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Abstract—Data distribution management (DDM) aims to 
reduce the transmission of irrelevant data between High Level 
Architecture (HLA) compliant simulators by taking their 
interesting regions into account (i.e. region matching).  In a 
large-scale simulation, computation intensive region matching 
would have a direct impact on the simulation performance.  
To deal with the high computation cost of region matching, 
the whole process of region matching is offloaded to graphical 
processing units (GPUs) based on Computer Unified Device 
Architecture (CUDA).  Two approaches are proposed to 
perform region matching in parallel.  Several metrics, 
including different numbers of regions, different sizes of 
regions and different distributions of regions, are used in the 
experimental tests.  The experimental results indicate that the 
performance of region matching on a GPU can be improved 
more than one or two orders of magnitude in comparison with 
that on a CPU.   

Region Matching; CUDA; Data Distribution Management; 
High Level Architecture 

I.  INTRODUCTION 
Data distribution management (DDM) is one of run-time 

infrastructure (RTI) managements in the High Level 
Architecture [1].  DDM is designed to reduce unnecessary 
transmission between HLA compliant simulators (termed 
federates) during simulation and is essential to support the 
execution of a large-scale simulation.  According to the 
DDM services defined in the HLA interface specification, a 
federate can clearly states a set of data requirements 
(ranges), which is defined as a region in the HLA.  
Specifically, federates can publish data in the interesting 
regions (termed publication regions) over which they are 
willing to send data.  Similarly, federates can subscribe data 
in the interesting regions (termed subscription regions) from 
which they are willing to receive data.  Afterwards, RTI will 
deliver data from publication federates to the interested 
subscription federates only if the corresponding publication 
regions overlap the corresponding subscription regions.  The 
process of finding overlaps between publication and 
subscription regions is called region matching.   

When a significant number of regions are involved in a 
simulation, it takes a considerable amount of time to 
perform region matching.  Furthermore, performing 
computation intensive region matching affects the time to 
perform other managements in RTI, e.g. Object 
Management and Time Management.  Thus it could become 

the performance bottleneck of the whole RTI system.  
Several region matching approaches [2-9] have reduced the 
overhead of region matching under certain circumstances.  
However, the computation cost taken by region matching is 
still high for time-constrained applications and little 
research has been conducted on performing region matching 
in parallel.  To address this performance issue, we make 
region matching run in parallel and also offload the whole 
execution of region matching to graphical processing units 
(GPUs) based on Compute Unified Device Architecture 
(CUDA) [10].    CUDA is a general-purpose and widely-use 
parallel computing architecture.  It leverages GPUs in 
computing data-parallel and/or thread-parallel jobs.  Many 
applications have been successfully implemented with 
CUDA, such as [11-12].   

In this paper, we present two parallel region matching 
approaches running on GPUs.  One is parallel region-based 
approach; the other is parallel grid-based approach.  In the 
parallel region-based approach, each new or modified region 
(termed updated region) is assign to a CUDA thread in order 
to recalculate the overlapped information.  In the parallel 
grid-based approach, each updated region is assigned to a 
CUDA thread as well.  Each CUDA thread is responsible 
for mapping the updated region on to a set of grid cells 
according to the ranges of the region and the grid cell size.  
Then each CUDA thread only needs to compare the updated 
region with other regions in that set of grid cells.  In both 
approaches, the computing part is not only shifted to GPUs 
but also the region information (e.g. the ranges of regions) 
and the overlapped information (e.g. the overlapped regions) 
are maintained in the device memory for DDM.   

To evaluate the proposed approaches, we implemented 
these approaches using CUDA in our RTI system that 
follows IEEE 1516 standard [1].  Several metrics, including 
different numbers of regions, different sizes of regions and 
different distributions of regions, are used in the 
experimental tests.  The experimental results show that the 
speedup of region matching can reach one or two orders of 
magnitude.   

