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Abstract—A scalable and high performance RTI (Runtime 
Infrastructure) system implements a two-layer architecture to 
supporting large-scale simulation is proposed in this article. 
The two-layer architecture, Multiple-FedServ, exploits both 
centralized and distributed way to manage a simulation. In 
the first layer, each FedServ is in charge of a number of 
federates and in the second layer, a simulation federation is 
then formed by all the FedServs. This paper describes how the 
messages are routed and synchronization performed in this 
two-layer architecture. An RTI system based on Multiple-
FedServ architecture and follows the specification of IEEE 
1516 standard is implemented. Performance evaluations of 
this RTI using standard HLA/RTI benchmarks are presented. 
We evaluate the latency, throughput and time advancement 
benchmarks under varied size of federates and varied size of 
FedServs. Issues such as message routing, multicasting and 
synchronization are specially addressed in this article.�

��

�Results 
show that Multiple-FedServ architecture can scale well. 

Keywords- High Level Architecture, Runtime 
Infrastructure, Multiple-FedServ, Scalability, Large-scale 
Simulation. 

I. INTRODUCTION 

In the 1990s, Defense Modeling and Simulation Office 
(DMSO) [10] first proposed High Level Architecture 
(HLA) in order to promote reusability and interoperability 
of military simulations. HLA has been approved as IEEE 
1516 standard in September 2000. There are three necessary 
elements defined in HLA, the rules, interface specification 
and object model template (OMT) [7]. According to the 
HLA rules users can develop cooperating simulations, 
called federates. Federates can interact with each other by 
invoking sets of management service provided by Runtime 
Infrastructure (RTI). The integrated virtual environment 
composed of federates is called federation.  Recently, 
besides military applications, many simulations such as 
traffic simulations, factory workflow simulations and so 
forth use the HLA as simulation architecture.  

The RTI system provides a set of management services 
defined in the HLA interface specification. The execution 
management, time synchronization, data and event 
exchange of the federation are all handled by the 
coordination of these services. As the scale of simulation 
grows, the scalability issue of RTI is becoming more and 
more important especially for wide-ranging and large-scale 
complex simulations. This article will focus on the 
scalability problems of RTI and will address the architecture 
we adopted to implement our scalable RTI. 

The related works reported in the literature rarely take 
account of the scalability issues of an RTI system. Although 
[3], [9] and [12] propose the schemes for simulation users to 
easily construct a large-scale HLA simulation in terms of 
federate arrangement and resource management. Among 
these RTI systems, a centralized management is used to 
conduct the RTI services. That is, the RTI system uses a 
centralized manager or server to carry out the RTI services, 
such as joining and resigning of federates, data exchange for 
participating federates, etc. For a federation execution with 
a large amount of federates, the centralized manager tends 
to be overloaded because of busy processing the requests of 
the federates. In this situation, the centralized management 
will degrade the simulation performance. Also, it may cause 
a scalability bottleneck of the whole RTI system and limits 
the capacity of how many federates that can participate in a 
federation.  

Considering the loading of a RTI system, two 
requirements are necessary to build a scalable RTI system 
for a large-scale simulation. One is that the RTI system 
must have enough capability to manage the federation 
execution. The other one is that the overloaded situation 
must be avoided. In order to achieve these two 
requirements, we design a hybrid architecture called 
Multiple-FedServ. First, we adopt a centralized server called 
FedServ as the basis to provide RTI services federates 
belongs to this server. The responsibility of a FedServ is to 
manage the joining and resigning of federates, and to 
facilitate data exchange among participating federates, etc. 
Since it has the central control of the system, the 
performance of the centralized management is better than 
the distributed management. Then we make several replicas 
of the FedServ and these FedServs will form a Multiple-
FedServ RTI system to serve all federates within the 
federation. The RTI system becomes more powerful to 
serve more federates simply by integrating the capability of 
each FedServ. These FedServs cooperate in forming a 
powerful RTI system to manage all the federates. Moreover, 
the loading of managing a federation execution can be 
distributed to these FedServs. This prevents any FedServ 
from being overloaded.  

