allocation. 
This stemmed from the fact that on such systems allocation 
can be made with any portion of the system and with any 
number of processors, in contrast to the power-of-two 
restriction on earlier hypercube computers. Therefore, the 

resource fragmentation problem was eliminated and 
processor allocation seemed straightforward. Many research 
efforts [6,7,10,13,14] have been spent on the job scheduling 
issue on such switch-based parallel computers or cluster-
based computing systems.  

However, as grid [1,3] becomes a promising computing 
platform, the resource fragmentation problem is coming back 
again and processor allocation needs to deal with it. A 
computing grid usually consists of several parallel or cluster 
computers located at different sites. Communications 
between processors within the same site are usually achieved 
through high-speed networking devices, while messages 
passed across different sites have to go through a much 
slower wide-area network or Internet. A job allocated to a 
pool of processors within the same site can usually run faster 
than if it is assigned to processors across different sites. 
Therefore, the system tends to allocate a job within a single 
site to achieve high performance. This allocation policy 
could lead to resource fragmentation when no single site can 
accommodate a parallel job while the total number of free 
processors in all sites is enough for the job’s execution.  
Processor allocation methods can be carefully designed to 
reduce the probability of resource fragmentation and thus 
increase system performance.  

The best-fit processor allocation method has been 
demonstrated to be the best choice in a homogeneous grid in 
previous works [4,5]. For the best-fit method a particular site 
is chosen for a job on which the job will leave the least 
number of free processors if it is allocated to that site. 
Although the best-fit method can effectively alleviate the 
resource fragmentation problem, it cannot achieve good 
performance in a heterogeneous grid as shown in [9]. This is 
because in a heterogeneous grid resource fragmentation is 
not the sole factor that affects the overall system 
performance. Speed-heterogeneity is another important issue 
to consider. This paper tries to improve processor allocation 
methods in heterogeneous grid environments by considering 
both speed heterogeneity and resource fragmentation. A new 
processor allocation method was developed and extensive 
experiments under different workload conditions were 
conducted to evaluate the new method, together with other 
processor allocation methods for grid environments.  

It is believed that no single processor allocation method 
can always perform the best under all possible workload 
conditions. However, carful and extensive analysis of the 
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performances of different methods under various workload 
conditions could lead to better understanding of the root 
causes of the performance difference of the methods. The 
understanding could in turn help develop more effective 
processor allocation methods. 

The remainder of this paper is organized as follows. In 
section II, we analyze the potential strength of existing 
allocation methods in the first part and present the proposed 
intelligent allocation method in the second part. Section III 
present and discuss the result of our experiment. Conclusion 
of this paper is given in section IV. 

II. PROCESSOR ALLOCATION METHODS IN 
HETEROGENEOUS GRID 

In this section we begin by analyzing the pros and cons 
of existing processor allocation methods. The analysis then 
guides us to the development of a more effective processor 
allocation method. 

A. Analysis of Existing Processor Allocation Methods 
The best-fit method [4,5] allocates a job to the site which 

can yield the smallest resource fragmentation. This scheme 
works fine in a homogeneous grid. However, in a 
heterogeneous grid with computing speed differences among 
participating sites, the best-fit method may not perform well 
since it does not consider the speed heterogeneity [9]. In 
such an environment another processor allocation method 
called fastest-first has been proposed [9]. The fastest-first 
method focuses on speed heterogeneity in a heterogeneous 
grid and allocates a job to the fastest one among all the sites 
which can accommodate the job. Since fastest-first does not 
consider the difference between the amount of required 
processors and a site’s free capacity, it may result in larger 
fragmentation than best-fit. 

Besides, the relative performance of these two methods 
would largely depend on several factors such as computing 
speed heterogeneity, system loading, workload condition, 
and so on. Speed heterogeneity is measured by the variance 
of computing speeds of all participating sites in a grid. 
System loading can be simply observed and represented by 
the average length of the job waiting queue. Workload 
condition includes many attributes such as job arrival process, 
probability distribution of the numbers of required 
processors, execution time distribution, etc. Some of these 
parameters can be seen as random variables that dynamically 
change with time (e.g., system loading and workload 
condition). It is hard to have any allocation method that can 
surpass all other methods in all workload conditions. To this 
end, we focus on identifying the potential strength of each 
allocation method under different conditions and trying to 
combine all the advantages to form a new allocation method. 
We expect this new allocation method can achieve better 
performance in all workload conditions. 

