
C.H. Hsu and V. Malyshkin (Eds.): MTPP 2010, LNCS 6083, pp. 51–58, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A VLIW-Based Post Compilation Framework for
Multimedia Embedded DSPs with Hardware Specific

Optimizations

Meng-Hsuan Cheng, Kenn Slagter, Tai-Wen Lung, and Yeh-Ching Chung

System Software Laboratory
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan 30013, R.O.C

{luse,kennslagter,lungkaiser}@sslab.cs.nthu.edu.tw,
ychung@cs.nthu.edu.tw

Abstract. In high performance and low power multimedia embedded system
design, VLIW-based embedded DSPs compilers that exploit ILP have become
popular and play an important role today. For this reason, we need optimizing
embedded DSP compilers that can both generate capable and efficient code in
terms of performance, power, size, and productivity. In this paper, we show a
post-compilation framework that can further optimize programs that have
already been compiled and optimized by another compiler, by using runtime
information and exploiting hardware specific features of DSPs. Finally, we show
in our simulation results, that even programs compiled at the best optimization
level, can obtain significant improvement through the use of this framework.

Keywords: VLIW Compiler optimization, DSP Compiler optimization, Post
optimization.

1 Introduction

In multimedia embedded system design, it is desirable for the system to be high in
performance and low in cost. To achieve both these goals, VLIW-based DSPs use some
hardware specific features, such as zero-overhead loops, vector and pixel sub-words
operations, heterogeneous processing units, and compiler-supported branch prediction.
These hardware specific features are used to increase computing efficiency instead of
using dynamic scheduling logic that would increase hardware complexity and cost. In
traditional VLIW-based compiler design, the most important optimization technique is
done by using ILP (Instruction-Level Parallelism). For the inquisitive an example of
this technique in use can be seen in the IMPACT VLIW compiler framework [4].
However, since there is a tendency for the number of instructions in a basic block of a
multimedia program to be small, ILP in a multimedia program that has specialized
algorithms and program structure tends to be rather limited. Due to this problem, it is
important that a VLIW-based DSP compiler can capitalize on hardware specific
features, when it is optimizing an application program. Since hardware specific features

52 M.-H. Cheng et al.

tend to be application-friendly not compiler-friendly, most VLIW-based DSP
compilers cannot take the advantage of those specialized features effectively.
Moreover, in VLIW-based DSPs, the connectivity between computation units and
storage units is restricted in order to minimize hardware and interconnection cost. The
partial connection of registers and functional units is also an obstacle for VLIW-based
DSP compilers to select and schedule instructions effectively. Without an efficient
VLIW-based DSP compiler, designers of high performance and low cost multimedia
embedded systems are forced to use fully handwritten assembly codes in order to get
better performance and code density. However, handwriting assembly code is not an
acceptable solution as it tends to result in long development time and it lacks
portability.

In general, off the shelf VLIW-based DSP compilers cannot use hardware specific
features effectively due to design trade-offs. In this paper, we propose a VLIW-based
post compilation framework for multimedia embedded DSPs with hardware specific
optimizations. The main purpose of our framework is to enhance the performance of
the executable code generated by other VLIW-based DSP compilers. Traditionally,
post compilation framework instrumentations are used to provide methods that allow
low-level language code such as machine code or assembly code to be optimized.
During runtime, a multimedia application program can have its code separated into
regions and have each region classified as having either cold region code or hot region
code according to the execution time of that region. With this runtime information,
compilers can focus their more aggressive optimizations on the hot region codes [17].
By focusing on hot region codes and less on cold region codes compilers can achieve
better overall performance. Therefore, most post compilation frameworks tend to focus
on specific optimizations such as instruction rescheduling, register reallocation,
speculative execution [21], post-pass power optimization and post-pass loop
optimization, to enhance the machine code generated by other compilers based on this
type of runtime information.

Our proposed framework focuses on instruction rescheduling and post-pass loop
optimizations. It consists of six parts, a frontend parser, a run-time information
collector, a profiling database synthesizer, a hardware database synthesizer, a hardware
specific optimizer, and a code generator. The frontend parser is used to parse the codes
generated by other VLIW-based DSP compilers and transform them into the
intermediate representation (IR) of our framework. The run-time information collector
is used to collect the necessary run-time information. The profiling database
synthesizer and the hardware database synthesizer generate useful runtime information
about a program as well as hardware related information to help the hardware specific
optimizer to optimize a program. The hardware specific optimizer contains two
optimization techniques, hardware specific instruction optimizations and hardware
specific loop optimizations. The hardware specific instruction optimizations include
specific instruction rematch optimizations, instruction rescheduling and recourse
reallocation optimization. These optimizations can increase the computation
performance, exploit more ILP, and use a compiler-supported profiling-based branch
predictor to improve branch performance. For hardware specific loop optimizations,
we combine the zero-overhead loop, vector operations, pixel operations, and simple
software pipelining techniques to improve the loop performance that dominates

 A VLIW-Based Post Compilation Framework for Multimedia Embedded DSPs 53

multimedia embedded programs. Finally, the code generator is used to generate the
enhanced machine code.

