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Abstract. In high performance and low power multimedia embedded system 
design, VLIW-based embedded DSPs compilers that exploit ILP have become 
popular and play an important role today. For this reason, we need optimizing 
embedded DSP compilers that can both generate capable and efficient code in 
terms of performance, power, size, and productivity. In this paper, we show a 
post-compilation framework that can further optimize programs that have 
already been compiled and optimized by another compiler, by using runtime 
information and exploiting hardware specific features of DSPs. Finally, we show 
in our simulation results, that even programs compiled at the best optimization 
level, can obtain significant improvement through the use of this framework. 
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1   Introduction 

In multimedia embedded system design, it is desirable for the system to be high in 
performance and low in cost. To achieve both these goals, VLIW-based DSPs use some 
hardware specific features, such as zero-overhead loops, vector and pixel sub-words 
operations, heterogeneous processing units, and compiler-supported branch prediction. 
These hardware specific features are used to increase computing efficiency instead of 
using dynamic scheduling logic that would increase hardware complexity and cost. In 
traditional VLIW-based compiler design, the most important optimization technique is 
done by using ILP (Instruction-Level Parallelism). For the inquisitive an example of 
this technique in use can be seen in the IMPACT VLIW compiler framework [4]. 
However, since there is a tendency for the number of instructions in a basic block of a 
multimedia program to be small, ILP in a multimedia program that has specialized 
algorithms and program structure tends to be rather limited. Due to this problem, it is 
important that a VLIW-based DSP compiler can capitalize on hardware specific 
features, when it is optimizing an application program. Since hardware specific features 
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tend to be application-friendly not compiler-friendly, most VLIW-based DSP 
compilers cannot take the advantage of those specialized features effectively. 
Moreover, in VLIW-based DSPs, the connectivity between computation units and 
storage units is restricted in order to minimize hardware and interconnection cost. The 
partial connection of registers and functional units is also an obstacle for VLIW-based 
DSP compilers to select and schedule instructions effectively.  Without an efficient 
VLIW-based DSP compiler, designers of high performance and low cost multimedia 
embedded systems are forced to use fully handwritten assembly codes in order to get 
better performance and code density. However, handwriting assembly code is not an 
acceptable solution as it tends to result in long development time and it lacks 
portability. 

In general, off the shelf VLIW-based DSP compilers cannot use hardware specific 
features effectively due to design trade-offs. In this paper, we propose a VLIW-based 
post compilation framework for multimedia embedded DSPs with hardware specific 
optimizations. The main purpose of our framework is to enhance the performance of 
the executable code generated by other VLIW-based DSP compilers.  Traditionally, 
post compilation framework instrumentations are used to provide methods that allow 
low-level language code such as machine code or assembly code to be optimized. 
During runtime, a multimedia application program can have its code separated into 
regions and have each region classified as having either cold region code or hot region 
code according to the execution time of that region. With this runtime information, 
compilers can focus their more aggressive optimizations on the hot region codes [17]. 
By focusing on hot region codes and less on cold region codes compilers can achieve 
better overall performance. Therefore, most post compilation frameworks tend to focus 
on specific optimizations such as instruction rescheduling, register reallocation, 
speculative execution [21], post-pass power optimization and post-pass loop 
optimization, to enhance the machine code generated by other compilers based on this 
type of runtime information.  

Our proposed framework focuses on instruction rescheduling and post-pass loop 
optimizations. It consists of six parts, a frontend parser, a run-time information 
collector, a profiling database synthesizer, a hardware database synthesizer, a hardware 
specific optimizer, and a code generator. The frontend parser is used to parse the codes 
generated by other VLIW-based DSP compilers and transform them into the 
intermediate representation (IR) of our framework. The run-time information collector 
is used to collect the necessary run-time information. The profiling database 
synthesizer and the hardware database synthesizer generate useful runtime information 
about a program as well as hardware related information to help the hardware specific 
optimizer to optimize a program. The hardware specific optimizer contains two 
optimization techniques, hardware specific instruction optimizations and hardware 
specific loop optimizations. The hardware specific instruction optimizations include 
specific instruction rematch optimizations, instruction rescheduling and recourse 
reallocation optimization. These optimizations can increase the computation 
performance, exploit more ILP, and use a compiler-supported profiling-based branch 
predictor to improve branch performance. For hardware specific loop optimizations, 
we combine the zero-overhead loop, vector operations, pixel operations, and simple 
software pipelining techniques to improve the loop performance that dominates 
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multimedia embedded programs. Finally, the code generator is used to generate the 
enhanced machine code. 

