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Abstract—In this paper, we investigate efficient algorithms and 
implementations using GPU plus CPU to solve the rectangle 
intersection problem on a plane.  The problem is to report all 
intersecting pairs of iso-oriented rectangles, whose 
parallelization on GPUs poses two major computational 
challenges: data partition and the massive output.  The 
algorithm we presented is called PRI-GC, Parallel Rectangle 
Intersection algorithm on GPU+CPU, which consists of two 
phases: mapping and intersection-checking. In the mapping 
phase, rectangles are hashed into different subspaces (called 
cells) to reduce the unnecessary intersection checking for far-
apart rectangles. In the intersection-checking phase, pairs of 
rectangles within the same cell are examined in parallel, and 
the intersecting pairs of rectangles are reported. Several 
optimization techniques, including rectangles re-ordering, 
output data compressing/encoding, and the execution 
overlapping of GPU and CPU, are applied to enhance the 
performance.  We had evaluated the performance of PRI-GC 
and the result shows over 30x speedup against two well-
implemented sequential algorithms on single CPU.  The 
effectiveness of each optimization technique for this problem 
was evaluated as well.  Several parameters, including different 
degrees of rectangle coverage, different block sizes, and 
different cell sizes, were also experimented to explore their 
influences on the performance of PRI-GC.  

Keywords - Rectangle Intersection, CUDA, Parallel 
Algorithms 

I.  INTRODUCTION 
Rectangle intersection is an important step in a variety of 

applications, such as motion simulations, computer graphics, 
and VLSI physical design. In this paper, we consider the iso-
oriented rectangle intersection problem on a plane, which is 
defined as follows: Given a set of N rectangles with axis-
parallel sides (iso-oriented rectangles) on a plane, report all 
intersecting pairs of rectangles. A rectangle in this definition 
is a set of closed line intervals and an intersecting pair of 
rectangles means the two rectangles share at least one 
common point.  

The most naïve method to solve this problem is to search 
all pairs of N rectangles. Although it takes O(N2) time, it is 
the worst case lower bound to report all intersecting pairs of 
rectangles.  In practical cases, the number of intersected 
rectangles is much fewer than N2/2.  Speedup methods had 
been widely studied for decades. Sequential algorithms, for 

example, can be found in [1], [2], [3], [4], [5], [6], [7], [8], 
[9], [10], [11], [12] and [13].  Common techniques used in 
those methods include plane sweep, spatial partition, and 
sorting. Parallel solutions to this problem for different 
architectures were also well investigated. Algorithms for 
PRAM models were presented in [14]; algorithms for 
multiprocessor systems could be found in [15] and [16]. 

This paper is concerned with the algorithms for solving 
the rectangle intersection problems on Graphics Process-ing 
Units (GPUs).  Two important reasons motivate this 
direction.  The first is the maturity of programmable graphic 
hardware, which possesses massively parallel processing 
units and allows user to program it for the purposes other 
than graphics related computation. Second, the computation 
of most algorithms is data parallelizable that fits naturally to 
the massive parallel computing environments like GPUs.   

There are two major computational challenges to 
implement the rectangle intersection algorithms on GPUs.  
The first one is the data partition, which reduces the large 
problem into small ones.  For the naïve method, one can 
simply divide the data to rectangle level.  However, many 
unnecessary comparisons and data movements may 
significantly slow down the performance.  Using the locality 
of rectangles to partition data is the most common and 
efficient method.  Static space partition methods that divide 
data according to the evenly partitioned space face the load 
balance problem.  Adaptive space partition methods that 
dynamically refine partition space to achieve better load 
balance need complicated data structures, which may not be 
really beneficial on GPUs.  

The second challenge is to report intersecting pairs of 
rectangles, because the output data size can be large and 
unpredictable.  The output data size can be as large as the 
number of rectangles or even more, which makes it the major 
performance bottleneck.  In addition, the number of 
intersecting pairs of rectangles in each set of partition data 
cannot be known in advance.  How to allocate the memory 
dynamically for the output also affects the performance 
significantly. 

After surveying major methods, sequential or parallel, the 
algorithm we designed on GPU+CPU is based on static 
space partition method.  Our algorithm consists of two 
phases: mapping and intersection-checking. In the mapping 
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phase, rectangles are hashed into different subspaces (called 
cells) to reduce the unnecessary intersection checking for far-
apart pairs of rectangles. In the intersection-checking phase, 
pairs of rectangles within the same cell are examined in 
parallel, and the intersecting pairs of rectangles are reported.  

Several optimization techniques are applied to enable this 
algorithm to resolve the challenges mentioned above.  First, 
although the mapping is done in parallel, rectangles in a cell 
are recorded in a continuous space to speed up the data 
access by memory coalescing and shared memory.  In 
addition, all cells with nonzero rectangles resided are packed 
into one big continuous memory, based on their order, to 
avoid the access of empty cells.  Second, to reduce the 
number of memory transmissions, intersection results, 
computed in GPU, are encoded/compressed in the 
hierarchical manner, and are decoded/decompressed by CPU.  
Third, to overlap the execution of GPU and CPU, the 
encoded data are stored in double buffers, and the decoding 
and encoding processes are done on each buffer alternatively. 

