
C.H. Hsu and V. Malyshkin (Eds.): MTPP 2010, LNCS 6083, pp. 59–68, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Parallelization of Motion JPEG Decoder
on TILE64 Many-Core Platform

Xuan-Yi Lin1, Chung-Yu Huang1, Pei-Man Yang2, Tai-Wen Lung1,
Shau-Yin Tseng2, and Yeh-Ching Chung1

1 Department of Computer Science, National Tsing Hua University
Hsinchu, Taiwan 30013, R.O.C.

{xylin,ychung}@cs.nthu.edu.tw
2 Information & Communications Research Laboratories

Industrial Technology Research Institute
Hsinchu, Taiwan 310, R.O.C.

{peimanyang,tseng}@itri.org.tw

Abstract. The ubiquity of many-core architectures poses challenges to software
developers to make scalable software. To parallelize data-intensive applications
on a many-core platform, one has to consider both hardware architecture and
software characteristics when writing parallel codes. In this paper, we take
Motion JPEG decoder as an example data-intensive application and take
TILE64 as an example many-core platform. We parallelize the decoder with
two different strategies and observe their impact on program performance and
scalability. We design two algorithms, READ and WRITE, which differ in the
direction of data movement between processor cores. Experimental results
show that READ algorithm outperforms WRITE algorithm by 217% when
decoding 1080P video on the TILE64 platform. It indicates that the
arrangement of data flows in a data-intensive parallel program can have huge
impact on program performance and scalability on a many-core platform.

Keywords: many-core architecture, parallel processing, Motion JPEG.

1 Introduction

With rapid industry development of many-core architectures, mass-produced
processors now contain tens to hundreds of cores in a single chip. While the trend of
processor making is to increase core count rather than processor frequency, software
developers can no longer rely on the so called "free lunch" [1] that automatically
makes their program run faster on processors clocked at higher frequencies.

For application developers, in order to make the performance of their programs
scale well with the number of available cores on many-core architectures, existing
software needs to be modified or re-written from ground up. The effort required to
adapt existing software to a new many-core processor is directly correlated with the
programming language and programming model used. Well understanding of both
hardware architecture and software characteristics is also crucial to build scalable
software on a many-core platform.

60 X.-Y. Lin et al.

When in the course of parallelize a data-intensive application for a many-core
platform, data flow should be considered with hardware architecture in mind.
Arrangement of the flow of workloads among processors will have direct impact on
the performance and scalability of the adapted program.

In this paper, we explore the method of parallelizing a data-intensive application
on a many-core system and observe its impact on program performance and
scalability. We take Motion JPEG decoder as an example data-intensive application
and TILE64 as an example many-core system. We designed two shared-memory
based algorithms, WRITE and READ, to parallelize a Motion JPEG decoder on the
TILE64 platform. WRITE is a straightforward algorithm and is easier to implement
compared to READ. We apply both WRITE and READ algorithms to an open-source
Motion JPEG decoder to evaluate their performance. Benchmark result shows that
although the READ algorithm requires extra effort and time to implement, it scales far
better than the WRITE algorithm. The decoder runs as much as 3.17 times faster when
adopting the READ algorithm instead of the WRITE algorithm.

This paper is organized as follows. Section 2 provides background knowledge for
TILE64 processor and Motion JPEG files. The WRITE and READ algorithms are
introduced in Section 3 and benchmarked in Section 4. Conclusions of this work are
given in Section 5.

2 Preliminaries

2.1 The TILE64 Processor

TILE64 is a general purpose many-core processor made by Tilera [2]. It has an array
of 64 identical processor cores (each referred to as a tile) interconnected via on-chip
two-dimensional mesh networks [tile ref]. TILE64 is fully programmable using
standard ANSI C under Linux environment. In addition to standard Linux C, TILE64
can also be programmed using proprietary API called iLib. The iLib library supports
two communication mechanisms, shared memory and streaming, for processes
running on different cores to communicate. Software developer can use both
communication primitives in a program.

Fig. 1 illustrates the architecture overview of a TILE64 processor. There are four
memory controllers located at the four corners of processor array. These on-chip
memory controllers provide access to an external memory system that is accessible by
all tiles. The interface to the memory networks provides access to other tiles and to
the DDR2 memory.

To use shared memory mechanisms in a program, the process which is sharing
information can call malloc_shard() function of the iLib to get an address pointing to
a block of shared memory. Then the sharing process notifies other processes the
location of shared memory by sending them the pointer to shared memory.

2.2 Motion JPEG

A Motion JPEG (M-JPEG) file is basically a large file containing a sequence of
independent JPEG frames. Fig. 2 shows structure of a typical M-JPEG file. There is

 Parallelization of Motion JPEG Decoder on TILE64 Many-core Platform 61

I/O
s and P

eripherals

I/O
s and P

eripherals

Fig. 1. TILE64 processor architecture overview

no data dependence between frames within an M-JPEG file, thus it is inherently
parallel at inter-frame level. The inherent parallelism of an M-JPEG file makes it easy
to parallelize an M-JPEG decoder by instructing processors to decode different frames
concurrently.