To evaluate the performance of the proposed post compilation framework, we 
implemented a post compilation framework for the ADI Blackfin DSP [1] and used the 
Blackfin GCC 3.4 [8] and VDSP++ 4.5 [23] as the frontend compilers. Two 
benchmarks, the DSP Stone [18] benchmark and the JM 9.8 H.264 reference code [10], 
were used as test samples and were then simulated by the Blackfin cycle-accurate 
simulator in order to collect runtime information. Experimental results showed that, for 
the DSP Stone benchmark, our framework on average was able to get 17.5% and 9% 
performance gain with the codes generated by the Blackfin GCC 3.4 and VDSP++ 4.5 
respectively, when using optimization level 3. For the JM9.8 H.264 reference code, 
which is an optimized DSP library that has been hand-tuned, our framework was able to 
get a 5.8% performance gain. 

The organization of the rest of the paper is as follows. In Section 2, we describe our 
VLIW-based post compilation framework in more detail. In Section 3, we give more 
details about the target experimental platform and the results. Finally, in Section 4 we 
present our conclusions. 

 

Fig. 1. Compilation flow of the post-compilation framework 
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2   The Post-Compilation Framework 

The architecture of the proposed post compilation framework is shown in Figure 1. As 
is shown in the figure, the framework consists of six components, a frontend parser, a 
runtime information collector, a profiling database synthesizer, a hardware database 
synthesizer, a hardware specific optimizer, and a code generator.  The frontend parser is 
used to parse the machine code generated by a frontend compiler into the common 
intermediate representation (CIR) and generates profiling indicators that provides hints 
for the runtime information collector.  The runtime information collector is used to 
record the runtime information, needed for the hardware specific optimizer, into a 
database and is based on the profiling indicators and the execution of the machine code. 
The profiling database synthesizer is used to annotate the CIR according to the 
profiling database. The hardware database synthesizer is used to generate useful 
hardware information according to the hardware database. The hardware specific 
optimizer is used to optimize the annotated-CIR with specific hardware features based 
on any useful hardware information generated by the hardware database synthesizer. 
The final optimized executable is then generated by the code generator. In the 
following subsection, we will describe the optimization stage in more detail. 

2.1   Hardware Specific Optimizations 

The hardware specific optimizer contains two components, a hardware specific 
instruction optimizer and the hardware specific loop optimizer. The hardware specific 
instruction optimizer handles optimizations with multiply-accumulate calculations 
(MAC), ILP scheduling, and with branch prediction. The hardware specific loop 
optimizer also handles optimization of the zero-overhead loop buffer, the vector-unit 
and pixel-unit, and in the software pipeline 

2.1.1   The Hardware Specific Instruction Optimizer 
Since multimedia programs use multiply-accumulate operations frequently, especially 
in some matrix computing, the multiply-accumulate unit is an important feature of 
DSPs that can improve the performance of programs that perform multiply-accumulate 
calculations (MACs). The MAC instruction of most DSPs use specific registers (such 
as accumulate register). Since defects in a compiler intermediate representation may 
result in a compiler generating MAC instructions ineffectively, we used IBURG [6] [7] 
style algorithms, in our framework, to generate MAC tree pattern-matching code in 
case the core compiler (frontend compiler) lost some MAC instruction matching. 

Due to the multiple-issues involved in VLIW-based DSPs, it is often difficult to do 
scheduling optimizations that can exploit ILP. Since ILP exploited scheduling is a 
complicated problem that cannot be solved in polynomial time, most DSP compilers 
cannot generate multiple issue instructions effectively. In our work, we used the 
artificial resource assignment (ARA) algorithm in [14] [15] combined that with our 
generated runtime information to solve this problem. This augmented algorithm 
allowed us to reschedule the result of the frontend compiler. Since register utilization 
can be increased by using our runtime information to reallocate registers, the artificial 
resource assignment algorithm is used to help schedule instructions efficiently. 

Branch prediction is an important feature in modern deep pipeline design because a 
stall in the pipeline can affect a systems performance a lot. In order to minimize 



 A VLIW-Based Post Compilation Framework for Multimedia Embedded DSPs 55 

hardware and power consumption, most DSPs use compiler supported branch 
prediction (also known as static branch prediction), instead of dynamic branch 
prediction a mechanism that is implemented in the hardware. For example, the ADI 
Blackfin DSP supports a special instruction called the branch prediction appendix (bp). 
The branch prediction appendix helps a compiler improve its branch performance by 
predicting if a branch is to be taken or non-taken.  In general, compilers will predict a 
backward-going branch as taken and a forward-going branch as non-taken.  In the 
proposed framework, we use a profile based branch predictor [11] to support the branch 
prediction appendix. In early studies [11], the profile based branch predictor was able 
to improve prediction rates from 3% to 24% in SPEC92. 