The performance of the proposed algorithm was 
evaluated in contrast with one sequential cell-based 
algorithm (Cell-CPU) and one sequential tree-based 
algorithm (Tree-CPU) on single CPU.  We implemented 
Cell-CPU, which uses the optimized cell size to reduce 
unnecessary intersections checking. We enable Cell-CPU to 
adjust the area of cells to be the average area of all rectangles. 
Tree-CPU is obtained from Computational Geometry 
Algorithms Library (CGAL) [17], which is the readily 
available implementation for researchers and industry 
customers. We will briefly explain Tree-CPU in Section II. 
For the problem with ten millions of rectangles, the proposed 
algorithm delivers up to around 30 times performance 
improvement comparing to the two sequential 
implementations. The optimization techniques enhance 3-5x 
performance improvement, compared with the proposed 
algorithm without any optimization. The comparisons were 
made for different problem settings, mainly for different 
degrees of rectangle coverage (DRC), which represents the 
crowdedness of rectangles.  Last, the effectiveness of 
different parameter settings, such as the block size (i.e., the 
number of threads per GPU thread block) and the cell size 
(i.e., the number of cells in partitioned space), are examined 
empirically and theoretically.  

The organization of this paper is as follows. In Section II, 
we briefly discuss the background, including the survey on 
rectangle intersection algorithms and the used GPU 
architecture, namely nVidia’s CUDA. Section III introduces 
our algorithm in detail. The relation of cell size and 
performance will be discussed in Section IV. In Section V, 
the experiments and the results for performance evaluation 
are presented. We conclude this paper and describe future 
work in Section VI. 

II. BACKGROUND 
In this section, we give a briefly survey on the rectangle 

intersection problem and an illustration on the nVidia CUDA 
architecture.  

A. Sequential Algorithms for the rectangle intersection 
problem 

The algorithms proposed in [1], [2] and [3] for finding 
intersecting pairs of rectangles are based on the sweep-line 
algorithm proposed by Shamos and Hey [18]. An efficient 
sweep-based algorithm was presented by Six and Wood [3]. 
The authors used the sweep line technique to determine 
intersections of rectangles at 1st dimension. During sweeping, 
it uses the interval tree or the range tree data structure (see 
[19] for details) to further determine intersections of 
rectangles at 2nd dimension.  

Vaishnavi and Wood [4] and Edelsbrunner [5] used 
layered segment tree and d-fold rectangle tree to directly 
obtain the intersection results in 2-D environments, 
respectively. An alternative tree-based algorithm was shown 
in [7]. It can be easily generalized to 3- or higher-D 
environments. For d-D environments, the algorithm builds 
one interval tree for each dimension. For a d-D rectangle 
query with d line interval queries, it merges the d intersection 
results of d queries to obtain a d-D rectangle intersection 
result. Regarding the space requirement in practice, 
Zomorodian and Edelsbrunner proposed a hybrid algorithm 
in [8]. The algorithm scans the end points of boxes and 
traverses segment and range trees in a hybrid fashion 
according to a cut-off value. The implementation of the 
algorithm (called Tree-CPU in this paper) can be found in 
Computational Geometry Algorithms Library (CGAL) [17].   

Some rectangle intersection algorithms preferred to 
divide the space of an environment into subspaces (cells) by 
fixed or dynamic size. The authors in [6], [9] and [20] 
adopted fixed-size partition strategy. An environment is 
decomposed into cells and rectangles are mapped to cells. 
Rectangles are only compared with the other rectangles in 
the particular cell(s). This can reduce unnecessary 
comparisons for those rectangles at different cells. The major 
issue of algorithms using uniform cells is that the cell size is 
crucial to the performance of rectangle intersection [10]. 
However, cell-based algorithms using uniform cells are 
suitable for parallelization [21]. Van Hook et al. [6] and 
Eroglu et al. [13] used 2d tree data structure to support 
dynamic cell size change. The idea is to split a cell (partition) 
into four equal areas of the partitioned cell until a stop 
condition is satisfied. Then, each rectangle in a cell is 
compared with other rectangles in the particular cell(s).  

Some rectangle intersection algorithms in [10], [11] and 
[12] are based on sorting techniques. Essentially, the sort-
based algorithms are similar to the sweep-based algorithms. 
An efficient sort-based algorithm proposed by Raczy et al. 
[12]. The algorithm first sorts end points of all rectangles for 
each dimension. It then scans all end points for obtaining the 
intersection result in each dimension. The overall 
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intersection result can be obtained by merging the 
intersection results of all dimensions. Pan et al. [11] 
proposed a dynamic sort-based algorithm to support 
scanning the end points within a dynamic range rather than 
scanning all end points. Gupta and Guha [12] proposed the 
P-Pruning algorithm with an another sorting technique (i.e., 
bucket sort). The algorithm performs rectangle intersection 
computations efficiently particularly for small-scale 
environments.  

