
An Efficient Programming Paradigm for Shared-Memory
Master-Worker Video Decoding on TILE64 Many-Core Platform

Xuan-Yi Lin* Kuan-Chou Lai† Shau-Yin Tseng Kuan-Ching Li‡ Yeh-Ching Chung*

* Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan
{xylin, ychung}@cs.nthu.edu.tw

 Information & Communications Research Laboratories
Industrial Technology Research Institute

Hsinchu, Taiwan
tseng@itri.org.tw

† Department of Computer Science and Information Science
National Taichung University of Education

Taichung, Taiwan
kclai@mail.ntcu.edu.tw

‡ Department of Computer Science and Information Engineering
Providence University

Taichung, Taiwan
kuancli@pu.edu.tw

Abstract— The ubiquity of many-core architectures brings
challenges in making scalable application software, changing
dramatically from the way applications are traditionally
developed. Optimization of programs for many-core platforms
is a multifaceted problem, where system and architectural
factors should be taken into consideration. In this paper, we
attack the problem on the aspect of programming paradigm.
We propose a hybrid producer-write plus consumer-read
shared-memory programming paradigm for implementation of
a master-worker video decoder on the TILE64 many-core
platform. To evaluate the scalability and performance benefits
of different programing paradigms, a Motion JPEG decoder is
parallelized using master-worker structure and implemented
with combinations of consumer-read programming and
producer-write programming. Experimental results show that
the proposed implementation obtained competitive
performance speedup, scaling well with number of available
cores and up to 4 times performance improvement over other
implementations on the decoding of a 1080P video.

Keywords-many-core; producer-consumer; master-worker;
shared memory; programming paradigm; TILE64

I. INTRODUCTION
With rapid industry development of many-core

architectures, mass-produced processors now contain tens to
hundreds of cores in a single chip [1]. While the trend of
processor manufacturing is to increase the number of cores
rather than clock frequency [2, 3], software developers can
no longer rely on the so called "free lunch" [4] that
automatically makes existing programs run faster on
processors clocked at higher frequencies.

In order to make performance of a program scale well
with the number of available cores on a many-core platform,
existing software needs to be modified or re-written from
ground up [5, 6, 7, 8, 9]. Efforts involving parallelization of
an application are twofold, known as design and
implementation. The former is about finding concurrency in
the given application and to derive algorithms and program
structures to make it run faster, while the latter is about

utilization of available programming resources on the
designated parallel platform to realize the designed algorithm
and structure. The available programming resources include
programming language, programming paradigm, APIs,
among others.

Due to the flexibility of available options, there may be
possible multiple implementations for a single design, so
performance and scalability characteristics of completed
applications may vary with different implementations. Thus,
it is important to set guidelines for developers to follow in
order to produce better programs on a given platform. The
purpose of this paper is to discuss and demonstrate how
programming paradigm correlates with issues in
performance and scalability of software implementations on
a many-core platform.

Master-worker structure is often adopted as design of an
application when there is need to dynamically balance
workloads among a set of available processors [10, 11].
There are two parts in a master-worker system where
communications take place between master and worker
processes. The former is task distribution and the latter is
result collection. In the task distribution part, master process
generates a set of workloads and distributes tasks to worker
processes, here the master process can be seen as a producer
process and worker processes can be seen as consumer
processes. In the result collection part, the master process
collects computation results made by worker processes, here
the worker processes can be seen as producer processes and
the master process can be seen as a consumer process.
Efficient handling of the communications between master
and worker processes is required to develop a high-
performance system.

TILE64 is a family of general purpose many-core
processors [12], containing 64 identical cores connected by
an on-chip network. In their publication [13], Tilera suggests
that programmers can implement applications in a way such
that producer processes always write data directly into
memory addresses shared by consumer processes to avoid
unnecessary cache coherent traffics on the memory network.

2011 International Conference on Parallel Processing

0190-3918/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPP.2011.65

414

There are also literatures discussing scalability issues on
many-core processors featuring on-chip networks or multiple
memory controllers [14, 15, 16]. In our previous work [17],
we have shown that it is necessary to consider the memory
hierarchy and on-chip networks in order to develop high
performance applications on the TILE64 platform. We have
also shown that program performance and scalability can be
very different between two implementations of an equivalent
functionality. The problem is how to choose better
implementation options without going through a time-
consuming trial and error sessions.