Table I shows the relative strength analysis of best-fit and 
fastest-first under different levels of speed heterogeneity and 
system loading. Since best-fit does not consider speed 
difference among participating sites, it is more suitable to be 
used when speed heterogeneity is low. Additionally, best-fit 
were shown to yield less resource fragmentation and lead to 

higher resource utilization than first-fit method, which 
inspects the participating sites in a fixed order and allocates a 
job to the first site found to be able to accommodate the job 
[5]. Since fastest-first can be viewed as another form of first-
fit if the sites in a grid are arranged in the descending order 
of computing speed, best-fit can be expected to outperform 
fastest-first in reducing resource fragmentation and raising 
resource utilization. When system loading is high, resource 
utilization rate is crucial to the overall system performance. 
Therefore, best-fit has higher potential to perform better than 
fastest-first when system loading is high. It is then clear that 
in the case of low speed heterogeneity and high system 
loading, best-fit is a better choice. On the contrary, when 
resource heterogeneity is high and system loading is low 
(one can image the extreme case when the waiting queue 
length is 0), computing speed of each job has higher 
influence on the overall system performance than the 
resource fragmentation effect. Therefore, fastest-first can 
potentially perform better than best-fit in this case.  

We use a parentheses pair to represent speed 
heterogeneity and system loading. For example, (low, high) 
represents a situation that heterogeneity is low and loading is 
high. In table I, we only list the potentially best allocation 
method in the (low, high) and (high, low) situations. For the 
cases (low, low) and (high, high), it is hard to tell which one 
is better. Based on the above analysis, we begin to develop a 
new approach named intelligent allocation by considering 
both speed heterogeneity and resource fragmentation effects 
in the following section. 

TABLE I.  RELATIVE STRENGTH ANALYSIS OF DIFFERENT 
ALLOCATION METHODS 

 System Loading(High) System Loading(Low)
Speed Heterogeneity 

(high) undistinguishable fastest-first 

Speed Heterogeneity 
(low) best-fit undistinguishable 

B. Intelligent Allocation method 
This section presents the proposed intelligent allocation 

method. The main idea behind the method is to dynamically 
switch the allocation decision between best-fit and fastest-
first according to some measurable criteria. To clarify the 
following presentation, we first define several terms as 
follows. 

 Waiting Queue (WQ) – the queue which contains all 
jobs waiting for available resources in its arriving 
order. 

 Size of WQ (SizeWQ) – total number of jobs in the 
waiting queue. 

 Required number of processors (RNPi) – the 
required number of processors of job i. 

 Computing Speed (CSj) – the computing speed of 
site j. 

 Number of free Processors (NPj) – the number of 
free processors in site j. 

 Site selected by best-fit (Sbf(i)) – the site allocated for 
computing job i by the best-fit method 
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 Site selected by fastest-first (Sff(i)) – the site 
allocated for computing job i by the fastest-first 
method. 

 The first job in WQ (FJ) – the first job in WQ. 
 
An allocation event is triggered when a new job is 

submitted to the system or when a running job finishes its 
execution. For each allocation event the system tries to 
continuously allocate as many jobs as possible. It stops 
allocation only when there are no sites being able to 
accommodate the first job in the waiting queue or when the 
waiting queue becomes empty. The proposed intelligent 
method is designed to dynamically adjust the allocation 
method between best-fit and fastest-first whenever making 
allocation decision. 

Not every triggered allocation event leads to actual 
allocation results since there might be no enough resources 
or no jobs to allocate. Table II classifies all possible 
allocation events into four types of situations according to 
the status of waiting queue and the causes that trigger the 
events. The symbol “X” represents that there will be no 
actual allocation in that situation. Since we apply FCFS as 
the scheduling policy, SizeWQ > 0 implies that there is no site 
being able to accommodate the first job in waiting queue and 
that the newly submitted job must wait in the rear of waiting 
queue. For the case that SizeWQ = 0 and the triggering event 
is job finish, there are no jobs to allocate and therefore no 
actual allocation happens. Only situations (a) and (b) in 
Table II would lead to actual allocation results if there is any 
site which can accommodate the submitted job or the first 
job in waiting queue.  

In situation (a), SizeWQ = 0 implies the system loading is 
low so it comprises the (low, low) or (high, low) situation 
mentioned in the previous section. For the (high, low) case, 
we know that fastest-first is a potentially better choice. Thus 
we compare the computing speeds of the selected sites with 
different allocation methods to make the allocation decision. 
The allocation decision is determined by equation (1). 

