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Abstract—Communication-aware task mapping algo-
rithms, which map parallel tasks onto processing nodes
according to the communication patterns of applica-
tions, are essential to reduce the communication time
in modern high performance computing. In this pa-
per, we design algorithms specifically for interconnected
multicore systems, whose architectural property, namely
small number of cores per node, large number of nodes,
and large performance gap between the communication
within a multicore and among multicores, had brought
new challenges and opportunities to the mapping prob-
lem. Let 𝑘 be the number of cores per multicore and
𝑛 be the number of tasks. We consider the practical
case that 𝑘 ≪ 𝑛 for 𝑘 = 2, 4, and 6. The designed
algorithms are optimal for the mapping measurement,
called Maximum Interconnective Message Size (MIMS),
and of time complexity merely 𝑂(𝑚 log𝑚) for 𝑚 com-
munication pairs. Thus, they are highly scalable for
large applications. We had experimented the algorithms
on the IBM Blue Gene/P system for two synthetic
benchmarks and two applications. The results show good
communication performance improvement.

I. INTRODUCTION

Scientific computing had become the third pillar in

science in addition to theory and experimentation. To

fulfill the strong demands for larger and more complex

simulations, massively parallel systems that possess

hundred thousands processing nodes were built and

becoming the major trend of computational facilities.

However, the rapid increase of processing nodes and

the exponentially enlarged speed gap between commu-

nication and computation have made communication

the performance bottleneck. As the result, reducing the

communication overhead becomes the new paradigm

of performance enhancement.

Communication-aware task mapping, which maps

parallel tasks onto processing nodes according to the

communication patterns of applications, is one of the

important method to achieve this goal. Many of the

mapping algorithm are designed for specific host ma-

chine topologies, such as hypercube, mesh network, or

switch based network [10], but only few of them is

designed for interconnected multicore systems, whose

architectural properties had brought new challenges

and opportunities to the communication-aware map-

ping problem. First, the number of processing nodes

is massive; while the number of cores per processing

node is small. Second, the communication cost among

processing nodes is much larger than that within a

multicore.

In this paper, we investigate the mapping algorithms

for this system. We call the tasks placed in a multicore

processor a pack, and the process that partitions tasks

into packs packing. Assume 𝑘 is the number of cores

per multicore and 𝑛 is the total number of tasks.

For such kind of systems, 𝑘 is usually very small,

like two or four, but 𝑛 can be extremely large. We

define a new metric to evaluate the mapping quality

of packing, called Maximum Interconnective Message

Size (MIMS), which is the maximum total message

size communicated between two tasks in different

multicore processors. The purpose of this metric is try

to utilize the low communication overhead of tasks

with multicore as much as possible. We propose a

framework of algorithms to find the optimal mappings

minimizing the MIMS, and specify how the framework

is implemented for 𝑘 = 2, 4 and 6. We verified this idea

on the IBM Blue Gene/P system using two synthetic

benchmarks and two applications.
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The rest of the paper is organized as follows: Section

II reviews related work of mappings. Section III intro-

duces the packing algorithms, as well as the analysis

of their correctness and time complexity. Section IV

presents the experiment and the evaluation results.

Section V discusses and concludes the technical details

and the limitations of the proposed method.

II. RELATED WORK

The problem of mapping application tasks onto a

targeted hardware physical topology has been consid-

ered as a graph embedding problem [4]. In general,

an embedding of a guest graph 𝐺 = (𝑉𝐺, 𝐸𝐺) into a

host graph 𝐻 = (𝑉𝐻 , 𝐸𝐻) is a one-to-one mapping

𝜙 from 𝑉𝐺 to 𝑉𝐻 . Graph embedding has been studied

and applied to optimize VLSI circuits [8], [9]. The

graph embedding for VLSI circuits tries to minimize

the longest path where the mapping in HPC tries to

reduce the point-to-point communication time.