The proposed Multiple-FedServ architecture has several 
advantages. First, our architecture can provide scalability 
and also preserve the performance. Second, based on our 
connection scheme, the system is well-organized and 
suitable for a large-scale simulation. Third, the Multiple-
FedServ design is helpful for the operations of multicast and 
synchronization with numerous federates. 
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Based on the proposed architecture, we have 
implemented a RTI system following the specification of 
IEEE 1516 standard. Moreover, we have evaluated our RTI 
system using the benchmarks from DMSO. The 
benchmarks are modified to meet IEEE 1516 standard. We 
test latency, throughput and time advancement benchmark 
under varied size of federates and varied size of FedServs. 
The performance of multicast and synchronization are also 
assessed. The results show that Multiple-FedServ 
architecture can scale well. 

The rest of this paper is organized as follows. In the next 
section, we state the related works to compare different 
designs of RTI system. Section 3 clearly illustrates the 
overall design of our Multiple-FedServ RTI system 
architecture. In section 4, the evaluation results are 
provided. Finally, section 5 concludes this paper. 

II. RELATED WORK

DMSO RTI [10] is a well-known RTI system on which 
some research works [2][9] [11][12] are based. The DMSO 
RTI consists of the RTI Executive Process (RtiExec), the 
Federation Executive process (FedExec) and libRti library 
to run HLA simulations. The RtiExec is a globally process 
to manage the creation and destruction of federation 
execution. The FedExec coordinates data exchange and 
operations among the participating federates of the same 
federation. The libRTI is a library that provides RTI 
services to federate developers. In the DMSO RTI, a 
federation is only managed by a single FedExec. 

PADS research group at Georgia Tech provides 
Federated Simulations Development Kit (FDK) [8] for RTI 
developers to implement their specific RTI system. FDK 
comprises RTIKIT and two RTI implementations, BRTI 
and DRTI, which are built on RTIKIT. RTIKIT consists of 
some well-developed modules for varied network systems 
or architecture types, such as TCP, Myrinet [5], SGI, Linux. 
In the BRTI or DRTI, each federate is not only responsible 
to do simulation but also to be involved in the management 
of a federation execution. To run a federation execution 
needs to specify the federate IDs and IP addresses for the 
participating federates in the same federation. And these 
federates will form a fully connected simulation system.  

Recent advances in Grid technologies [4] have been 
used to facilitate distributed resource management, dynamic 
load balancing, and automated configuration for the HLA 
simulations [3][9][11][12]. In [3], Cai et al. proposed a load 
management system (LMS) over the Grid. LMS exploits the 
Grid services to achieve load balancing, fault tolerance and 
security for running large-scale HLA-based simulations. In 
[11], Zajac et al. presented the migration service for HLA 
simulations under a Grid management system. The service 
can monitor the execution of the federate, discover available 
resources and then migrate the federate to appropriate 
resource automatically. In [9], it addresses some research 
issues in how to construct a large-scale simulation on the 
Grid, including collaborative development model 
development, resource management and automated federate 
discovery and configuration. In [12], the HLA distributed 
simulation proposed is built on top of Grid services which 

help users conveniently compose a large-scale simulation, 
such as index service, RTI factory service and federate 
factory service. Grid technology actually complements the 
weak parts of the HLA. 

III. MULTIPLE-FEDSERV RTI SYSTEM 

In the following, we will describe our hybrid HLA 
simulation environment in detail. 

A. Multiple-FedServ Architecture 
In the Multiple-FedServ architecture as shown in Figure 

1, FedServs and federates are partitioned into several 
groups. Each group consists of one FedServ and some 
federates. FedServ is responsible for providing RTI services 
for  federates in the same group, e.g. synchronization of 
federates, publishing/subscription, message send/receive 
etc.. Besides, all FedServs also cooperatively manage the 
execution of the whole federation. In order to coordinate the 
federation, the FedServs need to synchronize information 
with each other when states update. For example, when a 
federate joins the simulation or a federate publishes an 
object class, the corresponding FedServ will synchronize 
this information with other FedServs. Through this 
operation, every FedServ will obtain the latest and 
consistent information. 

