
A Scalable HLA RTI System based on Multiple-FedServ Architecture

Ding-Yong Hong, Fang-Ping Pai, Shih-Hsiang Lo and Yeh-Ching Chung
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan, R.O.C.

{dyhong,fppai,albert}@sslab.cs.nthu.edu.tw, ychung@cs.nthu.edu.tw

Abstract—A scalable and high performance RTI (Runtime
Infrastructure) system implements a two-layer architecture to
supporting large-scale simulation is proposed in this article.
The two-layer architecture, Multiple-FedServ, exploits both
centralized and distributed way to manage a simulation. In
the first layer, each FedServ is in charge of a number of
federates and in the second layer, a simulation federation is
then formed by all the FedServs. This paper describes how the
messages are routed and synchronization performed in this
two-layer architecture. An RTI system based on Multiple-
FedServ architecture and follows the specification of IEEE
1516 standard is implemented. Performance evaluations of
this RTI using standard HLA/RTI benchmarks are presented.
We evaluate the latency, throughput and time advancement
benchmarks under varied size of federates and varied size of
FedServs. Issues such as message routing, multicasting and
synchronization are specially addressed in this article.�

��

�Results
show that Multiple-FedServ architecture can scale well.

Keywords- High Level Architecture, Runtime
Infrastructure, Multiple-FedServ, Scalability, Large-scale
Simulation.

I. INTRODUCTION

In the 1990s, Defense Modeling and Simulation Office
(DMSO) [10] first proposed High Level Architecture
(HLA) in order to promote reusability and interoperability
of military simulations. HLA has been approved as IEEE
1516 standard in September 2000. There are three necessary
elements defined in HLA, the rules, interface specification
and object model template (OMT) [7]. According to the
HLA rules users can develop cooperating simulations,
called federates. Federates can interact with each other by
invoking sets of management service provided by Runtime
Infrastructure (RTI). The integrated virtual environment
composed of federates is called federation. Recently,
besides military applications, many simulations such as
traffic simulations, factory workflow simulations and so
forth use the HLA as simulation architecture.

The RTI system provides a set of management services
defined in the HLA interface specification. The execution
management, time synchronization, data and event
exchange of the federation are all handled by the
coordination of these services. As the scale of simulation
grows, the scalability issue of RTI is becoming more and
more important especially for wide-ranging and large-scale
complex simulations. This article will focus on the
scalability problems of RTI and will address the architecture
we adopted to implement our scalable RTI.

The related works reported in the literature rarely take
account of the scalability issues of an RTI system. Although
[3], [9] and [12] propose the schemes for simulation users to
easily construct a large-scale HLA simulation in terms of
federate arrangement and resource management. Among
these RTI systems, a centralized management is used to
conduct the RTI services. That is, the RTI system uses a
centralized manager or server to carry out the RTI services,
such as joining and resigning of federates, data exchange for
participating federates, etc. For a federation execution with
a large amount of federates, the centralized manager tends
to be overloaded because of busy processing the requests of
the federates. In this situation, the centralized management
will degrade the simulation performance. Also, it may cause
a scalability bottleneck of the whole RTI system and limits
the capacity of how many federates that can participate in a
federation.

Considering the loading of a RTI system, two
requirements are necessary to build a scalable RTI system
for a large-scale simulation. One is that the RTI system
must have enough capability to manage the federation
execution. The other one is that the overloaded situation
must be avoided. In order to achieve these two
requirements, we design a hybrid architecture called
Multiple-FedServ. First, we adopt a centralized server called
FedServ as the basis to provide RTI services federates
belongs to this server. The responsibility of a FedServ is to
manage the joining and resigning of federates, and to
facilitate data exchange among participating federates, etc.
Since it has the central control of the system, the
performance of the centralized management is better than
the distributed management. Then we make several replicas
of the FedServ and these FedServs will form a Multiple-
FedServ RTI system to serve all federates within the
federation. The RTI system becomes more powerful to
serve more federates simply by integrating the capability of
each FedServ. These FedServs cooperate in forming a
powerful RTI system to manage all the federates. Moreover,
the loading of managing a federation execution can be
distributed to these FedServs. This prevents any FedServ
from being overloaded.

The proposed Multiple-FedServ architecture has several
advantages. First, our architecture can provide scalability
and also preserve the performance. Second, based on our
connection scheme, the system is well-organized and
suitable for a large-scale simulation. Third, the Multiple-
FedServ design is helpful for the operations of multicast and
synchronization with numerous federates.