The quality of the embedding can be measured by

various cost functions. First, the dilation of an edge

(𝑢, 𝑣) ∈ 𝐸𝐺 is the shortest path in 𝐻 that connects

𝜙(𝑢) and 𝜙(𝑣). The dilation of an embedding is the

maximum dilation over all edges in 𝐸𝐺. Second, the

expansion of an embedding is ∣𝑉𝐻 ∣/∣𝑉𝐺∣. In other

words, the dilation of an embedding measures the

worst stretched edge and the expansion measures the

relative size of the guest graph. Another measurement

of the mapping is the hop-byte [12]. Let 𝑤(𝑢, 𝑣) be the

size of messages transferred on an edge (𝑢, 𝑣) ∈ 𝐸𝐺,

and 𝑑(𝜙(𝑢), 𝜙(𝑣)) be the distance, usually measured

by the number of hops, of the shortest path in 𝐻
that connects 𝜙(𝑢) and 𝜙(𝑣). The hop-byte of an

embedding is computed as
∑

(𝑢,𝑣)∈𝐸𝐺

𝑤(𝑢, 𝑣)𝑑(𝜙(𝑢), 𝜙(𝑣)). (1)

In [11], authors take all possible routes between 𝜙(𝑢)
and 𝜙(𝑣) into account and utilizes the idea of equiva-

lent resistance to compute the equivalent distance for

𝑑(𝜙(𝑢), 𝜙(𝑣)).
Algorithms designed to optimize different metrics

have dissimilar assumptions. For dilation and expan-

sion, the connectivity information of tasks, meaning

the pairs of communicated tasks, and the topology

of the host machine need to be known. One of the

well studied method is the utilization of space fill-

ing curves, which improve proximity by mapping the

geometric wireframe connected tasks onto the host

machine. The paper [3] extends the concept of space

filling curves to space filling surfaces. It describes

three different classes of space filling surfaces and

calculate the distance between facets. Another type of

algorithm develops topology mapping libraries [12],

[6], whose mapping techniques are based on topology-

aware heuristics.

For the hop-byte metric, various techniques were

proposed. The first kind of algorithms are search-

based optimization methods, such as greedy method,

local search, genetic algorithms, or simulated anneal-

ing [5]. The second kind of algorithms uses graph-

partitioning, which clusters communication intensive

tasks together and minimizes the communication cost

among partitions. Various methods of graph-partition

were proposed, such as recursive mincut, normalized

cut[7], etc.

Mapping algorithm designed for scalability pur-

pose is also considered in [7], the HMA algorithm.

The basic algorithm of the HMA is the optimization

method, and it uses two techniques to improve the

scalability and convergence: the task partition and

initial mapping. The task partition clusters tasks into

equal size groups, called supernodes. By doing so,

one can apply the algorithm recursively, which can

significantly reduce the time complexity. The initial

mapping uses topology-aware techniques to provide

better initial guesses to accelerate the convergence and

the quality of the optimization method.

III. THE PACKING ALGORITHMS

The goal of the packing algorithm is to partition

tasks into packs, each of which is a group of 𝑘 tasks

for a 𝑘-cores multicore processor. Here we assume that

the number of tasks 𝑛 is a multiple of 𝑘, and 𝑘 ≥ 2.

The criterion of packing is formally defined as follows.

Let 𝐶 be a matrix whose element 𝐶(𝑖, 𝑗) represents the

total message size transmitted between task 𝑖 and task

𝑗, measured for the entire execution. To simplify the

discussion, we assume 𝐶 is symmetric.

Here we give definitions to the problem:

Definition 1: A pack is a set of tasks. A 𝑘-pack is

a pack of cardinality exact 𝑘.

Definition 2: Let 𝑉 be a set of tasks, and 𝑆 be a

set of packs. A packing is a function 𝑓 : 𝑉 → 𝑆 that

maps each task in 𝑉 to a pack.
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Definition 3: A packing is called 𝑘-feasible, or sim-

ply called feasible, if all packs are 𝑘-packs.

In another word, a feasible packing partitions 𝑛 tasks

into (𝑛/𝑘) 𝑘-packs.