B. Parallel Algorithms for the rectangle intersection 
problem 

In the early work, Chow [14] proposed three parallel 
algorithms for the rectangle intersection problem. The first 
algorithm is based on a concurrent read exclusive write 
(CREW) parallel random access machine (PRAM) model 
and the second and the third algorithms are based on a cube-
connected cycles (CCC) model. In both models, low-level 
parallel architectures are ignored, such as synchronization 
and communication. The three algorithms are of theoretical 
interest. However, the first algorithm might run on share 
memory systems with many processors (e.g., GPUs) because 
PRAM is a share memory abstract machine. The time 
complexity of the first algorithm is O(log2N+Imax) time with 
O(N) processors, where N is the number of rectangles and 
Imax is the maximum number of intersections per rectangle.  

A parallel interest matching algorithm for distributed 
virtual environments (DVEs) was presented by Liu and 
Theodoropoulos [15]. The algorithm performs interest 
matching on shared memory multiprocessor systems. The 
authors used flat subdivision technique [22] to divide the 
space of an environment into subspaces initially. Rectangles 
are then hashed into these subspaces according to the end 
points of rectangles. Each subspace is treated as a work unit. 
Work units are dispatched to processors and processed by a 
sort-based algorithm with insertion sort. The sort-based 
algorithm performs well based on the assumption that 
temporal and geometric coherence exists in DVEs.  

Recently, Batista et al. [16] presented a parallel algorithm 
for d-D box (rectangle) intersection. The parallel algorithm is 
based on the sequential algorithm by Zomorodian and 
Edelsbrunner [8]. The central idea of the parallel algorithm is 
divide the sequence of intervals as subtasks and conquer 
subtasks by threads on OpenMP [23] framework.  

C. Compute Unified Device Architecture (CUDA) 
CUDA is a parallel computing architecture with an array 

of multiprocessors and various memory spaces for execution. 
In the CUDA architecture, threads are assigned to groups 
(called warps) and executed by multiprocessors of the device 
(i.e., the CUDA-enabled product). Since the CDUA 
architecture employs Single-Instruction Multiple-Threads 
(SIMT) paradigm, all threads in a warp execute one common 
instruction at a time. Each multiprocessor is capable of 
executing one or more warps concurrently. In the device, 
data for access by threads could be placed in different levels 

of device memory hierarchy, including registers, shared 
memory, cache, constant memory, texture memory and 
global memory.  

To carry out tasks using CUDA, the host (i.e., the 
computer system consists of one or more CPUs and one or 
more CUDA-enabled products) copies data from the host 
memory to the device memory. Then, the host invokes a 
kernel function with the specified execution configuration. 
The execution configuration defines the organization of 
threads (i.e., the number of thread blocks in a kernel grid and 
the number of threads in a thread block). While running a 
kernel function, all thread blocks within a kernel grid will be 
distributed to multiprocessors. Each multiprocessor will 
arrange thread blocks into warps and schedule them for 
execution. When the kernel function is completed, the host 
copies data from the device memory to the host memory.  

Two key aspects of performing tasks using CUDA with 
high performance need to be concerned. One is the degree of 
thread parallelism. In SIMT paradigm, if threads in a warp 
have different execution paths due to a data-dependent 
condition, threads need to take turns in performing 
instructions (i.e., if- and else-part). The behavior is called 
warp divergence. When encountering more branches, threads 
in a warp are serialized more. Warp divergence should be 
avoided. Another one is the memory access pattern by 
threads. Threads should access data in the low latency 
memory (e.g., shared memory or cache) rather than in the 
high latency memory (e.g., global memory). Even if threads 
needs to access data from the global memory, coalesced 
memory access can reduce the number of memory 
transactions.  

D. The Potential of Rectangle Intersection Algorithms 
Using CUDA 

To perform rectangle intersection computations on GPUs, 
we consider the intrinsic nature of the rectangle intersection 
algorithms reported in literature.  

For the naïve algorithm, each rectangle is compared with 
all the other rectangles. The entire comparison operations 
can be executed in parallel. However, it is algorithm 
inefficient. For the cell-based algorithms, the operation of 
mapping rectangles can be executed in parallel as long as 
rectangles can be recorded in cells concurrently. Atomic 
instructions provided in the CUDA programming model are 
used to guarantee it. After the operation of mapping 
rectangles, the operation of matching rectangles is similar to 
that of the naïve algorithm.  