To start a federation execution, all federates need to 
establish network connections so that they can communicate 
with each other. In our design, a simple but efficient way to 
connect all federates is used: by creating network 
connections between all FedServs, there will exist a 
network route between any two federates. That is, we 
establish a fully-connected network among all FedServs to 
connect all groups. With this connection scheme, the 
federates are able to communicate with each other. The 
reason why not to connect the federates directly is that the 
process to build up one-to-one connection between any two 
federates is cumbersome. When a federate wants to join a 
federation, it has to collect the IP addresses and port 
numbers of all other federates and then connects to them 
one by one. As the numbers of federates joining the 
simulation become large, it will take a long time to finish 
the joining process. Moreover, maintaining a large amount 
of connections in a distributed system will reduce the 
system scalability. Therefore, we choose to connect all 
FedServs instead of connecting all federates directly. 

Figure 1. Multiple-FedServ Architecture. 
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In our implementation, the decisions of how many 
FedServs are in a federation and how to connect the 
FedServs and federates are determined by the users. The 
users have the best knowledge about the behavior and 
execution loading of the simulation programs. Therefore, 
the users can have the best way to arrange the execution 
loading. As the numbers of federates increase in the 
runtime, the system can still execute well by increasing the 
numbers of FedServs. 

B. Two-layer ID Assignment Scheme 
When a federate joins a federation, the RTI system must 

assign the federate a unique ID in the simulation 
environment. For a single FedServ design, the centralized 
FedServ must serve the ID assignment requests from all the 
federates. For a fully distributed design, the system must 
enter a global locking state to decide the next available 
globally unique ID. When a simulation is running with 
considerable federates, neither centralized nor fully 
distributed design is suitable for the high-scalability 
simulation requirement. 

In our Multiple-FedServ architecture, the assignment 
service is provided by these FedServs cooperatively. In 
order to efficiently get a globally unique ID, we use a two-
layer ID assignment scheme. When a federate joins a 
FedServ, the FedServ will assign it a pair of numbers of the 
form (FedServ_ID, Local_Federate_ID), where the 
FedServ_ID is the ID of the FedServ and the 
Local_Federate_ID is a unique ID in the group of the 
FedServ. After the assignment process, the FedServ 
broadcasts the ID to other FedServs so every FedServ can 
know that a new federate has joined the federation. The 
following describes how to generate the FedServ_ID and 
Local_Federate_ID for FedServs and federates, 
respectively.  

The first FedServ created in a federation execution 
becomes the master FedServ and it will be assigned to ID 0. 
The other FedServs created after master FedServ in the 
same federation will become slave FedServs with ID 
starting from 1. In figure 2, there are one master FedServ 
and two slave FedServs which are assigned to ID 0, 1, and 2 
respectively, and three federates connect to Master FedServ, 
two federates connect to Slave FedServ 1 and two federates 
connect to Slave FedServ 2. 

Figure 2. An example of two-layer ID assignment. 

To generate Local_Federate_ID for each federate, every 
FedServ maintains a local federate ID counter starting from 
1. Each time a federate joins a FedServ, it will concatenate 
its FedServ ID and the value of local federate ID counter as 
the ID of the newly joint federate and then increases the 
number of the counter by one. With this mechanism, we can 
make sure that any federate ID is certainly globally unique. 
For example, in figure 2, assume the three federates in the 
left-hand side join the federation with the order from the top 
to the bottom. Initially the local federate counter ID is set to 
1. When the Master FedServ receives the joining request 
from the top-left federate, it assigns its ID to (0,1) and 
increases the counter to 2. This assignment process is 
repeated when the mid-left and bottom-left federates join it 
and finally the value of counter is 4. The same assignment 
process is executed in the groups of the FedServs in the 
right-hand side. We can see that no any two federate IDs 
will be the same. 