In this paper, we propose a new metric to measure

the quality of a packing, called Maximum Interconnec-

tive Message Size (MIMS), which is defined below

MIMS(𝑓) = max
𝑓(𝑣𝑖)∕=𝑓(𝑣𝑗)

∀𝑣𝑖,𝑣𝑗∈𝑉

𝐶(𝑖, 𝑗). (2)

By that, the object of the packing can be defined as

min
𝑓 :𝑉→𝑆𝑘

max
𝑓(𝑣𝑖)∕=𝑓(𝑣𝑗)

∀𝑣𝑖,𝑣𝑗∈𝑉

𝐶(𝑖, 𝑗). (3)

Simply speaking, we want the pair of tasks that have

the large total communication message size are as-

signed to the same multicore processor.

Definition 4: A packing 𝑓 is optimal if it is feasible

and MIMS(𝑓 ) is minimum.

In this section, we will introduce algorithms for 𝑘 =
2, 4 and 6.

A. The packing algorithm for 𝑘 = 2

In this section, we present the framework first. The

algorithm is greedy, which means it packs tasks with

larger communication cost first. To do that, we need to

sort nonzero 𝐶(𝑖, 𝑗) for all communicating pair 𝑣𝑖 and

𝑣𝑗 . Then, we try to pack 𝑣𝑖 and 𝑣𝑗 together from the

largest 𝐶(𝑖, 𝑗). This packing may fail because 𝑣𝑖 or 𝑣𝑗
may be already packed with other tasks. Therefore, we

need to do the check every time. If the packing does

make any confliction, then we continue with the next

𝐶(𝑖, 𝑗). The algorithm is sketched as follows. It can be

shown that algorithm 1 will find an optimal packing in

terms of MIMS.

For 𝑘 = 2, the feasibility test is just to test if all

packs are of size 2, as stated in Algorithm 2.

The time complexity of Algorithm 1 with Algorithm

2 is 𝑂(𝑚 log𝑚) for 𝑚 nonzero 𝐶(𝑖, 𝑗) because the

sorting in Step 1. For 𝑘 = 4 and 𝑘 = 6, the only

difference is the how to perform the feasibility test.

B. The packing algorithm for 𝑘 = 4

A correct feasibility check for 𝑘 > 2 can be reduced

to the bin-packing problem.

Definition 5: Given 𝑚 items with sizes

𝑠1, . . . , 𝑠𝑚 ∈ {1 . . . 𝑘}, pack them into the fewest

number of bins possible, where each bin is of size 𝑘.

Algorithm 1 Framework of packing algorithms

Input: 𝑉 , 𝑘, and 𝐶
Output:a packing function 𝑓 .

1) Sort 𝐶(𝑖, 𝑗) in the descending order.

2) While there are unpacked tasks and nonzero

𝐶(𝑖, 𝑗)

a) Select the largest 𝐶(𝑖, 𝑗) and pack 𝑣𝑖 and

𝑣𝑗
b) Run the feasibility test.

c) If the test fails

i) Unpack 𝑣𝑖 and 𝑣𝑗 .

d) Set 𝐶(𝑖, 𝑗) = 0

3) Pack tasks that are unpacked with the best effort.

Algorithm 2 The feasibility test for 𝑘 = 2

Input: A set of packs.

Output:A feasible packing or not.

1) Find the sizes of all packs.

2) If any pack has size larger than 2, return false.

3) Return true.

The argument is: if the answer of the bin-packing for

packs of different sizes is less or equal to 𝑛/𝑘, then

the feasibility test should return true. The algorithm

that verifies the feasibility based on bin-packing is

described in Algorithm 3. We use the term histogram to

characterize a set of packs, (𝑛1, 𝑛2, . . . , 𝑛𝑘), in which

𝑛𝑖 denotes the number of size 𝑖 packs.

Algorithm 3 Feasibility check for Algorithm 1

Input: A set of packs.

Output:A feasible packing or not.

1) If there is a pack of size larger than 𝑘, return

false.

2) Given the Histogram (𝑛1, 𝑛2, . . . , 𝑛𝑘) of the cur-

rent packs, run the bin-packing algorithm.