The cell-based algorithms are variants of the brute-force 
algorithm. For the sweep-based and the sort-based 
algorithms, the end points of rectangles need to be sorted. It 
is possible to parallelize this sorting operation. However, the 
scanning range of a rectangle is usually different with those 
of other rectangles. While a thread scans the range of a 
rectangle, the other threads in the warp might be disabled. 
This leads to thread serialization in a warp. For tree-based 
algorithms, the tree traverse operation enables the nearby 
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rectangles of a rectangle be found efficiently. As stated 
above, due to varying ranges of rectangles, to find 
intersections of rectangles needs to traverse different paths. 
This results in different execution paths within the same 
warp. Another problem for the tree-based algorithm is the 
difficulties of dynamically tree construction in GPUs. As 
nodes change at run-time, data in nodes need to be altered 
appropriately and atomically.  

In divide and conquer paradigm, the rectangle 
intersection algorithms can be parallelized in some way. The 
cell-based algorithms are efficiently feasible to fulfill 
performing rectangle intersection computations on GPUs, 
while the sweep-based, sort-based, and tree-based algorithms 
that depend on control flow, are suitable to be performed and 
parallelized on CPUs, like [15] and [16].  

III. THE PARALLEL INTERSECTION ALGORITHM (PRI-GC) 
Our algorithm can be divided into two phases: the 

mapping phase and the intersection-checking phase. 

A. The Mapping Phase 
This phase is to partition the entire space into small cells 

and to find the cells occupied by rectangles.  We use static 
cell size to partition the space and order them in the row 
major. (The relation of cell size and performance will be 
discussed in Section IV.)  With this data partition, the cells 
that each rectangle resides in can be calculated in parallel.  
However, the information we need in the intersection- 
checking phase is a list of rectangles resided in a cell for 
each cell.  Since the number of rectangles in a cell varies, 
allocating a fixed-length array for each cell is infeasible. On 
the other hand, dynamic space allocation introduces 
synchronization overhead. To obtain the optimal 
performance, we need the lists of rectangles are placed in 
order in a continuous array.   

To achieve this, we use three arrays as shown in Fig. 1. 
The first array, of the same length as the total number of cells, 
stores a counter for each cell that indicates the number of 
rectangles occupies the cell.  The second array, also sized for 
the total number of cells, stores the offset of a cell, which 
indicates the beginning position of the rectangle list in the 
third array.  The third array is a compact storage for the list 
of rectangles of all cells. For example, cell c1 contains three 
rectangles and the offset of cell c1 is 2. Rectangle r3, r9 and 
r10 are in the 3rd, 4th and 5th element in the rectangle list, 
respectively. 

The algorithm of mapping is sketched as follows. 
1. The information of rectangles, including coordinates and 

identifications, are blocked, and each block of data are read 
into the shared memory in parallel.  

2. Each thread handles a constant number of rectangles.  It 
first read the coordinate information of each rectangle and 
checks those cells it occupies.  

3. Each thread increases the rectangle counter for the occupied 
cells.  To avoid concurrent write, the atomic instruction is 
used. 

4. Run the parallel prefix sum algorithm to obtain the offset 
array. 

5. Based on the offset, each thread fills in the rectangles. The 
corresponding positions of a rectangle in the rectangle list 
can be calculated according to the offset of the cell and 
the order of executing the atomic instruction.  

B. The Intersection-checking Phase 
In this phase, the CPU and GPU co-operate in 

performing intersection checking and reporting intersection 
results. The CPU is to do block scheduling and to decode the 
encoded intersecting pairs of rectangles.  Since both jobs 
need to do condition checking on two lists, counters of cells 
and the intersecting list (where the GPU stores the encoded 
intersecting pairs of rectangles), the CPU is suitable to 
perform both jobs. The GPU is responsible for performing 
comparisons and reporting the encoded intersecting pairs of 
rectangles. Fig. 2 illustrates the co-operation between the 
CPU and GPU. After performing block scheduling, the CPU 
invokes an intersecting kernel function and then decodes the 
encoded intersecting pairs of rectangles. By double buffering, 
the CPU and GPU can execute at the same time so that the 
time to perform the decoding process can be hid by the time 
to execute the kernel function. Before explaining the 
intersection-checking phase, we first define several notations 
used. Let T be the block size (i.e., the number of threads per 

Figure 1. Example of data structures for cells 

 
Figure 2. The co-operation between the GPU and CPU 
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thread block). Let CS be the cell size and be defined as the 
number of cells in partitioned space. Let cnti be the value of 
the counter of cell ci. Let v(ra,i,low) be the coordinate of the 
lower end point of rectangle r along ith dimension.  Let 
v(ra,i,up) be the coordinate of the upper end point of 
rectangle r along ith dimension.  

In the beginning of the intersection-checking phase, the 
CPU carries out block scheduling such that each thread block 
is scheduled to check intersections for at most T rectangles. 
That is, if cell ci contains more than T rectangles, cnti/T 
thread blocks are used for cell ci. More rectangles a cell 
contains, more threads are used to check intersections for all 
rectangles in the cell. If cell ci contains less than or equal to T 
rectangles, cell ci is processed by a thread block or several 
cells (including cell ci) are grouped and handled by a thread 
block.  In the following, we explain the detailed steps of the 
kernel function executed by the GPU.  