The two-layer ID assignment scheme has the following 
advantages: First, the assignment process is finished locally 
in each group so the joining process is efficient. Second, 
every FedServ only has to handle the joining requests from 
parts of federates. This design can reduce the loading of 
each FedServ. Third, no any global locking is required 
among the FedServs. The overhead of global locking is 
avoided. Finally, the FedServs in different groups can 
handle different joining requests simultaneously. The 
performance is improved especially when a lot of federates 
are joining the federation at the same time. 

C. Message Routing and Multicast 
When a federate requests the RTI services of 

UpdateValue or SendInsteraction, the message has to be 
multicast to those federates which are interested in this 
event. The multicast operation consists of the following 
steps. 

1. The source federate sends the message to the 
FedServ in the same group. This FedServ becomes 
the source FedServ. 

2. The source FedServ determines the federates that 
will receive the message according to the 
publish/subscribe relationship. 

3. The source FedServ analyzes the two-layer IDs of 
the destination federates and finds the destination 
FedServs that consist of these destination 
federates by the FedServ_ID. 

4. The source FedServ sends the message to each 
destination FedServ. 

5. Every destination FedServ determines the local 
federates which will receive the message 
according to the publish/subscribe relationship. 

6. The destination FedServ sends the message to 
those local federates. 

From the operation in step 3, the message is transferred 
between two FedServs only once and the network traffic is 
reduced. Moreover, the operation of multicast from the 
destination FedServs to the destination federates in different 
groups can be done in parallel. Therefore, the Multiple-
FedServ architecture is efficient for the multicast operation. 
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The time to finish the multicast operation is significantly 
reduced especially when the destination federates are 
distributed to different FedServs. 

To further improve the performance of the operation of 
multicast, we make each federate not only connect to the 
FedServ, but also connect to other federates within the same 
group. When the destination federates and the source 
federate are in the same group, the message is sent from the 
source federate to the destination federate directly instead of 
being forwarded by the FedServ. The loading of the 
FedServ is reduced. With this connection scheme, the 
transmission within the same group can be finished with 
one-hop communication 

For example, in figure 3, assume the federates 
(0,2),(0,3),(1,2),(1,3),(2,1),(2,2) are interested in the event 
of the federate (0,1). When federate (0,1) updates a value, 
the message is first sent to FedServ 0. FedServ 0 looks up 
the publish/subscribe tree and determines the destination 
federates that are managed by other FedServs. Then, the 
four federates (1,2),(1,3),(2,1),(2,2) are found and divided 
into two groups with FedServ_ID 1 and 2. According to the 
FedServ_ID, FedServ 0 sends one copy of the message to 
FedServ 1 and one to the FedServ 2. At the same time, the 
federate (0,1) can send the message to federates (0,2),(0,3) 
directly because they are in the same group. After receiving 
the message, FedServ 1 and 2 look up the publish/subscribe 
tree and determine the federates that will receive the 
message in its own group. FedServ 1 and 2 send the 
message to federates (1,2),(1,3) and federates (2,1),(2,2) 
respectively and then the multicast operation is completed. 

Figure 3. An example of the operation of multicast. 

D. Synchronization 
Synchronization is very important in the simulation 

environment to coordinate the execution of the simulation 
processes. With large amount of federates, it sometimes 
costs a lot of time to synchronize the federates and causes 
the system not to scale well. To provide an easy and 
efficient operation of synchronization in the Multiple-
FedServ architecture, we use a two-phase synchronization 
scheme. The details of the two-phase synchronization 
scheme are described as follows: 

• Phase 1: In each group, the federates start the 
operation of synchronization. After the federates in 
a group finish the synchronization, the federate with 

the smallest Local_Federate_ID will notify the 
FedServ that the local synchronization is done. 