Data size of JPEG frames in an M-JPEG file will vary based on the complexity of
individual frames. Decoded YUV frames, however, are equally sized. Fig. 3
illustrates decoding of an M-JPEG file. Because JPEG has high compression rate, size
of decoded YUV data is significantly larger than original JPEG data.

Fig. 2. A Motion JPEG file

Fig. 3. Decoding of an M-JPEG file into YUV video sequence

62 X.-Y. Lin et al.

3 Parallelization of Motion JPEG Decoder

We design two algorithms, WRITE and READ, to parallelize Motion JPEG decoder on
the TILE64 platform. Both algorithms are shared memory based. JPEG data frames
and YUV data frames are moved between tiles using shared-memory mechanism.

In the parallel M-JPEG decoder, there are two process roles, master process and
worker process. Master process is responsible for input and output operations. Worker
processes are responsible for decoding individual JPEG frames.

Fig. 4 shows a particular instance of processor configuration for both algorithms.
In Fig. 4, 32 tiles are working together to decode a M-JPEG file, among the 32 tiles,
tile (0, 0) acts as master and other 31 tiles serve as workers.

Master

Worker

Inactive

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,4) (0,5) (0,6) (0,7)

(1,4) (1,5) (1,6) (1,7)

(2,4) (2,5) (2,6) (2,7)

(3,4) (3,5) (3,6) (3,7)

(4,0) (4,1) (4,2) (4,3)

(5,0) (5,1) (5,2) (5,3)

(6,0) (6,1) (6,2) (6,3)

(7,0) (7,1) (7,2) (7,3)

(4,4) (4,5) (4,6) (4,7)

(5,4) (5,5) (5,6) (5,7)

(6,4) (6,5) (6,6) (6,7)

(7,4) (7,5) (7,6) (7,7)

Fig. 4. Decoder configuration

3.1 The WRITE Algorithm

Following is the program pseudo code of WRITE algorithm for master and worker
process. The WRITE is a straightforward algorithm. Illustration of the algorithm is
given in Fig. 5.

Master process:

1. Initialize shared memory space, JPEG_buffer[] and YUV_buffer[].
2. Broadcast address pointers of JPEG_buffer[] and YUV_buffer[] to all worker

processes.
3. Open and parse input M-JPEG file, mjpegFile.
4. output_frame_num = 0;
5. while(frames_to_decode != 0)
6. {
7. if (JPEG_buffer[] is not full)
8. Fetch next JPEG frame in mjpegFile and enqueue it to JPEG_buffer[].
9. if (YUV_buffer[] is not empty)
10. {
11. if (YUV_frame(output_frame_num + 1) is available and valid)

 Parallelization of Motion JPEG Decoder on TILE64 Many-core Platform 63

12. {
13. Output(YUV_frame(output_frame_num + 1));
14. output_frame_num++;
15. frames_to_decode – –;
16. }
17. }
18. }

Worker process:

1. Receive address pointers of JPEG_buffer[] and YUV_buffer[] from master
process.

2. while(frames_to_decode != 0)
3. {
4. if (JPEG_buffer[] is not empty)
5. {
6. Move first JPEG frame in JPEG_buffer[] to private JPEG buffer.
7. private_YUV_buffer = DecodeJPEGframe (private_jpeg_buffer);
8. Copy private_YUV_buffer to corresponding position in YUV_buffer[].
9. Set the validity of the YUV frame to valid.
10. }
11. }

Fig. 5. Illustration of the WRITE algorithm

3.2 The READ Algorithm

In the READ algorithm, every worker process allocates YUV buffer as shared, so the
YUV buffer is accessible by master process. Illustration of the algorithm is given in
Fig. 6.

Master process:

1. Initialize shared memory space, JPEG_buffer[].
2. Broadcast address pointers of JPEG_buffer[] to all worker processes.

64 X.-Y. Lin et al.

3. Receive address pointers of shared_YUV_buffer from all worker processes.
4. Open and parse input M-JPEG file, mjpegFile.
5. output_frame_num = 0;
6. while(frames_to_decode != 0)
7. {
8. if (JPEG_buffer[] is not full)
9. Fetch next JPEG frame in mjpegFile and enqueue it to JPEG_buffer[].
10. if (received notification from worker process)
11. {
12. Fetch YUV_frame(output_frame_num + 1) from the worker process.
13. Output(YUV_frame(output_frame_num + 1));
14. output_frame_num++;
15. frames_to_decode – –;
16. }
17. }

Worker process:

1. Receive address pointers of JPEG_buffer[] and YUV_buffer[] from master
process.

2. Initialize shared memory space, shared_YUV_buffer.
3. Send address pointer of shared_YUV_buffer to master process.
4. while(frames_to_decode != 0)
5. {
6. if (JPEG_buffer[] is not empty)
7. {
8. Move first JPEG frame in JPEG_buffer[] to private JPEG buffer.
9. shared_YUV_buffer = DecodeJPEGframe (private_jpeg_buffer);
10. Notify master process the availability of private_YUV_buffer.
11. }
12. }

Fig. 6. Illustration of the READ algorithm

 Parallelization of Motion JPEG Decoder on TILE64 Many-core Platform 65

4 Experimental Results

We apply WRITE and READ algorithms to an open source Motion JPEG decoder,
MJPEG Tools [3] and run the parallelized M-JPEG decoder on TILE64 platform to
observe performance and scalability of the decoder. We use the parallel decoder to
decode four videos of different resolution. Table 1 lists the test files used.