2.1.2   The Hardware Specific Loop Optimizer 

Zero-Overhead Loop Buffer Optimization 

Most DSPs have a zero-overhead loop buffer, which is a hardware technique that can 
minimize loop overhead without the penalty of increasing code size. The zero-overhead 
loop buffer is a specific instruction buffer used for low cost counter-based loops.  Without 
decrementing a counter, evaluating a loop condition, then calculating and branching to a 
new target address, the zero-overhead loop instruction can save 2 to 6 instructions in one 
loop depending on the structure of the loop. In addition, the zero-overhead loop 
instruction can also reduce power consumption and increase performance in a low 
instruction cache utilization environment since it is not accessing the instruction memory.  
Moreover, when external memory is used in an embedded system, the synchronization of 
an external memory bus tends to be costly and the data transfer of the external memory 
bus can consume a lot of energy. With a zero-overhead loop optimization, an embedded 
system can execute a loop efficiently and use less power. 

However, the zero-overhead loop instruction has some restrictions, as it cannot be 
used with branch instructions or call/return instructions. In the proposed framework, the 
hardware specific loop optimizer finds loops and tries to optimize them with the 
zero-overhead loop instruction. Any loop that does not contain a call/return or branch 
instruction in it can be optimized with a zero-overhead loop instruction easily. However, 
to optimize loops that contain call/return or branch instructions, the framework has to 
use other methodologies such as function inlining, loop unswitching[3], and speculative 
execution in order to take advantage of the zero-overhead loop instruction. 

Vector-Unit and Pixel-Unit Optimization 

In order to increase the parallelism of a program, some small precision operations can 
be computed in parallel. This is called data-level parallelism (DLP) [12] and it is 
independent of the ILP. In modern DSP design, a SIMD operation (also known as a 
vector operation) is the methodology used to exploit data-level parallelism. SIMD 
operations are very suitable for several media-processing applications, such as audio, 
video and image processing. The pixel unit is designed for multimedia applications to 
take advantage of these instructions to align bytes, perform dual 16 bit and quad 8 bit 
addition (or subtraction) operations, and for pixel averaging operations. Moreover, a 
program can have good code-density if it takes advanatge of vector and pixel 
operations. 
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In our proposed framework, with run-time value range information, the hardware 
specific optimizer can identify a variable that is declared as a word (32-bit) but is 
instead used as a sub-word (8-bit or 16-bit) during runtime. Vector and pixel 
optimizations can then be performed on these variables by using the algorithm in [24]. 

Software Pipelining Optimization 

In the proposed framework, the hardware specific loop optimizer integrates all the 
optimizations described above into one simple software pipeline that can construct 
several loop iterations and combine them into one new loop iteration. Since the new loop 
can compute several loop iterations and pack them into a single loop iteration, we can 
issue multiple instructions in parallel and allows us to optimize the software pipeline. 

3   Performance Evaluation 

To evaluate the performance of the proposed post compilation framework, we 
implemented a post compilation framework for the ADI Blackfin DSP [1] and used the 
Blackfin GCC 3.4 [8] and VDSP++ 4.5 [23] as the frontend compilers. Two 
benchmarks, the DSP Stone [18] benchmark and the JM 9.8 H.264 reference code [10], 
were used as test samples and were then simulated by the Blackfin cycle-accurate 
simulator in order to collect runtime information. Tables 1 and 2 show the execution 
results of the proposed framework for the DSP Stone benchmark, our framework on 
average was able to get 17.5% and 9% performance gain with the codes generated by 
the Blackfin GCC 3.4 and VDSP++ 4.5 respectively, when using optimization level 3.  

In Table 3, a comparison of the execution cycles on the JM9.8 H.264 reference code 
is obtained by decoding three frames using a baseline profile with and without the 
hand-tuned DSP library. From Table 3, we observe that, with the post-optimizing 
framework, we were able to get an additional 15.16 % performance improvement. 
 

Table. 1. Execution cycles in DSP Stone on Blackfin GCC 3.4 
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Table. 2. Execution cycles in DSP Stone on Blackfin GCC 3.4 

 

Table 3. Execution cycles on JM 9.8 H.264 decoder using a baseline profile 

 
 
When the code did not use the hand-tuned DSP library an improvement of 5.8% was 
obtained when we did use the hand-tuned DSP library. These results indicate that the 
framework can work well with real multimedia programs even when they use 
hand-tuned optimizations. 

4   Conclusion 

In this paper, we proposed a VLIW-based post compilation framework for multimedia 
embedded DSPs with hardware specific optimizations. The proposed framework was 
able to better optimize a program by using runtime information and exploiting specific 
hardware features of an embedded DSP. The hardware specific optimizer in our 
VLIW-Based post compilation framework was divided into two parts.  One was the 
hardware specific instruction optimizer and the other was the hardware specific loop 
optimizer. These post-optimizations were shown to have a significant impact on a 
programs performance. Finally, the simulation results showed that it is possible for our 
proposed framework to work well with real multimedia programs even if they have had 
hand-tuned optimizations. 
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