In the kernel function, each thread compares one 
rectangle with all rectangles in the same cell. Fig. 3 shows 
the execution diagram when the GPU checks intersections 
for rectangles. The kernel function of the intersecting-
checking phase consists of four steps as follows: 

Step 1: Each thread obtains one rectangle from the 
rectangle list that its thread block needs to deal with. 
According to the identification of the rectangle, it reads its 
rectangle from the global memory.  

Step 2: Each thread within a thread block loads a 
rectangle from the global memory into the shared memory. 

For example, in Fig. 3, thread t1 in Block 1 gets the 
identification of a rectangle from the rectangle list first and 
then loads that rectangle from the global memory into the 
shared memory. Since each thread participates in loading T 
rectangles into the shared memory, the number of times a 
rectangle is accessed from the global memory is decreased 
from T2/2 to T and each rectangle in the shared memory is 
reused for T/2 times averagely. Because each pair of 
rectangles has symmetric property, only half pairs of 
rectangles are compared. Only T rectangles are loaded into 
the shared memory at a time due to the limited amount of the 
shared memory available for a multiprocessor. Until T 
rectangles within the thread block have been loaded into the 
shared memory, all threads within the thread block proceed 
to Step 3.  

Step 3: Each thread within the thread block sequentially 
compare its rectangle with the rectangles that have been 
loaded into the shared memory. Because of the symmetric 
property of pairs of rectangles, some pairs of rectangles are 
skipped. The principle of comparing two rectangles is that 
the lower and the upper end points of a rectangle are 
compared with those of the other rectangle along each 
dimension. Formally, rectangle ra and rb intersects such that 
for each dimension i 

 
v(ra,i,low) ≤ v(rb,i,up)  v(rb,i,low) ≤ v(ra,i,up).    (1) 

 
Since rectangles could be mapped to one or more cells, 

two rectangles could be compared and decided as intersected 
in more than one cell. This results in redundant intersecting 
pairs of rectangles in the intersecting list. Fig. 4 illustrates 
such a case in a 2-D environment. In Fig. 4, rectangle r1 and 
r2 intersects in two cells. The pair of rectangle r1 and r2 will 
be recorded in the intersecting list twice. To avoid 
redundancy, we have a scheme to let threads insert 
intersecting pairs of rectangles into the intersecting list 
without doing synchronization. In this scheme, once a thread 
decides two rectangles as intersected, the thread needs to 
determine the right to write the intersecting pair to 
intersecting list. First, it finds the first cell of the intersecting 
area of two rectangles. If the first cell is the same as the cell 
where the thread is comparing rectangles, then the thread has 
the right to insert the rectangle to the intersecting list. 
Otherwise, the pair of rectangles should not be inserted into 
the intersecting list.  

In order to find the first cell that the intersecting area of 
two rectangles, we calculate one particular intersecting point 
of two rectangles and calculate the cell the intersecting point 
intersects. The particular intersecting point of two rectangles 
is the first-considered point when performing mapping. The 
coordinate of the particular intersecting point of two 
rectangles ra and rb at ith dimension is   

 
max(v(ra,i,low), v(rb,i,low)).                         (2) 

 

Figure 3. The execution diagram of the kernel function in the intersecting-
checking phase 
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In Fig. 4, for example, p1 and p2 are the particular 
intersecting points of the pair (r1 , r2) and the pair (r2 , r3), 
respectively.  With the intersecting points and the cell size, it 
is easy to calculate the cell a point intersects. Both 
calculations, to calculate the particular intersecting point of 
two rectangles and to calculate the cell the point intersects, 
can be done independently and efficiently.  

Once two rectangles intersect, the pair of the two 
rectangles is encoded and then stored in thread local-cached 
memory. Since each thread compares one rectangle with 
other rectangles, each thread can encode the intersecting 
pairs by using the local indexes of rectangles in the cell. 
Specifically, the local memory of a thread records the 
elements as follows: the current cell, the number of 
intersecting pairs, the local index of its rectangle and the 
local indexes of other intersecting rectangles.  

Step 4: When all threads within the thread block 
complete the comparison operations for T (or less than T) 
rectangles, all threads within the thread block write its 
encoded intersecting pairs of rectangles in the intersecting 
list (in the global memory). Concurrently, several thread 
blocks could write the intersecting pairs of rectangles to the 
global memory. To reduce the number of atomic instructions 
used, we use prefix sum mechanism to calculate the offsets 
by which threads can know where it can place the 
intersecting pairs of rectangles in the intersecting list safely. 
In this way, each thread block only performs one atomic 
instruction in order to get the global offset in the intersecting 
list. After this step, threads proceed to Step 2 for finding 
intersections for the next T rectangles if needed. Steps 2, 3 
and 4 repeat until a thread block completes the comparison 
operations for all those rectangles in the same cell.  