The organization of this paper is as follows.  In Section 
II, we briefly discuss the region matching approaches 
reported in the literature.  In Section III, parallel region 
matching approaches are presented.  In Section IV, the 
experimental results are presented in details.  We conclude 
our work in Section V.   
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II. RELATED WORK 

A. Region-based Approach 
In [13-14], publication regions are compared with all 

subscription regions to find overlaps between these regions.  
The idea is straightforward and the computation cost is 
quadratic with the number of regions.  In a large-spatial 
simulation, this approach takes much of time to compare 
unrelated regions (i.e. the regions are not overlapped).  On 
the other hand, it can achieve high performance when all 
regions are highly overlapped [3, 15].  In [6], a part of DDM 
computation is shifted to network processors.  The region 
matching and the multicast management of DDM are 
executed in a Myrinet network card.  As a result, there is a 
coarse-grained task parallelism between DDM and other 
managements of the RTI system.   

B. Grid-based Approach 
In [11-13], the authors proposed a method to reduce the 

region matching cost of the region-based approach.  This 
approach partitions an N-dimensional space into grid cells 
and maps all regions on to these grid cells.  Then each 
region is only compared with the other regions that mapped 
on to the same grid cells.  However, an inappropriate grid 
cell size results in poor performance.  When a grid cell size 
is large, unnecessary computation overhead is introduced.  
On the other hand, when a grid cell size is small, this could 
lead to redundant computations.  To solve the problem, a 
cost model was proposed in [7] to estimate the region 
matching cost and then the grid cell size can be dynamically 
adjusted based on the matching cost model.     

C. Sort-based Approach 
Several region matching approaches using sorting 

technique were proposed in [3, 9, 16].  In [3], the end points 
in each dimension of all regions are first sorted and recorded 
in a sorted list.  The sorted list is then scanned to get the 
overlapped information in each dimension.  This approach is 
not designed for the simulations where regions will be 
modified at run-time.  For this reason, a dynamic sort-based 
algorithm for a large-spatial simulation is presented in [16].  
When a region is updated, the dynamic sort-based algorithm 
shifts the end points of this region from old positions to new 
positions and then scans the sorted end points within a 
dynamic range.  In [9], the authors proposed a P-Pruning 
algorithm for DDM.  The principle of this approach is 
similar to the work in [3, 16].   

D. Partition-based Approach 
This approach first splits an N-dimensional space into 

fixed-size partitions and then adjusts the partition space as 
needed.  In [17], the authors proposed a region matching 
approach that clusters an N-dimensional space into varied-
size partitions based on region access patterns as well as the 
location of simulation object.  In theory, the execution of 
region matching can be evenly distributed to different hosts.  
A simple partition-based approach using quad-tree structure 
in helping dynamic partition was proposed in [8].    

III. PARALLEL REGION MATCHING APPROACHES 

A. Preliminary 
To run CUDA programs, the input data is copied from 

the host to the device (i.e. any CUDA-Enabled product), 
then the GPU execute CUDA kernels and finally the output 
data is copied back to the host.  In order to avoid too much 
data copied between the host and the device, the whole 
execution of region matching is offloaded to GPUs and 
additionally the data related to performing region matching 
is maintained in the device, including all region information, 
all overlapped information etc.  Fig 1. illustrates the 
offloading model of region matching between the host and 
the device.  When regions are added or modified (i.e. 
updated regions) by federates, only the information of 
updated regions is copied from the host to the device.  Then, 
the Region Matching procedure is executed in the device so 
as to update the overlapped information related to these 
updated regions.  After finishing the procedure, the updated 
overlapped information is copied back to the host.     

Based on the offloading model, we consider the qualities 
of different region matching approaches.  Among the region 
matching approaches reported in the literature, the region-
based and the grid-based approaches are efficiently feasible 
to be implemented in the CUDA programming model.  For 
the region-based approach, each region simply compares all 
regions to find overlaps for the region.  The comparison 
operations for each region can be executed in parallel.  For 
the grid-based approach, the operation of mapping regions 
can be executed in parallel as long as the region information 
can be recorded in the grid cells concurrently.  Atomic 
instructions provided in the CUDA programming model are 
used to guarantee it.  After the operation of mapping regions, 
the operation of matching regions is similar to that of the 
region-based approach.  For the sort-based approaches, it is 
essential that the ranges of regions are sorted at each 
dimension.  It is possible to parallel the sorting operation.  
However, at run-time, the operation of shifting (moving) 
data in a list greatly affects the performance of region 
matching.  The reason is that if many CUDA threads have to 
move a set of data in a list, only one CUDA thread can carry 
out the operation.  For the partition-based approach, 
executing recursive functions or processing tree data 
structure are required to support the dynamic partition 
mechanism.  In fact, CUDA is inappropriate to run the 
applications having these two operations.   