To evaluate the performance of the proposed post compilation framework, we
implemented a post compilation framework for the ADI Blackfin DSP [1] and used the
Blackfin GCC 3.4 [8] and VDSP++ 4.5 [23] as the frontend compilers. Two
benchmarks, the DSP Stone [18] benchmark and the JM 9.8 H.264 reference code [10],
were used as test samples and were then simulated by the Blackfin cycle-accurate
simulator in order to collect runtime information. Experimental results showed that, for
the DSP Stone benchmark, our framework on average was able to get 17.5% and 9%
performance gain with the codes generated by the Blackfin GCC 3.4 and VDSP++ 4.5
respectively, when using optimization level 3. For the JM9.8 H.264 reference code,
which is an optimized DSP library that has been hand-tuned, our framework was able to
get a 5.8% performance gain.

The organization of the rest of the paper is as follows. In Section 2, we describe our
VLIW-based post compilation framework in more detail. In Section 3, we give more
details about the target experimental platform and the results. Finally, in Section 4 we
present our conclusions.

Fig. 1. Compilation flow of the post-compilation framework

54 M.-H. Cheng et al.

2 The Post-Compilation Framework

The architecture of the proposed post compilation framework is shown in Figure 1. As
is shown in the figure, the framework consists of six components, a frontend parser, a
runtime information collector, a profiling database synthesizer, a hardware database
synthesizer, a hardware specific optimizer, and a code generator. The frontend parser is
used to parse the machine code generated by a frontend compiler into the common
intermediate representation (CIR) and generates profiling indicators that provides hints
for the runtime information collector. The runtime information collector is used to
record the runtime information, needed for the hardware specific optimizer, into a
database and is based on the profiling indicators and the execution of the machine code.
The profiling database synthesizer is used to annotate the CIR according to the
profiling database. The hardware database synthesizer is used to generate useful
hardware information according to the hardware database. The hardware specific
optimizer is used to optimize the annotated-CIR with specific hardware features based
on any useful hardware information generated by the hardware database synthesizer.
The final optimized executable is then generated by the code generator. In the
following subsection, we will describe the optimization stage in more detail.

2.1 Hardware Specific Optimizations

The hardware specific optimizer contains two components, a hardware specific
instruction optimizer and the hardware specific loop optimizer. The hardware specific
instruction optimizer handles optimizations with multiply-accumulate calculations
(MAC), ILP scheduling, and with branch prediction. The hardware specific loop
optimizer also handles optimization of the zero-overhead loop buffer, the vector-unit
and pixel-unit, and in the software pipeline

2.1.1 The Hardware Specific Instruction Optimizer
Since multimedia programs use multiply-accumulate operations frequently, especially
in some matrix computing, the multiply-accumulate unit is an important feature of
DSPs that can improve the performance of programs that perform multiply-accumulate
calculations (MACs). The MAC instruction of most DSPs use specific registers (such
as accumulate register). Since defects in a compiler intermediate representation may
result in a compiler generating MAC instructions ineffectively, we used IBURG [6] [7]
style algorithms, in our framework, to generate MAC tree pattern-matching code in
case the core compiler (frontend compiler) lost some MAC instruction matching.

Due to the multiple-issues involved in VLIW-based DSPs, it is often difficult to do
scheduling optimizations that can exploit ILP. Since ILP exploited scheduling is a
complicated problem that cannot be solved in polynomial time, most DSP compilers
cannot generate multiple issue instructions effectively. In our work, we used the
artificial resource assignment (ARA) algorithm in [14] [15] combined that with our
generated runtime information to solve this problem. This augmented algorithm
allowed us to reschedule the result of the frontend compiler. Since register utilization
can be increased by using our runtime information to reallocate registers, the artificial
resource assignment algorithm is used to help schedule instructions efficiently.

Branch prediction is an important feature in modern deep pipeline design because a
stall in the pipeline can affect a systems performance a lot. In order to minimize

 A VLIW-Based Post Compilation Framework for Multimedia Embedded DSPs 55

hardware and power consumption, most DSPs use compiler supported branch
prediction (also known as static branch prediction), instead of dynamic branch
prediction a mechanism that is implemented in the hardware. For example, the ADI
Blackfin DSP supports a special instruction called the branch prediction appendix (bp).
The branch prediction appendix helps a compiler improve its branch performance by
predicting if a branch is to be taken or non-taken. In general, compilers will predict a
backward-going branch as taken and a forward-going branch as non-taken. In the
proposed framework, we use a profile based branch predictor [11] to support the branch
prediction appendix. In early studies [11], the profile based branch predictor was able
to improve prediction rates from 3% to 24% in SPEC92.