IV. RELATION OF CELL SIZE AND PERFORMANCE 
In this section we discuss the cell size impact on the 

performance of PRI-GC.  The cell size decides the 
performance of three tasks: calculate the rectangle offset 
array by prefix sum algorithm, block scheduling by CPU and 
intersecting kernel function by GPU.  The first two tasks 

operate on the rectangle counter array.  Since the cell size 
decides the length of the rectangle counter array, the time to 
perform the two tasks is affected by the cell size.  The third 
task is most affected by the cell size because the cell size 
decides the fact of the number of rectangles in a cell, i.e., the 
number of comparisons performed.  In the following, we 
focus on the discussion of the cell size related to the third 
task.     

For PRI-GC, the comparisons carried out in the 
intersection-checking phase can be classified into three 
types: effective comparison, unnecessary comparison and 
redundant comparison. A comparison of two rectangles is an 
effective comparison (EC) if two rectangles are in a given 
cell and both rectangles are overlapped. A comparison of two 
rectangles is an unnecessary comparison (UC) if two 
rectangles are in a cell and they are not overlapped. A 
comparison is a redundant comparison (RC) if the match of 
two rectangles has been performed at other cells. In PRI-GC, 
the total number of ECs carried out is a constant. However, 
the numbers of UCs and RCs carried out are related to the 
chosen cell size. When the area of cells is larger than the 
average area of rectangles, the number of UCs will increase. 
Conversely, when the area of cells is smaller than the 
average area of rectangles, the number of RCs will increase.  
From a rectangle point of view, a rectangle is compared with 
those rectangles that are close to the rectangle in terms of the 
area of cells. If the area of cells is approximately equal to the 
area of the rectangle, the rectangle is compared with a very 
small set of rectangles only. Also, the comparisons carried 
out are likely effective comparisons. (That is why our 
sequential algorithm (Cell-CPU) sets the area of cells to be 
the average area of all rectangles.) If PRI-GC uses the 
average area of all rectangles as the area of cells, it can 
minimize the number of comparisons performed.   

However, in the GPU computing environment, the 
performance of PRI-GC is not only related to algorithm 
efficiency but also to GPU hardware efficiency. Since the 
CDUA architecture employs SIMT computing model, a warp 
(i.e., 32 threads in the current CUDA architecture) executes 
one instruction concurrently.  If a cell contains only few 
rectangles (<32) that mapped to this cell, to check 
intersections for the rectangles in this cell causes low 
utilization of hardware resources (including computing units 
and registers and shared memory).   

As a result, areas of rectangles, the total number of 
rectangles, and the GPU characteristics should be considered. 
The choice of the cell size should make a cell to averagely 
contain more or less 32 rectangles, i.e.,  

 

                                       (3) 

where RA is the sum of areas of all rectangles, N is the 
number of rectangles, WS is the warp size, EA is the area of 
an environment, CS is the cell size, i.e., the number of cells 
in partitioned environment. In (3), the area of cells is roughly 

 

Figure 4. Example of redundant pairs: (r1,r2) in cell c9 and (r1,r2) in cell
c10.  
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equal to 32 times of the average area of all rectangles. This 
minimizes the number of comparisons performed and also 
enables threads within a warp to do comparisons effectively.  

V. PERFORMANCE EVALUATION 
In this section, the performance of the proposed 

algorithm is evaluated by the comparisons to two efficient 
sequential implementations. The first one is a cell-based 
algorithm, which alters the area of cells as the current 
average rectangle area (Cell-CPU). The second one is a tree-
based algorithm in CGAL (Tree-CPU), which is the widely 
available implementation for research. We take the 2-D box 
self-intersection implementation for reference.  

The experimental platform is equipped with one Intel i7 
processor 2.67 GHz, 6 GB DRAM, and a Geforce GTX 480 
video card. The OS used is Linux of kernel version 2.6.27. 
Geforce GTX 480 contains 15 multiprocessors (480 CUDA 
cores in total) and 1.5 GB DRAM. We set L1 cache size to 
16 KBytes and shared memory 48 Kbytes.  For the host 
programs, we use GCC 4.3 and enable optimizations, –O3 
and –DNDEBUG. For the device programs, we use CUDA 
compiler driver 3.2. The parallel algorithms run on the host 
and the device, while the sequential algorithm runs on the 
host. For the parallel algorithms, we measure the time to 
perform rectangle intersection computations for N rectangles, 
including the time to copy rectangles to the device, to invoke 
the kernel function(s), to copy the intersecting result to the 
host, and to decode the intersecting result. For the sequential 
algorithm, we measure the CPU time to perform rectangle 
intersection computations for N rectangles. The running time 
is averaged over 10 times for each test case.  

In this paper, we use the Degree of Rectangle Coverage 
(DRC) to adjust the density of rectangles.  DRC is defined as  

                                   (4) 

where RA is the sum of areas of all rectangles in an 
environment and EA is the area of the environment.  The 
DRC value means the average number of rectangles per unit 
area.  We generate the low DRC (10-7 ~ 10-3), the medium 
DRC (10-5 ~ 10-1) and the high DRC (10-3 ~ 101) 
environments for experiments.  As the number of rectangles 
simulated increases (i.e., RS increases), the DRC value 
increases as well. In general, the DRC values for most 
applications are within the range 10-7 to 101.  For number of 
rectangles equals to 107, the average numbers of intersections 
for the low DRC, medium DRC, and high DRC are about 
0.002N, 0.2N and 20N, respectively.   