 
Figure 1.  The offloading model of region matching. 
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B. Parallel Region-based Approach 
 This approach consists of four phases to perform region 

matching.  The four phases are described as follows: 
Phase 1: The information of updated publication and 

subscription regions is copied to the global memory of the 
device.   

Phase 2: The overlapped information related to the 
updated regions is set as non-overlapped.  Each updated 
region is assigned one CUDA thread.  For each CUDA 
thread, it is necessary to reset the overlapped information of 
the assigned updated region and also to clear those regions 
which the assigned region overlapped before as non-
overlapped.   

Phase 3: Similar to Phase 2, a CUDA thread is assigned 
to process an updated region.  Each CUDA thread will 
sequentially read all region information and compare the 
assigned region with all regions to find overlaps while all 
CUDA threads run in parallel as shown in Fig. 2.  Fig. 2 
shows how each CUDA thread loads and compares the 
region information.  In the CUDA programming model, a 
thread block contains a set of threads.  The thread block size 
in Fig. 2 is M and CUDA Threads 1, 2, …, and M are within 
the same block.  The details of this phase are described in 
the following.   

First, every CUDA thread within the same block loads 
the region information of some region from the global 
memory to the shared memory.  As shown in Fig. 2, CUDA 
Thread 1 loads the first region r1 to the shared memory, 
CUDA Thread 2 loads the second region r2 to the shared 
memory, and so forth.  In the CUDA model, every CUDA 
thread within the same block can share region information 
via the shared memory and access to the shared memory is 
far faster than access to the global memory.  In this way, the 
number of loading region information is reduced to M (M2 
originally) and the region information is reused for M times.  
Only the information about M regions is loaded into the 
shared memory at a time because of the very limited size of 
the shared memory.   

After the loading, every CUDA thread within the same 
block sequentially carries out the comparison operation for 
the assigned region and M regions that have been loaded 
into the shared memory.  The principle of the comparison 
operation is that the lower and upper end points of a region 
are compared with those of the other region at each 
dimension.  If two regions are overlapped with each other, 
the overlapped information of these two regions is updated.  
Atomic instructions provided in the CUDA programming 
model are used to make sure each CUDA thread will write 
to different positions of the overlapped information in case 
of the concurrent access of the same overlapped information.   

When every CUDA threads within the same block 
complete the comparisons for M regions, the information of 
next M regions will be loaded into the shared memory in 
order to find overlaps with these M regions.  The process 
repeats until every CUDA thread completes the comparison 
operations for all regions.   

Phase 4: The updated overlapped information is copied 
back from the global memory of the device to the memory 
of the host.   

 
Figure 2.  A schematic figure of the parallel region-based approach. 

C. Parallel Grid-based Approach 
Initially, an N-dimensional space is partitioned into a set 

of grid cells and each grid cell has the equal size.  Consider 
the performance of region matching, these grid cells are 
created and maintained in the device.  This approach 
consists of five phases to perform region matching.  The 
five phases are described as follows: 

Phase 1: The information of updated publication and 
subscription regions is copied into the global memory of 
device. 

Phase 2:  This phase is the same as Phase 2 described in 
the parallel region-based approach.   

Phase 3:  Each updated region is assigned one CUDA 
thread.  The updated publication (subscription) region is 
mapped on to a set of grid cells, denoted as C, according to 
the ranges of this publication (subscription) region.  The 
identity of the updated publication (subscription) region is 
recorded in the publication (subscription) list of each grid 
cell in C.  Atomic instructions are used to make sure each 
CUDA thread will write to different positions of the 
publication or subscription list in case of the concurrent 
access of the same list.  Fig. 3 shows an illustration of 
mapping regions.  In Fig. 3, PubList(ci) and SubList(ci) 
represents the publication and subscription lists of grid cell 
ci, respectively.  For example, at grid cell c14, publication 
region p2 and subscription region s2 are both mapped on to 
grid cell c14.  Note that if an updated region is a new one (i.e. 
not mapped before), the region is simply mapped on to grid 
cells.  Otherwise, the region is unmapped before mapping it.   