2.1.2 The Hardware Specific Loop Optimizer

Zero-Overhead Loop Buffer Optimization

Most DSPs have a zero-overhead loop buffer, which is a hardware technique that can
minimize loop overhead without the penalty of increasing code size. The zero-overhead
loop buffer is a specific instruction buffer used for low cost counter-based loops. Without
decrementing a counter, evaluating a loop condition, then calculating and branching to a
new target address, the zero-overhead loop instruction can save 2 to 6 instructions in one
loop depending on the structure of the loop. In addition, the zero-overhead loop
instruction can also reduce power consumption and increase performance in a low
instruction cache utilization environment since it is not accessing the instruction memory.
Moreover, when external memory is used in an embedded system, the synchronization of
an external memory bus tends to be costly and the data transfer of the external memory
bus can consume a lot of energy. With a zero-overhead loop optimization, an embedded
system can execute a loop efficiently and use less power.

However, the zero-overhead loop instruction has some restrictions, as it cannot be
used with branch instructions or call/return instructions. In the proposed framework, the
hardware specific loop optimizer finds loops and tries to optimize them with the
zero-overhead loop instruction. Any loop that does not contain a call/return or branch
instruction in it can be optimized with a zero-overhead loop instruction easily. However,
to optimize loops that contain call/return or branch instructions, the framework has to
use other methodologies such as function inlining, loop unswitching[3], and speculative
execution in order to take advantage of the zero-overhead loop instruction.

Vector-Unit and Pixel-Unit Optimization

In order to increase the parallelism of a program, some small precision operations can
be computed in parallel. This is called data-level parallelism (DLP) [12] and it is
independent of the ILP. In modern DSP design, a SIMD operation (also known as a
vector operation) is the methodology used to exploit data-level parallelism. SIMD
operations are very suitable for several media-processing applications, such as audio,
video and image processing. The pixel unit is designed for multimedia applications to
take advantage of these instructions to align bytes, perform dual 16 bit and quad 8 bit
addition (or subtraction) operations, and for pixel averaging operations. Moreover, a
program can have good code-density if it takes advanatge of vector and pixel
operations.

56 M.-H. Cheng et al.

In our proposed framework, with run-time value range information, the hardware
specific optimizer can identify a variable that is declared as a word (32-bit) but is
instead used as a sub-word (8-bit or 16-bit) during runtime. Vector and pixel
optimizations can then be performed on these variables by using the algorithm in [24].

Software Pipelining Optimization

In the proposed framework, the hardware specific loop optimizer integrates all the
optimizations described above into one simple software pipeline that can construct
several loop iterations and combine them into one new loop iteration. Since the new loop
can compute several loop iterations and pack them into a single loop iteration, we can
issue multiple instructions in parallel and allows us to optimize the software pipeline.

3 Performance Evaluation

To evaluate the performance of the proposed post compilation framework, we
implemented a post compilation framework for the ADI Blackfin DSP [1] and used the
Blackfin GCC 3.4 [8] and VDSP++ 4.5 [23] as the frontend compilers. Two
benchmarks, the DSP Stone [18] benchmark and the JM 9.8 H.264 reference code [10],
were used as test samples and were then simulated by the Blackfin cycle-accurate
simulator in order to collect runtime information. Tables 1 and 2 show the execution
results of the proposed framework for the DSP Stone benchmark, our framework on
average was able to get 17.5% and 9% performance gain with the codes generated by
the Blackfin GCC 3.4 and VDSP++ 4.5 respectively, when using optimization level 3.

In Table 3, a comparison of the execution cycles on the JM9.8 H.264 reference code
is obtained by decoding three frames using a baseline profile with and without the
hand-tuned DSP library. From Table 3, we observe that, with the post-optimizing
framework, we were able to get an additional 15.16 % performance improvement.

Table. 1. Execution cycles in DSP Stone on Blackfin GCC 3.4

 A VLIW-Based Post Compilation Framework for Multimedia Embedded DSPs 57

Table. 2. Execution cycles in DSP Stone on Blackfin GCC 3.4

Table 3. Execution cycles on JM 9.8 H.264 decoder using a baseline profile

When the code did not use the hand-tuned DSP library an improvement of 5.8% was
obtained when we did use the hand-tuned DSP library. These results indicate that the
framework can work well with real multimedia programs even when they use
hand-tuned optimizations.