A. Performance in Varying DRC Environments 
We evaluate the performance of three algorithms in the 

low, the medium and the high DRC environments. The 
numbers of rectangles (N) are 103, 104, 105, 106, and 107. 
The block size for the parallel algorithms is 256. The 

number of cells in an environment for the proposed 
algorithm, PRI-GC, is 400×400.   

Fig. 5 shows the execution time of the three algorithms 
for different DRC environments and the speedup of PRI-GC 
compared with both sequential algorithms. Fig. 6 shows the 
execution time ( s) taken by each task of PRI-GC in the 
high DRC environment and the percentage of the execution 
time for each task.   

When N is small (N=103), PRI-GC is slower than both 
sequential algorithms owing to the overhead of 
parallelization. The major overheads are induced by block 
scheduling and prefix sum operations (see task Scan and 
Sched in figure 6), as are for N=104.  The time by two tasks 
closely relate to the length of rectangle counter array (i.e., 
equal to 400×400).   

As N increases, PRI-GC outperforms both sequential 
algorithms over 30x speedup for N equal to 107.  In the high 
DRC environment, PRI-GC outperforms Cell-CPU over 
100x speedup due to the significant performance degradation 
of Cell-CPU.  The rectangle intersection time by PRI-GC 

 

Figure 5. The execution time of Cell-CPU, Tree-CPU and PRI-GC and the
speedup of PRI-GC compared with both sequential algorithms: (a) Low
DRC (b) Medium DRC (c) High DRC.   
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exhibits linear growth with respect to N, while the rectangle 
intersection time by Cell-CPU exhibits near-quadratic 
growth with respect to N.  Since PRI-GC and Cell-CPU are 
of cell-based algorithms, it proves that the design of PRI-GC 
is suitable (for such considerable number of rectangles) to 
perform rectangle intersection computations on GPUs.   

Next, we present the performance of PRI-GC with 
varying cell sizes and varying block sizes in figure 7. The 
combinations of experiment configuration are listed below 
1. The numbers of cells used are 25×25, 50×50, 100×100, 

200×200 and 400×400.  
2. The numbers of rectangles are 103, 105 and 107.  
3. The block sizes used are 64, 128, 256, 512, and 1024.  
4. Since we are interested in large output size, the high 

DRC environment is tested. 
 

B. Performance with Varying Cell Sizes  
In this section we present the performance change for 

different cell sizes in Fig 7. With different numbers of 
rectangles, the cell size effect on the performance is totally 
different.   

When N=103, PRI-GC using 25×25 cells has better 
performance.  As described in Section A, both tasks, the 
prefix sum operations and block scheduling, dominate the 
execution time. As a result, a smaller cell sizes implies less 
time in scanning the rectangle counter list.   

When N=105, PRI-GC using 25×25 cells performs better 
than that using other numbers of cells. From our 
experimental data, with the setting T=256, PRI-GC using 
25×25, 50×50, 100×100, 200×200 and 400×400 cells made a 
cell averagely contain 61, 37, 9, 2 and 1 rectangles, 
respectively.  The performance results of PRI-GC using 
different cell sizes illustrated in Fig 7(b) match our analysis 
in Section IV.  For better performance, a cell should contain 
at least 32 rectangles.   

In contrast to the cases in Fig. 7(a)-(b), N is very large 
(>107) such that each cell contains at least 32 rectangles even 
though 400×400 cells are used.  The experimental data 
showed that if T=256, PRI-GC using 25×25, 50×50, 
100×100, 200×200 and 400×400 cells made a cell averagely 
contain 7498, 3794, 880, 158 and 82 rectangles, respectively.  
As the number of rectangles a cell contains increases, many 
unnecessary comparisons are performed in cells.  The 
performance results match our analysis of cell size.  PRI-GC 
using the 400×400 cells performs best, compared with other 
numbers of cells used.   

C. Performance with Varying Block Sizes 
Now, we investigate the block size impact on the 

performance of PRI-GC.  The performance results are shown 
in Fig. 7.   

The performance change shown in Fig 7(a) is not mainly 
determined by the block size.  Most execution time is taken 
by prefix sum and block scheduling operations, which is 
related to the cell size used.   

As shown in Section B, with N=105 and T=256, PRI-GC 
using 25×25, 50×50, 100×100, 200×200 and 400×400 cells 
made a cell averagely contain 61, 37, 9, 2 and 1 rectangles, 
respectively.   Fig 7(b) shows that the performance of PRI-
GC using T=64 outperforms that using other settings of T.  
Since the average number of rectangles a cell contains is less 
than the block size, only few threads within a thread block 
are active.  If T=1024 is used, this results in poor 
performance due to low utilization of threads.   