Phase 4: Each updated publication (subscription) region 
is assign to one CUDA thread.  All CUDA threads run in 
parallel.  Each CUDA thread will compare the assigned 
publication (subscription) region with the regions contained 
in the subscription (publication) lists of C.  Fig 4. shows an 
example of the execution.  In Fig. 4, p2 and s1 are assigned 
to CUDA Thread 1 and 2, respectively.  CUDA Thread 1 
will find the regions in the subscription lists of grid cell 
c8,c9,c13 and c14, to carry out comparison operations.  CUDA 
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Thread 2 will find the regions in the publication lists of grid 
cell c12,c13,c17 and c18, to carry out comparison operations.  
That is, p2 is compared with s1 and s2 and at the same time s1 
is compared with p2. 

Phase 5: the overlapped information is copied back from 
the global memory of the device to the memory of the host. 

 
Figure 3.  Four regions mapped on to grid cells and the publication and 

subscription lists of these grid cells. 

 
Figure 4.  A schematic figure of the parallel grid-based approach 

IV. EXPERIMENT 
In the section, we evaluate the performance of the 

proposed region matching approaches running on GPUs.  
We use one machine with one CUDA-enabled product 
(Geforce 9600 GT) as our experimental platform.  This 
machine has one quad-core processor 2.4 GHz CPU, 6 
Gbytes DRAM and running Linux operating system with 
kernel version 2.6.28.  Geforce 9600 GT has 8 CUDA 
processors and each CUDA processors contains eight 
CUDA cores.  In this paper, each CUDA thread block 
contains 256 CUDA threads.   

Two scenarios were simulated to evaluate the 
performance of the parallel region-based (REGION) and the 
parallel grid-based (GRID) approaches on the quad-core 
processor and the Geforce 9600 GT.  Each simulated 
scenario has at most 32768 simulation regions that were 
distributed to a 10000×10000 2-dimensional battlefield.  
The numbers of publication and subscription regions are the 
same.  In this paper we only show the simulation cases in 2-

dimensional space.  Our approaches also can be extended to 
the simulation in an N-dimensional space.  In each simulated 
scenario, the sizes of the publication and the subscription 
regions of a simulation object are the same.  For each time 
step, the position of each simulated region is randomly 
moved toward North, South, East or West direction.  During 
the simulation, the moving distance is set to half the region 
size.  For all simulation cases, the time of region matching is 
averaged over a period of 30 time steps.   

A. Scenario I: Uniform Distribution of Regions 
In this scenario, all simulated regions are uniformly 

(randomly) distributed to a 2-dimensional battlefield.  The 
number of regions simulated is from 2048 to 32768.  The 
region sizes simulated are RS=10×10 (small region size) and 
RS=100×100 (large region size).  The grid cell size of the 
parallel grid-based approach is set to 100×100 for each test 
case.  Fig. 5 and 6 show the speedup of region matching 
under RS=10×10 and RS=100×100, respectively.  In each 
figure, the x-axis represents the number of regions simulated 
and the y-axis represents the speedup compared with the 
region matching time taken by the CPU.  From Fig. 5 and 6, 
we have the following remark.   

Remark 1: For REGION(9600 GT), the performance is 
up to 200× more than that of a CPU (i.e. the quad-core 
processor).  For GRID(9600 GT), the performance is up to 
150× more than that of a CPU.  More the number of 
simulated regions increases, higher the speedup can be 
reached.  The one reason is that the time to access the global 
memory of the device can be covered by arranging other 
CUDA thread blocks to use CUDA processor if the number 
of CUDA thread block is sufficiently large.  The other 
reason is that shared memory is exploited to make CUDA 
threads access data efficiently.  The results indicate that the 
proposed parallel region matching approaches can perform 
region matching for many regions effectively.   

Fig. 7 and 8 show the region matching time for the 
proposed approaches under RS=10×10 and RS=100×100, 
respectively.  In each figure, the x-axis represents the 
number of regions simulated and the y-axis represents the 
time to perform the parallel region matching approaches on 
the GPU.  From Fig. 7 and 8, we have the following remarks.   