Table 1. Motion JPEG test files used

 deadline city stockholm factory
Format CIF 4CIF 720P 1080P

Resolution 352x288 704x576 1280x720 1920x1088
Frames 1374 600 604 1339

4.1 Performance of WRITE

Fig. 7 shows speedup of parallel M-JPEG decoder with WRITE algorithm using
different number of tiles. Number of tiles used shown in the figure, for example 1+15,
represents one master process and 15 worker processes.

From the results we can see that the performance of WRITE algorithm does not
scale beyond 1+15 tiles. To better understand the scalability problem, we also record
throughput information of individual tiles and present it visually in Fig. 8 and Fig. 9.
Fig. 8 and Fig. 9 show per-tile decoding throughput with master process running on
tile (0, 0) and tile (3, 3) respectively. From Fig 8 and Fig. 9 we can see that worker
processes with physical location closer to master process have higher performance.
That is because it takes a lot more time for further tiles to write data to the master tile.

0

2

4

6

8

10

12

14

1+1 1+2 1+4 1+8 1+15 1+31 1+47 1+55

Sp
ee

du
p

Number of tiles used

Performance of WRITE algorithm

1080P

720P

4CIF

CIF

Fig. 7. Decoding performance of parallel M-JPEG decoder using WRITE algorithm

66 X.-Y. Lin et al.

Row 0
Row 1

Row 2
Row 3

Row 4
Row 5

Row 6

0

200

400

600

800

1000

1200

1400

Col 0
Col 1

Col 2
Col 3

Col 4
Col 5

Col 6
Col 7

Th
ro

ug
hp

ut
 (K

iB
/s

)

Fig. 8. WRITE algorithm per-tile decoding throughput under 1080P workload

Row0
Row1

Row2
Row3

Row4
Row5

Row6

0

200

400

600

800

1000

1200

Col0
Col1

Col2
Col3

Col4
Col5

Col6
Col7

Th
ro

ug
hp

ut
 (K

iB
/s

)

Fig. 9. WRITE algorithm per-tile decoding throughput under 1080P workload with master
process running on tile (3,3)

4.2 Performance of READ

Performance of READ algorithm is shown in Fig. 10 and Fig. 11. It shows that READ
algorithm scales beyond 1+31 tiles when decoding a 1080P video file. Throughput
data shows that latency of read operation is barely affected by distance between tiles.

 Parallelization of Motion JPEG Decoder on TILE64 Many-core Platform 67

0

5

10

15

20

25

30

35

40

1+1 1+2 1+4 1+8 1+15 1+31 1+47 1+55

Sp
ee

du
p

Number of tiles used

Performance of READ algorithm

1080P

720P

4CIF

CIF

Fig. 10. Decoding performance of parallel M-JPEG decoder using READ algorithm

Row0
Row1

Row2

Row3

Row4

Row5

Row6

0

200

400

600

800

1000

1200

1400

1600

1800

Col0
Col1

Col2
Col3

Col4
Col5

Col6
Col7

Th
ro

ug
hp

ut
 (K

iB
/s

)

Fig. 11. READ algorithm per-tile decoding throughput under 1080P workload

4.3 Performance Advantage of READ over WRITE

Fig. 12 shows the performance advantage of READ algorithm over WRITE algorithm.
The greatest performance gain can be observed at the configuration of using 1+55
tiles to decode a 1080P video file. It has a performance improvement of 217%. It
means that on the TILE64 platform, M-JPEG decoder using READ algorithm runs
3.17 times faster than using WRITE algorithm when decoding a 1080P video file.

68 X.-Y. Lin et al.

0%

50%

100%

150%

200%

250%

1+1 1+2 1+4 1+8 1+15 1+31 1+47 1+55

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Number of tiles used

1080P

720P

4CIF

CIF

Fig. 12. Performance improvement of READ algorithm over WRITE algorithm

5 Conclusion

In this paper, we conduct parallelization of Motion JPEG decoder on the TILE64
platform. We want to know how parallelization strategies can impact scalability and
performance on data-intensive applications. We designed two share-memory based
algorithms, WRITE and READ to parallelize a Motion JPEG decoder. From the
experimental results we have the following remarks:

Remark 1. Parallelization strategy with consideration of both hardware and software
characteristics is necessary in building high performance and scalable software on
many-core platforms.

Remark 2. On TILE64, latency of write operations to shared memory addresses
increases with the distance between sharing tile and writing tile. Read operations are
not affected by such overhead.

Remark 3. Although the READ algorithm requires extra implementation overhead, it
scales far better than that of the WRITE algorithm.

References

1. Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software.
Dr. Dobb’s Journal 30(3) (2005)

2. Tilera Corporation, http://www.tilera.com
3. MJPEG Tools, http://mjpeg.sourceforge.net