In Fig. 7(c), with 25×25 cells, PRI-GC using a larger 
block size (e.g., 1024) has better performance than that using 
a smaller block size (e.g., 64).  In this case, N is large enough 
such that each cell, on average, contains 7498 rectangles 
(>1024 rectangles). Larger block size, more threads co-
operate in loading rectangle information from the global 
memory to the shared memory.  However, if 400×400 cells 
are used, the average numbers of rectangles (82) in a cell 

 

Figure 6. The execution time (µs) of PRI-GC in and the percentage of the
execution time in the high DRC environment taken by the following tasks:
DataIn: copy rectangle information, DataOut: copy encoded intersecting
results, Count: read rectangle information and increase the cell counter,
Scan: perform prefix scan, Fill: fill the rectangles into the rectangle list,
Sched: do block scheduling, SR: load rectangle information into the
shared memory, Comp: compare rectangles, LW: write encoded pairs of
rectangles to local memory, GW: write the encoded results to the global
memory.  
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decreases (<256).  PRI-GC using T=64 results in lower 
cooperativeness among threads, while PRI-GC setting 
T=1024 results in low utilization of threads.  There is a 
performance tradeoff point in choosing block size. For 
example, if PRI-GC using 400×400 cells and T=128 or 
T=256, the performance is better than other parameter 
settings.   

Consider the block size used in PRI-GC.  The block size 
should be close to the average number of rectangles a cell 
contains. The block size 256 is suggested.  According to our 
experimental results, it has in average performance in most 
cases and best performance in some cases.   

D. Performance with optimization techniques 
In this subsection, we show the performance of PRI-GC 

using different optimization techniques in Table I.  From 
Table I, we can see that PRI-GC using shared memory in our 
algorithm deliveries up to 3-5x speedup, compared with the 
version without any optimization. The encoding and the 
overlap execution techniques can enhance about 20-40% 
performance gain. In the low and medium DRC 

environments, since few intersections are reported, little 
performance gain by the encoding and the overlap execution 
optimization is achieved. However, in the high DRC 
environment, the number of intersections reported is large 
(20 times of N).  PRI-GC benefits from the encoding and the 
overlap execution techniques.   

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we investigated the parallelization of 

rectangle intersection computations on the hybrid system: 
GPUs+CPU.  Two major challenges for parallelizing this 
problem are data partition and the massive output.  We 
presented an algorithm, called PRI-GC, which utilizes many 
optimization techniques for performance enhancement.  First, 
to speed up the data access by memory coalescing and shared 
memory, rectangles in a cell are recorded in a continuous 
space.  Second, to reduce the number of memory 
transmissions, the intersection results, computed by GPU, are 
encoded and compressed before writing into the global 
memory.  Third, to overlap the execution of GPU and CPU, 
which is responsible for decoding and decompression, the 
encoded data are stored in double buffers, and the decoding 
and encoding processes are done on each buffer alternatively. 

The performance of PRI-GC was evaluated with two 
well-implemented sequential algorithms, and an over 30 
times speedup had been observed for ten millions rectangles.  
Experiments were also made to evaluate the influence of 
different parameters, such as the degrees of rectangle 
coverage (DRC), the block size, and the cell size. Finally, the 
effectiveness of the optimization techniques used in this 
algorithm was examined as well. 

Owing to the importance of this problem in various 
applications, further investigations on scalability and the 
generalization of used techniques are required for developing 
practical packages. Other implementations of different styles 
of algorithms to have better load balance or processor 
utilization are also of our interests.  Parallelizing the more 

TABLE I. The execution time of PRI-GC using different 
optimization schemes in the low, medium and high DRC 
environments: Without any optimization, +SM: use of shared 
memory, +Encode: use of encoded scheme, +Overlap: use of 
overlap execution scheme.  

PRI-GC Low    
DRC 

Medium 
DRC 

High 
DRC 

Without any 
optimization 

452391 
(1.0x) 

532573 
(1.0x) 

2176840 
(1.0x) 

+SM 135876 
(3.33x) 

170908 
(3.12x) 

649523 
(3.35x) 

+Encode 379776 
(1.19x) 

438903 
(1.21x) 

1541160 
(1.41x) 

+Encode 
+Overlap 

376801 
(1.20x) 

429387 
(1.24x) 

1470930 
(1.48x) 

+SM 
+Encode 
+Overlap 

137435 
(3.29x) 

157654 
(3.38x) 

380694 
(5.72x) 

Figure 7. The execution time of PRI-GC with varying numbers of cells and
varying block sizes: (a) N=103 (b) N=105 (c) N=107.  
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general problems, such as arbitrary-oriented rectangle 
intersection problem or the triangulation intersection 
problem in 3-D environments, are worth for further studies. 
Moreover, we feel that the techniques developed for this 
problem, such as data partition and data compression, can be 
used to parallelize other related problems using GPU, 
especially the problem with massive input and output data.  
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