Remark 2: We can see that the performance of the 
parallel grid-based approach is better than that of the 
parallel region-based approach.  That is because the parallel 
region-based approach compares regions with many 
unrelated regions.  It proves that, in this scenario, the 
parallel grid-based approach can reduce the unnecessary 
comparisons between unrelated regions and also execute in 
parallel effectively.   

Remark 3: The performance of the parallel grid-based 
approach is sensitive to region size.  The reason is that a 
large region is mapped on to more grid cells in comparison 
to a small region.   As a result, atomic instructions are more 
often used (in Phase 3 of the parallel grid-based approach) 
to guarantee the correctness of the concurrent access of the 
publication and/or subscription lists.     
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Figure 5.  The speedup of region matching under RS=10×10. 

 
Figure 6.  The speedup of region matching under RS=100×100. 

 
Figure 7.  The region matching time under RS=10×10. 

 
Figure 8.  The region matching time under RS=100x100. 

B. Scenario II: Non-Uniform Distribution of Regions 
In this scenario, some of regions are distributed around 

three crowded areas and other regions are uniformly 
distributed to this space.  Three crowded areas are located 
around coordinates (1000, 1000), (5000, 5000) and (9000, 
9000).  The number of regions simulated is from 2048 to 

32768.  The region sizes simulated are RS=10×10 and 
RS=100×100.  For each simulation case, 20 percentages of 
all regions are around the three crowded areas.  The 
numbers of regions around three crowded areas are nearly 
the same.  The grid cell size of the parallel grid-based 
approach is set to 100×100 for each test case.  Fig. 9 and 10 
show the speedup of the region matching approaches under 
RS=10×10 and RS=100×100, respectively.  In each figure, 
the x-axis represents the number of regions simulated and 
the y-axis represents the speedup compared with the region 
matching time taken by a CPU.  From Fig. 9 and 10, we 
have the following remark.   

Remark 4: In Fig. 9 and 10, the performance of the 
region-based approach achieves about 25× whereas the 
performance of the parallel grid-based approach is about 5×.  
In this scenario, the speedup results are not good as those 
shown in Scenario I.  The main reason is that many CUDA 
threads would access the same overlapped information of 
the regions around the crowded area.  This required atomic 
instructions to make sure the correctness of the concurrent 
access of the overlapped information.  Using atomic 
instructions is harmful for the performance of both 
approaches.  However, the speedup of the parallel region-
based approach still achieves substantial performance 
improvement on 9600 GT.   

Fig. 11 and 12 show the region matching time of 
REGION (9600 GT) and HYBRID (9600 GT) under 
RS=10×10 and RS=100×100, respectively.  In each figure, 
the x-axis represents the number of regions simulated and 
the y-axis represents the time to perform region matching 
approaches running on the GPU.  From Fig. 11 and 12, we 
have the following remark.   

Remark 5: We can observe the performance of the 
parallel region-based approach is better than that of the 
parallel grid-based approach.  For the parallel region-based 
approach, since some of regions are around the crowded 
areas, the occurrences of comparing unrelated regions are 
reduced, that is, the efficiency of comparing region is 
improved.  However, for the parallel grid-based approach, it 
takes more time to map regions at the crowded areas and 
therefore it uses atomic instructions more as described in 
Remark 3.   

 
Figure 9.  The speedup of region matching for three crowded areas under 

RS=10×10. 
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Figure 10.  The speedup of region matching for three crowded areas under 

RS=100×100. 

 
Figure 11.  The region matching time for three crowded areas under 

RS=10×10. 

 
Figure 12.  The region matching time for three crowded areas under 

RS=100×100. 

V. CONCLUSION 
DDM services in the HLA RTI provide a good 

mechanism to reduce unnecessary transmission and 
irrelevant reception over the network.  To ensure only 
necessary data are transmitted, region matching for 
publication and subscription regions is indispensable.  In 
this paper we focus on region matching of DDM and have 
proposed two region matching approaches with fine-grained 
data parallelism.  We implemented both approaches in our 
RTI system.  Two scenarios, uniform and non-uniform 
distributions of regions, are considered to evaluate the 
performance of the proposed approaches.  The results 
indicate that the proposed region matching approaches 
based on CUDA can greatly reduce the time to perform 
region matching.  Further performance analysis of the 
proposed approaches will be showed in the near future. 
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