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE
DOI 10.1109/UKSIM.2010.12

522

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE
DOI 10.1109/UKSIM.2010.12

522

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE
DOI 10.1109/UKSIM.2010.103

517

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE
DOI 10.1109/UKSIM.2010.102

527

Based on the proposed architecture, we have
implemented a RTI system following the specification of
IEEE 1516 standard. Moreover, we have evaluated our RTI
system using the benchmarks from DMSO. The
benchmarks are modified to meet IEEE 1516 standard. We
test latency, throughput and time advancement benchmark
under varied size of federates and varied size of FedServs.
The performance of multicast and synchronization are also
assessed. The results show that Multiple-FedServ
architecture can scale well.

The rest of this paper is organized as follows. In the next
section, we state the related works to compare different
designs of RTI system. Section 3 clearly illustrates the
overall design of our Multiple-FedServ RTI system
architecture. In section 4, the evaluation results are
provided. Finally, section 5 concludes this paper.

II. RELATED WORK

DMSO RTI [10] is a well-known RTI system on which
some research works [2][9] [11][12] are based. The DMSO
RTI consists of the RTI Executive Process (RtiExec), the
Federation Executive process (FedExec) and libRti library
to run HLA simulations. The RtiExec is a globally process
to manage the creation and destruction of federation
execution. The FedExec coordinates data exchange and
operations among the participating federates of the same
federation. The libRTI is a library that provides RTI
services to federate developers. In the DMSO RTI, a
federation is only managed by a single FedExec.

PADS research group at Georgia Tech provides
Federated Simulations Development Kit (FDK) [8] for RTI
developers to implement their specific RTI system. FDK
comprises RTIKIT and two RTI implementations, BRTI
and DRTI, which are built on RTIKIT. RTIKIT consists of
some well-developed modules for varied network systems
or architecture types, such as TCP, Myrinet [5], SGI, Linux.
In the BRTI or DRTI, each federate is not only responsible
to do simulation but also to be involved in the management
of a federation execution. To run a federation execution
needs to specify the federate IDs and IP addresses for the
participating federates in the same federation. And these
federates will form a fully connected simulation system.

Recent advances in Grid technologies [4] have been
used to facilitate distributed resource management, dynamic
load balancing, and automated configuration for the HLA
simulations [3][9][11][12]. In [3], Cai et al. proposed a load
management system (LMS) over the Grid. LMS exploits the
Grid services to achieve load balancing, fault tolerance and
security for running large-scale HLA-based simulations. In
[11], Zajac et al. presented the migration service for HLA
simulations under a Grid management system. The service
can monitor the execution of the federate, discover available
resources and then migrate the federate to appropriate
resource automatically. In [9], it addresses some research
issues in how to construct a large-scale simulation on the
Grid, including collaborative development model
development, resource management and automated federate
discovery and configuration. In [12], the HLA distributed
simulation proposed is built on top of Grid services which

help users conveniently compose a large-scale simulation,
such as index service, RTI factory service and federate
factory service. Grid technology actually complements the
weak parts of the HLA.

III. MULTIPLE-FEDSERV RTI SYSTEM

In the following, we will describe our hybrid HLA
simulation environment in detail.

A. Multiple-FedServ Architecture
In the Multiple-FedServ architecture as shown in Figure

1, FedServs and federates are partitioned into several
groups. Each group consists of one FedServ and some
federates. FedServ is responsible for providing RTI services
for federates in the same group, e.g. synchronization of
federates, publishing/subscription, message send/receive
etc.. Besides, all FedServs also cooperatively manage the
execution of the whole federation. In order to coordinate the
federation, the FedServs need to synchronize information
with each other when states update. For example, when a
federate joins the simulation or a federate publishes an
object class, the corresponding FedServ will synchronize
this information with other FedServs. Through this
operation, every FedServ will obtain the latest and
consistent information.

To start a federation execution, all federates need to
establish network connections so that they can communicate
with each other. In our design, a simple but efficient way to
connect all federates is used: by creating network
connections between all FedServs, there will exist a
network route between any two federates. That is, we
establish a fully-connected network among all FedServs to
connect all groups. With this connection scheme, the
federates are able to communicate with each other. The
reason why not to connect the federates directly is that the
process to build up one-to-one connection between any two
federates is cumbersome. When a federate wants to join a
federation, it has to collect the IP addresses and port
numbers of all other federates and then connects to them
one by one. As the numbers of federates joining the
simulation become large, it will take a long time to finish
the joining process. Moreover, maintaining a large amount
of connections in a distributed system will reduce the
system scalability. Therefore, we choose to connect all
FedServs instead of connecting all federates directly.