3) If the number of bins is less than or equal to

𝑛/𝑘, return true.

4) Otherwise, return false.

The following algorithm finds the optimal bin pack-

ing in 𝑂(𝑚) time for 𝑚 existing packs.

The time complexity of Algorithm 4 is constant,

which makes the time complexity of the entire packing
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Algorithm 4 Bin-packing for 𝑘 = 4

Input: Histogram (𝑛1, 𝑛2, 𝑛3, 𝑛4)
Output:The minimum number of bins, of

capacity 4, for packs of size 2, 3, and 4.

1) Return 𝑛4 + 𝑛3 + ⌈𝑛2/2⌉.

Table I
POSSIBLE PACKINGS FOR 𝑘 = 6

class A {6}, {5, 1}∗, {4, 2}, {3, 3}
class B {4, 1, 1}∗, {3, 2, 1}
class C {3, 1, 1}∗, {2, 2, 2}
class D {2, 2, 1, 1}
class E {2, 1, 1, 1, 1}∗
class F {1, 1, 1, 1, 1, 1}∗

algorithm 𝑂(𝑚 log𝑚).

C. The packing algorithm for 𝑘 = 6

The packing algorithm for 𝑘 = 6 is under the same

framework described in Algorithm 1 and Algorithm 3,

except how to solve the restricted bin-packing problem

for 𝑘 = 6. Here we only consider the possible packings

to fill a 6-bin, because if there is a bin not full, the

packing won’t be optimal.

Table I lists all 11 possible full packings for 𝑘 = 6,

prioritized into six classes. The classification of pack-

ings will be used in the bin-packing algorithm, which

tries the possible packings from class A, then class B,

and so on. For example, it will try first to find the

packings of size 4 and size 2. If there is not enough

size 2 packs to match size 4s, it will try to search

one size 4 and two size 1s. However, for the possible

packings with asterisk marks, if the largest sized pack

exists but the packing is not full, it early returns 𝑛 to

indicate infeasibility. The entire process is sketched in

Algorithm 5.

The time complexity of the packing algorithm for

𝑘 = 6 is also 𝑂(𝑚 log𝑚) because the feasibility test

can be done in the constant time.

IV. EXPERIMENTS AND RESULTS

In this section, we use the IBM Blue Gene/P (BG/P)

as the platform for experiments. The compute node of

the BG/P is a quad-core PowerPC 450 SMP processor

running at 850MHz. There are three job execution

modes on the BG/P: SMP, Dual and Virtual Node

Algorithm 5 Bin-packing for 𝑘 = 6

Input: Histogram (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6)
Output:The minimum number of bins, of capacity 6

1) For class 𝑖 = A to F

a) Find possible packings in class 𝑖.
b) Update (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6) by subtract-

ing packed bins.

c) If there is any negative number in the

histogram, return 𝑛.

2) Return 𝑛/6.
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Figure 1. Power Law benchmark communication performance

(VN) where 1,2,4 process(es) is(are) assigned to each

compute node. In the experiments, we compare the

communication performance between our proposed

mapping algorithm and numeral order mapping with

two synthetic benchmarks and two applications.

A. Synthetic benchmarks

1) Power Law: The Power Law benchmark sim-

ulates the communication network that is based on

the scale-free network where the degree distribution

follows a power law. When there are 𝑛 nodes in the

communication network, we set the 𝑖𝑡ℎ node’s degree

to be 𝑛 × (𝑖 + 1)−0.6. The scale-free networks are

commonly observed empirically including the World

Wide Web, biological networks, traffic networks, and

some social networks.

Figure 1 shows the results. In the figure, the “sys-

tem” label represents the best of “XYZT” and “TXYZ”
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Figure 2. Mesh benchmark communication performance

system mappings 1 and the “mapping” label represents

the mapping file from our proposed algorithm. The

x-axis label means number of MPI ranks and the

execution mode. Shorter bars in the figure mean less

communication time. The impact of mapping is more

obvious as the scale goes up. For the DUAL mode, the

proposed mapping improves the communication time

about 20% and for the VN mode, the improvement is

about 30%.