In situation (b), which comprised the (low, high) or (high, 
high) case, we make the allocation decision by calculating 
which allocation method can allow subsequent jobs in 
waiting queue to consume more computing capacity. The 
computing capacity CC(i) consumed by job i is defined as 

CCbf(i) and CCff(i) are used to denote that job i is 
allocated by best-fit and fastest-first respectively. Thus the 
total computing capacity consumed by best-fit and fastest-
first are denoted by TCCbf  and TCCff respectively and 
defined as 

A value Score which represents the relative performance 
of best-fit and fastest-first is then calculated by 

The allocation decision for situation (b) is then 
determined by equation (6). 

The proposed intelligent allocation method is inspired by 
the adaptive allocation strategy presented in [9] which makes 
allocation decision based on a calculation of which policy 
can further accommodate more jobs for immediate execution. 
The improvement in the intelligent allocation method is to 
take the speed difference into account. The pseudo code of 
the intelligent allocation algorithm is shown in Fig. 1. 

TABLE II.  CLASSIFICATION OF ALLOCATION EVENTS 

 Submit Finish 
SizeWQ = 0 (a) X 
SizeWQ > 0 X (b) 

 

 
Figure 1.  Pseudo code of the proposed intelligent allocation algorithm 

III. EXPERIMENTS AND DISCUSSIONS 

A. Performance Metrics and Experimental Settings 
Our simulation studies were based on publicly 

downloadable workload traces [11]. We used the SDSC’s 

Algorithm IntelligentAllocator() 
{ 

calculate Sbf(FJ) and Sff(FJ) 
if Sbf(FJ) = Sff(FJ) 

choose the site suggested by both methods 
end if 
if SizeWQ = 0 and event = Submit 

if  
choose best-fit 

otherwise 
choose fastest-first 

end if 
end if 
calculate Score 
if Score > 1 

choose fastest-first 
otherwise 

choose best-fit 
end if 

} 
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SP2 workload logs on [11] as the basic input workload in the 
following simulations. Other workloads for simulating 
different workload conditions were derived from the basic 
workload. We used the average response time 
(AverageResponseTime) of all jobs as the performance 
metric to compare different allocation methods in all 
simulations. The AverageResponseTime is defined by 

We compared the proposed Intelligent (IT) method with 
the adaptive (AD) [9], best-fit (BF) [5], and fastest-first (FF) 
[9] methods. In order to evaluate the performance of the 
proposed method on various workload conditions, we 
conducted a series of experiments by varying three 
adjustable parameters listed in Table III. Speed heterogeneity 
(SH), represented by the variance of computing speeds of all 
sites, ranges from 0 to 0.2. For better understanding of the 
influence of SH, setting SH = 0.05, 0.01, 0.15, and 0.2 will 
averagely make the speed of the fastest site 1.8, 2.3, 3, and 
4.2 times faster than the speed of the slowest site 
respectively. SH=0 reduces to the homogeneous case. We 
randomly generate 10 sets of speed setting with respect to 
each SH value. All presented experimental results are the 
average value of these 10 sets. 

System loading (SL), ranging from 1 to 5, is simulated by 
multiplying the execution time of each job with the 
corresponding value (e.g., SL = 2 doubles the execution time 
of all jobs). The following uses the average length of waiting 
queue for homogeneous case (SH = 0) and the best-fit 
method as an example to show the effect of SL. The length 
of waiting queue will be 0.9, 7.8, 98, 2618, and 6717 as SL is 
set to 1, 2, 3, 4, and 5 respectively. 

Resource configuration (RC) defined by  

ranges from 100% to 25% with a step of 25% in the 
simulations. In the SDSC’s SP2 system the jobs in the log 
were put into five different queues. With RC = 100%, we use 
the maximum number of requested processors of all jobs in 
each queue as the size of each site, which were 8, 128, 128, 
128, 50 corresponding to queue 1 to queue 5 respectively. 
This resource setting was used for all simulations. For other 
RC settings, we simulated it by cutting a job that exceeds the 
specified percentage into several small jobs. For example, 
when RC = 25%, a job requesting 100 processors was cut 
into four small jobs, where three of them each requested 32 
processors (128 25%) and the last one asked for the 
remaining 4 processors. Table IV shows the characteristics 
of SDSC’s SP2 workload with respect to different RC 
settings. 

Note that only SL will change the amount of workload 
brought into the system while the other two parameters 

neither change the total computing capability of all resources 
nor change the average workload brought into the system. 