Figure 1. Multiple-FedServ Architecture.

Group 4

Federation

Group n…...

Group 1 Group 2 Group 3

FedServ

…... …...Federate Federate

FedServ FedServ

Federate Federate Federate Federate

523523518528

In our implementation, the decisions of how many
FedServs are in a federation and how to connect the
FedServs and federates are determined by the users. The
users have the best knowledge about the behavior and
execution loading of the simulation programs. Therefore,
the users can have the best way to arrange the execution
loading. As the numbers of federates increase in the
runtime, the system can still execute well by increasing the
numbers of FedServs.

B. Two-layer ID Assignment Scheme
When a federate joins a federation, the RTI system must

assign the federate a unique ID in the simulation
environment. For a single FedServ design, the centralized
FedServ must serve the ID assignment requests from all the
federates. For a fully distributed design, the system must
enter a global locking state to decide the next available
globally unique ID. When a simulation is running with
considerable federates, neither centralized nor fully
distributed design is suitable for the high-scalability
simulation requirement.

In our Multiple-FedServ architecture, the assignment
service is provided by these FedServs cooperatively. In
order to efficiently get a globally unique ID, we use a two-
layer ID assignment scheme. When a federate joins a
FedServ, the FedServ will assign it a pair of numbers of the
form (FedServ_ID, Local_Federate_ID), where the
FedServ_ID is the ID of the FedServ and the
Local_Federate_ID is a unique ID in the group of the
FedServ. After the assignment process, the FedServ
broadcasts the ID to other FedServs so every FedServ can
know that a new federate has joined the federation. The
following describes how to generate the FedServ_ID and
Local_Federate_ID for FedServs and federates,
respectively.

The first FedServ created in a federation execution
becomes the master FedServ and it will be assigned to ID 0.
The other FedServs created after master FedServ in the
same federation will become slave FedServs with ID
starting from 1. In figure 2, there are one master FedServ
and two slave FedServs which are assigned to ID 0, 1, and 2
respectively, and three federates connect to Master FedServ,
two federates connect to Slave FedServ 1 and two federates
connect to Slave FedServ 2.

Figure 2. An example of two-layer ID assignment.

To generate Local_Federate_ID for each federate, every
FedServ maintains a local federate ID counter starting from
1. Each time a federate joins a FedServ, it will concatenate
its FedServ ID and the value of local federate ID counter as
the ID of the newly joint federate and then increases the
number of the counter by one. With this mechanism, we can
make sure that any federate ID is certainly globally unique.
For example, in figure 2, assume the three federates in the
left-hand side join the federation with the order from the top
to the bottom. Initially the local federate counter ID is set to
1. When the Master FedServ receives the joining request
from the top-left federate, it assigns its ID to (0,1) and
increases the counter to 2. This assignment process is
repeated when the mid-left and bottom-left federates join it
and finally the value of counter is 4. The same assignment
process is executed in the groups of the FedServs in the
right-hand side. We can see that no any two federate IDs
will be the same.

The two-layer ID assignment scheme has the following
advantages: First, the assignment process is finished locally
in each group so the joining process is efficient. Second,
every FedServ only has to handle the joining requests from
parts of federates. This design can reduce the loading of
each FedServ. Third, no any global locking is required
among the FedServs. The overhead of global locking is
avoided. Finally, the FedServs in different groups can
handle different joining requests simultaneously. The
performance is improved especially when a lot of federates
are joining the federation at the same time.

C. Message Routing and Multicast
When a federate requests the RTI services of

UpdateValue or SendInsteraction, the message has to be
multicast to those federates which are interested in this
event. The multicast operation consists of the following
steps.

1. The source federate sends the message to the
FedServ in the same group. This FedServ becomes
the source FedServ.

2. The source FedServ determines the federates that
will receive the message according to the
publish/subscribe relationship.

3. The source FedServ analyzes the two-layer IDs of
the destination federates and finds the destination
FedServs that consist of these destination
federates by the FedServ_ID.

4. The source FedServ sends the message to each
destination FedServ.

5. Every destination FedServ determines the local
federates which will receive the message
according to the publish/subscribe relationship.

6. The destination FedServ sends the message to
those local federates.

From the operation in step 3, the message is transferred
between two FedServs only once and the network traffic is
reduced. Moreover, the operation of multicast from the
destination FedServs to the destination federates in different
groups can be done in parallel. Therefore, the Multiple-
FedServ architecture is efficient for the multicast operation.