In this paper, we further explore the problem by defining
two different styles of programming paradigms, consumer-
read programming and producer-write programming, and to
propose a hybrid producer-write plus consumer-read shared-
memory programming paradigm for implementation of a
master-worker video stream decoder on the TILE64 many-
core platform. We implement task distribution and result
collection in the master-worker system with combinations of
producer-write programming and consumer-read
programming. Experimental results show that for a Motion
JPEG decoder, implementation based on producer-write task
distribution and consumer-read result collection exhibits best
performance and scalability for all given workloads with
different video frame sizes. When decoding a 1080P video
stream, the hybrid producer-write plus consumer-read
decoder runs up to 4 times faster compared to other
implementations.

This paper brings the following contributions. It
identifies two shared-memory programming paradigms for a
many-core platform, consumer-read programming (CRP)
and producer-write programming (PWP), that shows the
way a master-worker stream processing system can be
implemented using CRP and PWP, as also detailed
performance comparisons between implementations of a
master-worker video decoder using CRP and PWP and
suggests that the hybrid producer-write plus consumer-read
paradigm best suits this application on the TILE64 platform.

The rest of this paper is organized as follows. Section II
provides background knowledge of TILE64 processor
architecture and the basics of how to implement shared-
memory communication between two processes on TILE64.
In Section III, a master-worker stream processing system is
described. Section IV introduces the CRP and PWP and
variations of shared-memory implementations of a master-
worker stream processing system. In Section V, we
implement a parallel Motion JPEG decoder with proposed
programming paradigms and compare performance of the
implementations. Concluding remarks of this work are given
in Section VI.

II. PRELIMINARIES

A. The TILE64 Processor
The TILE64 processor is a 64-core many-core processor

featured as an array of 64 identical processor cores (each
referred to as a tile) interconnected via on-chip two-
dimensional mesh networks [18]. The TILE64 is fully
programmable using standard ANSI C under Linux

environment, including a set of proprietary APIs called iLib.
The iLib library supports two communication mechanisms,
shared memory and distributed memory, for processes
running on different cores to communicate with each other.
So, software developers can make use of both
communication primitives in an application program. In this
paper, when we refer to a process, we mean a process that is
bound to and running on a tile. A tile runs one process at any
given time. A process bound to a tile at the initialization
period will keep running on the same tile to its end of life.
This fashion is similar to the execution of MPI programs.

Fig. 1 illustrates the architecture overview of a TILE64
processor. There are four memory controllers located at the
four corners of a processor array, providing accesses to an
external memory system that is accessible by all tiles. The
interface to on-chip memory networks provides access both
to L2 caches of other tiles and to external memory.

B. Shared Memory Communication on TILE64
Shared memory communication allows each process in a

parallel application to load/store values from/to a globally
visible region of memory. Each process in the application
can access any object in shared memory at any time. Access
to shared memory objects must be synchronized to prevent
inconsistent states [19]. Data inconsistencies happen when
multiple processes are storing values to identical memory
address at the same time without proper synchronization.

Both the Linux and iLib programming environments
provide tools for allocating and synchronizing accesses to the
shared memory. Linux allows programs to allocate and
synchronize using the standard Unix shared memory and
pthreads APIs, while iLib supports a special function for
shared memory allocation, malloc_shard() as well as an
implementation of a pthreads-style mutex lock. To use iLib
to implement shared memory mechanisms in a program, the
process which shares information can call the
malloc_shard() function to get an address pointing to a block
of shared memory. Then the process notifies other processes
the location of shared memory by sending them messages
containing this address.

Fig. 2 shows an example on the use of iLib to create an

Figure 1. TILE64 processor architecture overview.

415

integer object shared between 2 processes, while Fig. 3
depicts the corresponding codes within processes 0 and 1.

⎯ There are two cores, each of which executes one
process,

⎯ Process 0 allocates a region of memory to hold one
integer using malloc_shared(),

⎯ The malloc_shared() function returns a value x,
which is the address of the shared integer. The value
of x is stored in an integer pointer p in process 0,

⎯ Process 0 sends content of p to process 1,
⎯ Process 1 stores this address with integer pointer q.
After above initialization process, both processes 0 and 1

will be able to load from and store to this shared integer in
the same way as normal variables. Any update to *q made by
process 1 can be seen by process 0 using *p, and back and
forth is also valid.