• Phase 2: The FedServs start the operation of 
synchronization after they receive the notification 
from their local federate. When the FedServs finish 
the synchronization, all federates are synchronized. 
Finally, each FedServ triggers the callback to the 
federates in its own group. 

To improve the performance of the two-phase 
synchronization, we adopt the butterfly barrier [1] in both 
phases of the operation of synchronization. Because we 
have connected the federates in the same group and all the 
FedServs are also connected, the butterfly barrier can be 
performed in both phases. Besides, the synchronization 
operation of phase 1 in each group can be performed in 
parallel. 

IV. PERFORMANCE EVALUATION

This section demonstrates the performance results of our 
implementations. The FedServs and federates evenly run on 
6 IBM e-Servers. Each IBM e-Server has dual Xeon 2.4 
GHz CPUs, 1 GB DRAM and runs Linux operating system 
with kernel version 2.6.8. All machines are connected with 
Gigabit Ethernet network. The RTI system is evaluated by 
using the benchmarks from DMSO. The benchmarks are 
modified to meet the IEEE HLA 1516 standard and the 
maximum message size allowed is increased so the 
performance with large size of message payload can be 
tested. We evaluate the latency, throughput and time 
advancement benchmarks under varied size of federates and 
varied size of FedServs. We also test the performance of the 
operations of multicast and synchronization. 

A. Latency and Throughput Benchmark 
The latency program measures RTI performance in 

terms of the elapsed time from sending to receiving an 
attribute update. The latency measurement is processed by 
two federates. First, one federate sends an attribute value to 
the other federate. The other federate is responsible to send 
this attribute value back to the sending federate. The latency 
is computed by dividing the round-trip time by 2. The 
throughput program measures RTI performance in terms of 
the number of attribute update from sending federate to 
receiving federate in one second. The throughput 
measurement is processed by two federates as well. One 
federate is responsible to perform a specified number of 
attribute updates. The receiving federate sends an 
acknowledgement back to the sending federate when the 
specified number of updates is done. In these two 
benchmarks, we set the size of an attribute value to {1, 4,…, 
1024, 4096} Kbytes and all other parameters are set to the 
default values.  

In our architecture, the message is routed with one hop 
if both the sending and receiving federates belong to the 
same group. Otherwise, the message is routed with three 
hops. The latency and throughput results of the DMSO RTI-
NG1.3v6 and one-hop and three-hop latency of our 
architecture are shown in table 1 and table 2 respectively. 

FedServ (0)

Publish/Subscribe Tree

FedServ (1)

Publish/Subscribe Tree

FedServ (2)
Publish/Subscribe Tree

Federate (0,1)

Federate (1,1)

Federate (1,2)

Federate (1,3)

Federate (2,1)

Federate (2,2)

Federate (0,2)

Federate (0,3)
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From table 1, the one-hop latency of our architecture is a 
little longer than the latency of DMSO RTI. The three-hop 
latency of our architecture is about 2.5 times slower than the 
latency of DMSO RTI. From table 2, the one-hop 
throughput of our architecture is lower than DMSO RTI in 
the cases where message size is smaller than 64Kbytes. But 
when the size of an attribute value is greater than 
256Kbytes, the throughput of our design and DMSO RTI 
are similar and both designs can achieve 40 Mbytes per 
second. The performance of three-hop throughput is about 
28 Mbytes per second when the size of attribute value is 
greater than 256 Kbytes. 

B. Time Advancement Benchmark 
The time advancement program measures RTI 

performance in terms of the rate at which time advance 
requests are granted. We set the number of federates in a 
federation execution to {4, 8,…, 256, 512} and all other 
parameters are set to the default values. The DMSO RTI-
NG1.3v6 cannot support more than 64 federates participating 
in a federation due to its design of joining a federation. 