Master
FedServ

(0)

Slave
FedServ

(1)
Federate

(0,1)

Federate
(0,2)

Federate
(0,3)

Federate
(1,2)

Federate
(1,1)

counter=4

counter=3

Slave
FedServ

(2) Federate
(2,2)

Federate
(2,1)

counter=3

524524519529

The time to finish the multicast operation is significantly
reduced especially when the destination federates are
distributed to different FedServs.

To further improve the performance of the operation of
multicast, we make each federate not only connect to the
FedServ, but also connect to other federates within the same
group. When the destination federates and the source
federate are in the same group, the message is sent from the
source federate to the destination federate directly instead of
being forwarded by the FedServ. The loading of the
FedServ is reduced. With this connection scheme, the
transmission within the same group can be finished with
one-hop communication

For example, in figure 3, assume the federates
(0,2),(0,3),(1,2),(1,3),(2,1),(2,2) are interested in the event
of the federate (0,1). When federate (0,1) updates a value,
the message is first sent to FedServ 0. FedServ 0 looks up
the publish/subscribe tree and determines the destination
federates that are managed by other FedServs. Then, the
four federates (1,2),(1,3),(2,1),(2,2) are found and divided
into two groups with FedServ_ID 1 and 2. According to the
FedServ_ID, FedServ 0 sends one copy of the message to
FedServ 1 and one to the FedServ 2. At the same time, the
federate (0,1) can send the message to federates (0,2),(0,3)
directly because they are in the same group. After receiving
the message, FedServ 1 and 2 look up the publish/subscribe
tree and determine the federates that will receive the
message in its own group. FedServ 1 and 2 send the
message to federates (1,2),(1,3) and federates (2,1),(2,2)
respectively and then the multicast operation is completed.

Figure 3. An example of the operation of multicast.

D. Synchronization
Synchronization is very important in the simulation

environment to coordinate the execution of the simulation
processes. With large amount of federates, it sometimes
costs a lot of time to synchronize the federates and causes
the system not to scale well. To provide an easy and
efficient operation of synchronization in the Multiple-
FedServ architecture, we use a two-phase synchronization
scheme. The details of the two-phase synchronization
scheme are described as follows:

• Phase 1: In each group, the federates start the
operation of synchronization. After the federates in
a group finish the synchronization, the federate with

the smallest Local_Federate_ID will notify the
FedServ that the local synchronization is done.

• Phase 2: The FedServs start the operation of
synchronization after they receive the notification
from their local federate. When the FedServs finish
the synchronization, all federates are synchronized.
Finally, each FedServ triggers the callback to the
federates in its own group.

To improve the performance of the two-phase
synchronization, we adopt the butterfly barrier [1] in both
phases of the operation of synchronization. Because we
have connected the federates in the same group and all the
FedServs are also connected, the butterfly barrier can be
performed in both phases. Besides, the synchronization
operation of phase 1 in each group can be performed in
parallel.

IV. PERFORMANCE EVALUATION

This section demonstrates the performance results of our
implementations. The FedServs and federates evenly run on
6 IBM e-Servers. Each IBM e-Server has dual Xeon 2.4
GHz CPUs, 1 GB DRAM and runs Linux operating system
with kernel version 2.6.8. All machines are connected with
Gigabit Ethernet network. The RTI system is evaluated by
using the benchmarks from DMSO. The benchmarks are
modified to meet the IEEE HLA 1516 standard and the
maximum message size allowed is increased so the
performance with large size of message payload can be
tested. We evaluate the latency, throughput and time
advancement benchmarks under varied size of federates and
varied size of FedServs. We also test the performance of the
operations of multicast and synchronization.

A. Latency and Throughput Benchmark
The latency program measures RTI performance in

terms of the elapsed time from sending to receiving an
attribute update. The latency measurement is processed by
two federates. First, one federate sends an attribute value to
the other federate. The other federate is responsible to send
this attribute value back to the sending federate. The latency
is computed by dividing the round-trip time by 2. The
throughput program measures RTI performance in terms of
the number of attribute update from sending federate to
receiving federate in one second. The throughput
measurement is processed by two federates as well. One
federate is responsible to perform a specified number of
attribute updates. The receiving federate sends an
acknowledgement back to the sending federate when the
specified number of updates is done. In these two
benchmarks, we set the size of an attribute value to {1, 4,…,
1024, 4096} Kbytes and all other parameters are set to the
default values.