TABLE III.  PARAMETERS FOR EXPERIMENTS 

Resource Heterogeneity (SH) {0, 0.05, 0.1, 0.15, 0.2} 
System Loading (SL) {1, 2, 3, 4, 5} 
Resource Configuration (RC) {100%, 75%, 50%, 25%} 

TABLE IV.  CHARACTERISTIC OF SDSC’S SP2 WORKLOAD WITH 
RESPECT TO DIFFERENT RC SETTINGS 

 Number 
of jobs 

Maximum number of 
processors per job 

Average number of 
requested processors 

per job 
RC=100% 54041 128 12.29 
RC=75% 54305 96 12.23 
RC=50% 54534 64 12.18 
RC=25% 58890 32 11.28 

B. Experimental Results and discussion 
Fig. 2 shows the performance of each allocation methods 

in terms of AverageResponseTime. Each sub-figure shows 
the simulation result performed by varying the SH form 0 to 
0.2 with specific SL and RC setting. For simplicity and 
clarity, we only show the results of SL from 2 to 4. The 
results of SL = 1 and SL = 5 actually follow the same 
performance trend. 

From all the sub-figures we can observe that in the (low, 
high) case (see sub-figures (c), (f), (i), and (l) with SH = 0 
and 0.05) best-fit surpasses fastest-first. This observation is 
consistent with our analysis in Table I. The experimental 
results in sub-figures (a), (d), (g), and (j) also confirm 
another analysis in Table I, which indicates that fastest-first 
outperforms best-fit for case (high, low). Moreover, these 
results show that no single existing processor allocation 
method can always perform the best under all possible 
workload conditions.  

For the performance of the proposed intelligent method, 
we calculated how many times it is the best method or close 
to the best method in all 100 parameter settings (5  5  4 
= 100), as show in Table V. The performances of two 
allocation methods are said to be close to each other if the 
difference ratio of AverageResponseTime is less than 1%. 
The result shows that in 39 of 100 cases the proposed 
intelligent method performed better than all other methods 
and in other 37 of 100 cases it is close to the best allocation 
method. This result demonstrates that the proposed 
intelligent allocation method can dynamically adapt to 
various workload conditions and thus deliver better 
performance in average. 

Comparing the intelligent and the adaptive methods also 
finds that the intelligent method surpasses the adaptive 
method in 64 of 100 cases.  
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TABLE V.  THE NUMBER OF TIMES THE INTELLIGENT METHODS IS 
THE BEST OR CLOSE TO THE BEST ALOCATION METHOD 

 intelligent is the 
best method 

intelligent is close 
to the best method 

Summary 

RC=100% 6/25 10/25 16/25 
RC=75% 12/25 9/25 21/25 
RC=50% 12/25 5/25 17/25 
RC=25% 9/25 13/25 22/25 

Total 39/100 37/100 76/100 

IV. CONCLUSTIONS 
For heterogeneous grid environments, no existing 

processor allocation methods can consistently deliver the 
best performance under different resource and workload 
conditions. Moreover, some of these workload conditions 
change with user behavior that is hard to predict in advance 
when system administrator decides which allocation method 
to be used. Thus no performance guarantee could be made. 
This paper analyzes the relative strength of existing 

allocation methods and presents an intelligent processor 
allocation method, which improves system performance 
through considering both effects of the speed heterogeneity 
and resource fragmentation. Extensive simulation studies 
have been conducted to evaluate the proposed method. The 
experimental results show that the proposed intelligent 
method can dynamically adapt to the better allocation 
method between best-fit and fastest-first. Therefore, it can 
effectively deliver better performance under most workload 
and resource conditions.  

It is difficult to develop a processor allocation method 
which can always perform the best under all possible 
conditions. In addition to the proposed method, the extensive 
simulation analysis of different allocation methods under 
various conditions in this paper can serve as a good basis for 
better understanding of the root causes of the performance 
difference between the methods. The understanding could in 
turn help develop more effective processor allocation 
methods.
 

 
(a) SL=2, RC=100% 

 
(b) SL=3, RC=100% 

 
(c) SL=4, RC=100% 

 
(d) SL=2, RC=75% 

 
(e) SL=3, RC=75% 

 
(f) SL=4, RC=75% 

 
(g) SL=2, RC=50% 

 
(h) SL=3, RC=50% 

 
(i) SL=4, RC=50% 

 
(j) SL=2, RC=25% 

 
(k) SL=3, RC=25% 

 
(l) SL=4, RC=25% 

Figure 2.  AverageResponseTime of the best-fit, fastest-first, adaptive, and Intelligent methods with various SH, SL, and RC settings 
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