Because the malloc_shared() function is called by
process 0, the shared memory region starting at x is said to
be homed on core 0.

III. MASTER-WORKER STREAM PROCESSING
A stream processing application is a program that takes a

data stream as input, performs operations upon that input
stream and then outputs another processed data stream [20,
21, 22, 23, 24]. Data streams might carry any kind of
information, making there a huge diversity between stream
processing applications. Video stream processing
applications refer to those which data streams are used to
carry video data. Some examples of such applications are
video encoders, decoders, and transcoders. These
applications transform video streams from one format to
another. Other examples of video stream processing
applications are image processing and pattern recognition

ones, such as video labeling, object detection and object
tracking applications. These applications retrieve information
from input video streams then attach the information to
output video streams.

Given a data stream to be processed by a stream
processing application, assume that the stream can be
divided into n sequenced fragments that can be
independently processed and outputted. The input data
stream can be represented as a set of sequenced data items,
fi1 to fin, and the output data stream is represented as fo1 to
fon. Assume that the application is run on a processor, each
fragment takes time tn to be processed from input format to
output format. The total time needs to process all fragments
in the stream would be:

ti1

n�

The ideal case of processing such data stream using p
processors would be similar to the one shown in Fig. 4. In
such ideal case, t1 = t2 = … = tn and n is an exact multiple of
p. This leads to a perfect speedup of p, though unfortunately
barely impossible to existing real world applications. In
reality, it may take variable amount of time to process
different data fragments, and n is commonly not an exact
multiple of p. In addition to that, even if the input data can be
concurrently processed, the output data should be sequenced
to guarantee the correctness of output stream.

One way to speed up data stream processing applications
on multiple processors is to use a master-worker scheme as
underlying parallelization structure. The master-worker
scheme is a parallel skeleton for task pools with dynamic
task distribution, what is particularly useful under the
situation when there is a set of tasks to be done and
completion times for each task are either unknown or vary a
lot from task to task.

A master-worker system consists of a master process
managing a set of worker processes. The master process
distributes tasks to a set of subordinate worker processes and
later collects computed results. There are two task pools in a
master-worker system, the pool of pending tasks and the pool
of completed tasks. Master process distributes tasks by filling
data into the pool of pending tasks, and worker processes
then fetch data from this pool to perform tasks. Once a
worker finishes a task, the worker process fills the result to
the pool of completed tasks. The master process then fetches
results from the pool of completed tasks and outputs the
results.

Fig. 5 illustrates a master-worker stream processing
system that consists of one master process and 4 worker
processes. The master process reads in the input stream and

Figure 2. Sharing of an integer between two processes.

Figure 3. Code snippets of process 0 and process 1
to create a shared integer.

()1

n
it p�

Figure 4. Perfect task scheduling of stream processing on 4 processors.

Process 0
int *p;

p=(int *)malloc_shared(sizeof (int));
ilib_msg_send(GROUP, /* group */

1, /* rank */
MESSAGE_TAG, /* tag */
&p, /* buffer */
sizeof(p)); /* size */

Process 1
int *q;

ilib_msg_receive(GROUP, /* group */
0, /* rank */
MESSAGE_TAG, /* tag */
&q, /* buffer */
sizeof(q), /* size */
&status); /* status */

416

divides the input stream into smaller chunks of data that can
be independently processed. Each of these chunks can be
seen as a pending task that is then transferred into the pool of
pending tasks by the master process. Once initialized, all
worker processes in this system keep monitored the pool of
pending tasks and see if there are present workloads. If such
pool is not empty, any worker that is available can fetch
(drain) a task from the pool and start to process it. Once
completed such execution, it fills the pool of completed tasks
with the results of current task. In the meanwhile, the master
process monitors the pool of completed tasks and checks its
status. Since completed tasks arrive in arbitrary order, master
process keeps an output sequence counter. The counter is
used to select the next completed task form the pool with
correct sequence number to be output to the output stream.

Algorithm 1 shows the pseudo code of a master-worker
stream processor.