In our architecture, the message is routed with one hop
if both the sending and receiving federates belong to the
same group. Otherwise, the message is routed with three
hops. The latency and throughput results of the DMSO RTI-
NG1.3v6 and one-hop and three-hop latency of our
architecture are shown in table 1 and table 2 respectively.

FedServ (0)

Publish/Subscribe Tree

FedServ (1)

Publish/Subscribe Tree

FedServ (2)
Publish/Subscribe Tree

Federate (0,1)

Federate (1,1)

Federate (1,2)

Federate (1,3)

Federate (2,1)

Federate (2,2)

Federate (0,2)

Federate (0,3)

525525520530

From table 1, the one-hop latency of our architecture is a
little longer than the latency of DMSO RTI. The three-hop
latency of our architecture is about 2.5 times slower than the
latency of DMSO RTI. From table 2, the one-hop
throughput of our architecture is lower than DMSO RTI in
the cases where message size is smaller than 64Kbytes. But
when the size of an attribute value is greater than
256Kbytes, the throughput of our design and DMSO RTI
are similar and both designs can achieve 40 Mbytes per
second. The performance of three-hop throughput is about
28 Mbytes per second when the size of attribute value is
greater than 256 Kbytes.

B. Time Advancement Benchmark
The time advancement program measures RTI

performance in terms of the rate at which time advance
requests are granted. We set the number of federates in a
federation execution to {4, 8,…, 256, 512} and all other
parameters are set to the default values. The DMSO RTI-
NG1.3v6 cannot support more than 64 federates participating
in a federation due to its design of joining a federation.

In our RTI implementation, a conservative
synchronization protocol [6] is used in time management.
We test the total grants per second of our RTI system under
1, 2 and 4 FedServs respectively and each FedServ will
manage the same number of federates. The results are
shown in figure 4. In figure 4, MF(k) means that there are k
FedServs in a federation execution. For the case where
number of federates is 4, we can see the total grants of our
RTI system using one FedServ is larger than two or four
FedServs. But when the number of federates is greater than
32, using four FedServs in a simulation can achieve the
better results than one FedServ and two FedServs because
the loading of the RTI system is shared among the
FedServs. The results show that we can just add more
FedServs in the RTI system to support more federates and
also preserve the performance.

C. Multicast
The performance of the multicast operation is evaluated

by one sending federate and several receiving federates. The
sending federate is responsible to send an interaction
parameter to each receiving federate and each receiving
federate sends the interaction parameter back to the sending
federate when receiving it. The elapsed time of the
operation is recorded. We set the size of the interaction
parameter to 1 Kbytes and 64 Kbytes, and set the number of
the receiving federates in a federation execution to {4, 8, …,
128, 256}. The test is executed 100 iterations and the
average value is calculated. The performance results are
shown in Fig. 5 and Fig 6.

The results in Fig. 5 and Fig. 6 show that as the number
of federates increases, the elapsed time of multicast will be
further reduced by increasing the number of FedServs. More
FedServs involved in the operation of multicast will improve
the parallelism in the message transmission from the FedServs
to the federates and the performance is better in our Multiple-
FedServ architecture.

Figure 4. Performance of time advancement benchmark.

Figure 5. Performance of time advancement benchmark. (message size =
1 Kbytes)

Figure 6. Performance of time advancement benchmark.(message size =
64 Kbytes)

D. Synchronization
The performance of the synchronization operation is

evaluated in terms of the elapsed time to synchronize
specified number of federates. The elapsed time is
calculated starting from the registration of a synchronization
point to the point that all federates are synchronized. We set
the number of the federates joining the operation of
synchronization in a federation execution to {4, 8,…, 128,
256}. The test is executed 100 iterations and the average
value is calculated. The results are shown in Fig. 7.

�

���

���

���

���

���

� � �	 �� 	� ��� ��	 ���

�
��
�
��
�	

�

��
���������������

����� ����� �����

�

���

����

����

� � �� �	 �� �	� 	��

�
�
�
�

��
���������������

����� ����� �����

�

���

���

���

����

����

����

����

����

� � �	
� 	� ��� ��	

�
�
�
�

��
����������������

����� ����� �����

526526521531

Figure 7. Performance of operation of synchronization.