2) Mesh: The Mesh benchmark is to simulate the

finite element method for multilayer structure, in which

the mesh in the same layer is more dense than between

layers. If we arrange elements in the same layer to a

row, and stack rows of different layers, we will have the

communication pattern like a two dimensional mesh,

but the connectivity of the row is stronger than that

within a column. In the benchmark, each pair (𝑖, 𝑗)
exchange messages with other nodes in the same row

(𝑖, :) and the direct neighbors in the adjacent columns

(𝑖− 1, 𝑗), (𝑖+ 1, 𝑗).
Similar to the Power Law benchmark results, the

results from the Mesh benchmark show significant

improvement as in Figure 2. Since each rank commu-

nicate with a group of ranks frequently, it is helpful if

these ranks can be mapped onto the cores on the same

compute node. The difference is more obvious in the

VN mode (quad core) than it is in the DUAL mode

(dual core).

1On BG/P,XYZ represents the coordinate of a compute
node/processor and T is the core ID within the processor. The
user may specify either the numeral order using the permutation
of XYZT or a mapping file as a mpirun argument to map the tasks
on to the cores. The leftmost character in the permutation string is
the fastest changing dimension.
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Figure 3. SWEEP3D communication performance

B. SWEEP3D

SWEEP3D [2] is a simplified benchmark pro-

gram that solves a neutron transport problem using

a pipelined wave-front method on a two-dimensional

process mesh. Input parameters determine problem

sizes and blocking factors, allowing for a wide range

of message sizes and parallel efficiencies. The commu-

nication pattern is the message exchange in the neigh-

borhood. The sweep of the wave-front starts in the

upper-left quadrant towards the bottom-right quadrant.

The communication in the same wave can be executed

simultaneously.

The results are shown in Figure 3. The TXYZ is

a commonly used mapping strategy when there are

more than one process per compute node. Since the

execution time depends on the input, we choose to

show the improvement percentage. The baseline per-

formance for comparison is the system default mapping

using XYZT. Higher bars in the figure represent bet-

ter performance improvement. The proposed mapping

algorithm is competitive with TXYZ mapping when

using the VN mode but is better in the DUAL mode.

C. NEK5000

NEK5000 [1] is a spectral element mixed C and

Fortran MPI code for the simulation of unsteady in-

compressible fluid flow heat transfer and MHD in

general three-dimensional domains. The code is based

on the spectral-element method(SEM), a hybrid spec-

tral and finite-element methods. The grid is normally

unstructured. The communication is mainly boundary

exchange with a wide variety of message sizes. The

locality for communication is not perfect and it may
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Figure 4. NEK5000 communication performance

take the advantage to use a mapping to get better

locality for communication.

Figure 4 shows the results. The proposed mapping

strategy further improves the communication perfor-

mance up to 5% as compared to the TXYZ mapping

strategy from the baseline XYZT mapping perfor-

mance.

V. DISCUSSION AND CONCLUSION

As the system is getting larger (e.g., number of

processors, cores per processor and threads per core)

and the architecture is getting more complicated (e.g.,

different levels of execution units - processor, core,

thread; higher dimensional interconnections), how to

utilize the computing resource efficiently becomes an

important issue. One of the challenges is to map the

tasks onto the target host machine properly to improve

the communication performance .

The algorithm framework we proposed in this paper

is trying to address this issue. We show the algorithm

finds the optimal solution that minimize the maximum

size of messages exchanged between the processors

with 2-, 4- or 6-core cases. The experiments show

good communication performance improvement for the

benchmarks and applications.

The algorithm may not be able to find the optimal

solution with 𝑂(𝑚 log𝑚) time complexity for the

cases where core number 𝑘 > 6. However, with

increased time complexity, it is possible to modify

the Bin-packing function used by Algorithm 3 to

generalize it so it can handle cases with 𝑘 > 6. In

addition, the parallelization of our framework for even

better scalability is also of great interests. We plan to

further improve the algorithm towards those directions.
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