4 Conclusion

In this paper, we proposed a VLIW-based post compilation framework for multimedia
embedded DSPs with hardware specific optimizations. The proposed framework was
able to better optimize a program by using runtime information and exploiting specific
hardware features of an embedded DSP. The hardware specific optimizer in our
VLIW-Based post compilation framework was divided into two parts. One was the
hardware specific instruction optimizer and the other was the hardware specific loop
optimizer. These post-optimizations were shown to have a significant impact on a
programs performance. Finally, the simulation results showed that it is possible for our
proposed framework to work well with real multimedia programs even if they have had
hand-tuned optimizations.

References

1. The Analog Devices, Inc. Website (1995), http://www.analog.com/en/
2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers Principles, Techniques, and

Tools, 2nd edn. Addison-Wesley, Reading (2006)

58 M.-H. Cheng et al.

3. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler Transformations for High-Performance
Computing. ACM Computing Surveys (December 1994)

4. Chang, P.P., Mahlke, S.A., Chen, W.Y., Warter, N.J., Hwu, W.W.: IMPACT: An
architectural framework for multiple-instruction-issue processors. In: Proc. 18th. Int. Symp.
Computer Architecutre (1996)

5. Falk, H.: Control Flow Optimization by Loop Nest Splitting at the Source Code Level,
Research Report No 773 (October 2002)

6. Fisher, J.A., Faraboschi, P., Young, C.: Embedded Computing: a VLIW approach to
architecture, compilers and tools. Morgan Kaufmann, San Francisco (2005)

7. Fraser, C.W., Hanson, D.R., Proebsting, T.A.: Engineering a simple, efficient
code-generator generator. ACM Letters on Programming Languages and Systems, 213–226

8. The GCC - the gnu compiler collection (1987), http://gcc.gnu.org/
9. Gyllenhaal, J.C., Hwu, W.M., Rau, B.R.: Hmdes version 2.0 specification, Univ., Illinois,

Urbana, IL, Tech. Rep. IMPACT (1996)
10. The H.264/AVC JM Reference Software, The Image Processing HHI (2006),

http://iphome.hhi.de/suehring/tml/
11. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A quantitative approach, 4th edn.

Morgan Kaufmann, San Francisco (2006)
12. Kozyrakis, C.E., Patterson, D.A.: Scalable Vector Processors for Embedded Systems. IEEE

Computer Society Press, Los Alamitos (2003)
13. Marwedel, Goosens, G. (eds.): Code Generation for Embedded Processors. Kluwer,

Norwell (1995)
14. Rajagopalan, S., Rajan, S.P., Malik, S., Rigo, S., Araujo, G., Takayama, K.: A Retargetable

VLIW Compiler Framework for DSPs With Instruction-Level Parallelism. IEEE
Transactions on CAD of IC and System 20(11) (November 2001)

15. Rajagopalan, S., Vachharajani, M., Malik, S.: Handling irregular ILP within conventional
VLIW schedulers using artificial resource constraints. In: Proc. Int. Conf. Compilers,
Architecture, and Sysnthesis for Embedded Systems, November 2000, pp. 157–164 (2000)

16. Padua, D.A., Wolfe, M.J.: Advanced Compiler Optimizations for Supercomputers.
Communication of the ACM (December 1986)

17. Zhang, K., Zhang, T., Pande, S.: Binary Translation to Improve Energy Efficiency through
Post-pass Register Re-allocation. In: Proceedings of the 4th ACM international conference
on Embedded software (2004)

18. Zivojnovic, V., Velarde, J.M., Schläger, C., Meyer, H.: DSP-stone: A DSP-oriented
benchmarking methodology. In: Proc. Int. Conf. Signal Processing Applications and
Technology, October 1994, pp. 715–720 (1994)

19. Saghir, M.A.R., Chow, P., Lee, C.G.: Application-driven design of DSP architectures and
compilers, Acoustics, Speech, and Signal Processing. In: ICASSP-94 (1994)

20. Kumar, R., Gupta, A., Pankaj, B.S., Ghosh, M., Chakrabarti, P.P.: Post-Compilation
Optimization for Multiple Gains with Pattern Matching. ACM SIGPLAN Notices (2005)

21. Liao, S.S., Wang, P.H., Wang, H., Hoflehner, G., Lavery, D., Shen, J.P.: Post-Pass Binary
Adaptation for Software-Based Speculative Precomputation. In: ACM PLDI’02 (June 2002)

22. Angiolini, F., Menichelli, F., Ferrero, A., Benini, L., Oliveri, M.: A Post-Compiler
Approach to Scratchpad Mapping of Code. In: International Conference on Compilers,
Architectures and Synthesis of Embedded Systems CASES 2004 (September 2004)

23. The Analog Devices, Visual DSP++, Website (1995), http://www.analog.com/en/
24. Suzuki, M., Fujinami, N., Fukuoka, T., Watanabe, T., Nakata, I.: SIMD Optimization in

COINS Compiler Infrastructure. In: Proceedings of the Innovative Architecture for Future
Generation High-Performance Processors and Systems (2005)