As depicted in Fig. 7, the elapsed time to synchronize
the federates is reduced by increasing the number of the
FedServs. When the number of federates is large, the RTI
system will perform better by creating more FedServ in the
federation execution. The results show that our architecture is
beneficial for the operation of synchronization.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a scalable architecture for
implementing RTI system by taking advantages both of the
centralized and distributed architecture. With a large-scale
simulation, the time advancement, operation of multicast
and synchronization can benefit from our proposed
Multiple-FedServ design. We also provide the connection
scheme and synchronization method to further improve the
performance of the operations of multicast and
synchronization. The experimental results show that the
Multiple-FedServ design can scale well and also provides
high performance.

In current implementation, the joining operation of
federates and FedServs are manipulated by the users. In the
future, we will make this operation more flexible and
automatically increase/decrease the FedServs by the RTI
system according to the loading of the federation execution.
Also, we will provide methods to dynamically change the
connecting topology at runtime to make the loading of the
federation more balanced and make the operation of
multicast and synchronization perform better.

ACKNOWLEDGMENT

The work of this paper is partially supported by
CHUNG-SHAN Institute of Science & Technology under
contract XW98141P and National Science Council under
contract 98-2623-E-007-007-D. The authors would like to
thank anonymous referees for their comments.

REFERENCES

[1] E. D. Brooks, “The bufferfly barrier”, International Journal of
Parallel Programming, Volume 15, 1986.

[2] D. Chen, S.J. Turner, W. Cai, “A Framework for Robust HLA-based
Distributed Simulations”, Principles of Advanced and Distributed
Simulation 20th Workshop, 2006, pp.183-192.

[3] W. Cai, S. J. Turner, and H. Zhao, “A load management system for
running HLA-based distributed simulations over the grid”,
Distributed Simulation and Real-Time Applications, Proceedings of
the Sixth IEEE International Workshop, 2002, pp. 7-14.

[4] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of
the grid: An open grid services architecture for distributed systems
integration”, http://www.globus.org/research/papers/ogsa.pdf, 2002.

[5] R. M. Fujimoto and P. Hoare, “HLA RTI Performance in High
Speed LAN Environments”, Fall Simulation Interoperability
Workshop, September 1998.

[6] R.M. Fujimoto, and R.M. Weatherly, “Time Management in the
DoD High Level Architecture”, Parallel and Distributed Simulation,
PADS 96. Proceedings, 1996, pp.60-67.

[7] IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA), IEEE 1516 (HLA Rules), 1516.1 (Interface
Specification), 1516.2 (OMT), September, 2000.

[8] T. McLean and R. M. Fujimoto, “The Federated-Simulation
Development Kit (FDK),
http://www.cc.gatech.edu/computing/pads/fdk.html.

[9] G. Theodoropoulos, Y. Zhang, D. Chen, R. Minson, S. J. Turner, W.
Cai, Y. Xie, and B. Logan, “Large Scale Distributed Simulation on
the Grid”, Cluster Computing and the Grid Workshops, Sixth IEEE
International Symposium, vol.2, 16-19 May 2006, pp. 63-63.

[10] U.S. Department of Defense Modeling and Simulation Office, HLA
RTI-NG 1.3v6.

[11] K. Zajac, M. Bubak, M. Malawski, and P. Sloot, “Towards a grid
management system for HLA-based interactive simulations”,
Distributed Simulation and Real-Time Applications, Proceedings of
Seventh IEEE International Symposium, 23-25 Oct. 2003, pp. 4-11.

[12] W. Zong, Y. Wang, W. Cai, and S. J. Turner, “Grid Services and
Service Discovery for HLA-Based Distributed Simulation”,
Distributed Simulation and Real-Time Applications", Eighth IEEE
International Symposium, 21-23 Oct. 2004, pp. 116-124.

Table 1: Latency benchmark (Unit: msec).

 1 4 16 64 256 1024 4096
DMSO 5.767 5.792 6.372 2.225 8.170 29.995 122.721
1 hop 5.481 5.936 5.964 7.360 10.218 35.628 145.181
3 hops 9.048 8.466 10.240 10.085 21.462 70.919 280.306

Table 2: Throughput Benchmark (Unit: MByte/sec).

 1 4 16 64 256 1024 4096
DMSO 6.052 18.503 33.918 38.213 40.184 42.949 43.752
1 hop 0.481 1.914 7.619 30.334 42.218 43.382 44.442
3 hops 0.398 1.612 6.299 19.162 25.757 28.962 29.841

�

��

��

	�

��

���

���

���

� � �	
� 	� ��� ��	

�
�
�
�

��
����������������

����� ����� �����

527527522532