In our RTI implementation, a conservative 
synchronization protocol [6] is used in time management. 
We test the total grants per second of our RTI system under 
1, 2 and 4 FedServs respectively and each FedServ will 
manage the same number of federates. The results are 
shown in figure 4. In figure 4, MF(k) means that there are k 
FedServs in a federation execution. For the case where 
number of federates is 4, we can see the total grants of our 
RTI system using one FedServ is larger than two or four 
FedServs. But when the number of federates is greater than 
32, using four FedServs in a simulation can achieve the 
better results than one FedServ and two FedServs because 
the loading of the RTI system is shared among the 
FedServs. The results show that we can just add more 
FedServs in the RTI system to support more federates and 
also preserve the performance. 

C. Multicast 
The performance of the multicast operation is evaluated 

by one sending federate and several receiving federates. The 
sending federate is responsible to send an interaction 
parameter to each receiving federate and each receiving 
federate sends the interaction parameter back to the sending 
federate when receiving it. The elapsed time of the 
operation is recorded. We set the size of the interaction 
parameter to 1 Kbytes and 64 Kbytes, and set the number of 
the receiving federates in a federation execution to {4, 8, …, 
128, 256}. The test is executed 100 iterations and the 
average value is calculated. The performance results are 
shown in Fig. 5 and Fig 6. 

The results in Fig. 5 and Fig. 6 show that as the number 
of federates increases, the elapsed time of multicast will be 
further reduced by increasing the number of FedServs. More 
FedServs involved in the operation of multicast will improve 
the parallelism in the message transmission from the FedServs 
to the federates and the performance is better in our Multiple-
FedServ architecture. 

Figure 4. Performance of time advancement benchmark. 

Figure 5. Performance of time advancement benchmark. (message size = 
1 Kbytes) 

Figure 6. Performance of time advancement benchmark.(message size = 
64 Kbytes) 

D. Synchronization 
The performance of the synchronization operation is 

evaluated in terms of the elapsed time to synchronize 
specified number of federates. The elapsed time is 
calculated starting from the registration of a synchronization 
point to the point that all federates are synchronized. We set 
the number of the federates joining the operation of 
synchronization in a federation execution to {4, 8,…, 128, 
256}. The test is executed 100 iterations and the average 
value is calculated. The results are shown in Fig. 7. 
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Figure 7. Performance of operation of synchronization. 

As depicted in Fig. 7, the elapsed time to synchronize 
the federates is reduced by increasing the number of the 
FedServs. When the number of federates is large, the RTI 
system will perform better by creating more FedServ in the 
federation execution. The results show that our architecture is 
beneficial for the operation of synchronization. 

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a scalable architecture for 
implementing RTI system by taking advantages both of the 
centralized and distributed architecture. With a large-scale 
simulation, the time advancement, operation of multicast 
and synchronization can benefit from our proposed 
Multiple-FedServ design. We also provide the connection 
scheme and synchronization method to further improve the 
performance of the operations of multicast and 
synchronization. The experimental results show that the 
Multiple-FedServ design can scale well and also provides 
high performance. 

In current implementation, the joining operation of 
federates and FedServs are manipulated by the users. In the 
future, we will make this operation more flexible and 
automatically increase/decrease the FedServs by the RTI 
system according to the loading of the federation execution. 
Also, we will provide methods to dynamically change the 
connecting topology at runtime to make the loading of the 
federation more balanced and make the operation of 
multicast and synchronization perform better.  
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Table 1: Latency benchmark (Unit: msec). 

 1 4 16 64 256 1024 4096 
DMSO 5.767 5.792 6.372 2.225 8.170 29.995 122.721 
1 hop 5.481 5.936 5.964 7.360 10.218 35.628 145.181
3 hops 9.048 8.466 10.240 10.085 21.462 70.919 280.306 

Table 2: Throughput Benchmark (Unit: MByte/sec). 

 1 4 16 64 256 1024 4096 
DMSO 6.052 18.503 33.918 38.213 40.184 42.949 43.752 
1 hop 0.481 1.914 7.619 30.334 42.218 43.382 44.442
3 hops 0.398 1.612 6.299 19.162 25.757 28.962 29.841 
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