A. Process Roles in a Master-Worker System
There are two parts in a master-worker system where

communications take place between master and worker
processes, namely task distribution and result collection.
Each of these parts involves the handling of a task pool. In
the task distribution part, master and worker processes work
together to manipulate the pool of pending tasks, while in the
result collection part, master and worker processes work
together to manipulate the pool of completed tasks.

During the progress of task distribution, master process
can be seen as a producer process and worker processes can
be seen as consumer processes. This part is essentially one-
to-many communication. On the other hand, in the progress
of result collection, worker processes can be seen as
producer processes and master process can be seen as a
consumer process. This part is essentially many-to-one
communication.

Fig. 6 shows the timing diagram of a master-worker
stream processor featuring one master process and 4 worker
processes. Note that synchronization overheads are
introduced in both task distribution and result collection parts
of the system. Programming paradigm used to implement the
fill() and drain() functions have direct influences on these
synchronization overheads, which further shapes the
performance and scalability characteristics of the
implemented system.

To focus on observation and comparison of performance
impacts of shared memory programming paradigm, we use a
flat master-worker structure rather than a hierarchical one. In
this paper, the flat master-worker structure contains only one
master process.

Figure 5. Illustration of a master-worker stream processor.
Figure 6. Synchronization overheads in a master-worker stream

processing system.

417

IV. SHARED-MEMORY PROGRAMMING PARADIGMS
FOR THE TILE64 PLATFORM

In this section, we introduce two shared-memory
programming paradigms: the consumer read programming
(CRP) and the producer write programming (PWP), as also
show how CRP and PWP are used to implement shared-
memory communication in a master-worker system on the
TILE64 platform.

On the TILE64 platform, communication between two
processes by using shared-memory mechanisms can be
achieved by allowing a process to allocate a block of shared
memory and then exchange the address of shared memory
with another process. The steps involved in creating shared
memory between processes are detailed in subsection II.B.
All participating processes in the data communication are
able to directly load value from or store value to the
specified shared memory addresses, what provides flexibility
of implementation.

By considering the scenario of implementing shared-
memory communication between a producer process and a
consumer process on the TILE64 platform, shared memory
can be allocated by either producer process or consumer
process. These two fundamentally different choices are the
basis of CRP and PWP.

A. Consumer Read Programming
When producer process sends data to a consumer

process, it writes the data into memory address shared by the
producer process itself. Consumer process then reads the
data from this shared address. The term consumer read
implies the action of "consumer reads data from producer
shared memory."

Fig. 7 depicts the initialization of CRP, where producer
process allocates a region of shared memory to
accommodate shared objects. Producer process then notifies
consumer process the location of shared memory, so that
producer checks and fills the shared memory if it is not full.
Consumer keeps checking the content in the shared memory
and consumes it if the shared memory is not empty.

B. Producer Write Programming
When a producer process sends data to a consumer

process, it writes the data into memory address shared by the
consumer process. The term producer write implies the
action of "producer writes data to consumer shared
memory."

In Fig. 8, consumer process allocates a region of shared
memory to accommodate shared objects. Similarly to above
discussion, consumer process then notifies producer process
the location of shared memory, and producer checks and fills

the shared memory if it is empty. Consumer keeps checking
the content in the shared memory and consumes it if the
content is valid.

C. Implementation of Master-Worker System using CRP
and PWP
There are multiple ways of using iLib shared-memory

primitives to implement a master-worker stream processing
system as described in Algorithm 1. The major difference is
on the implementation of the two functions, drain() and fill().
These two functions are essential to the manipulation of the
two task pools. Depending on the shared-memory
programming paradigm used, the two pools of tasks can
reside in memory addresses shared by either master process
or worker processes.

The pool of pending tasks can be implemented using
either CRP or PWP, so is the pool of completed tasks. The
implementation algorithms are given in Algorithm 2 to 4.
This gives us 4 master-worker system combinations:

1) CRP+CRP: Using CRP to implement both pools.
The pool of pending tasks resides in memory shared by
master process. And all of the worker shared memory
combined together forms the pool of completed tasks. This
combination is in fact implementation of a centralized pool
of pending tasks and a distributed pool of completed tasks.

2) CRP+PWP: Using CRP to implement pool of
pending tasks and using PWP to implement pool of
completed tasks. Both pool of pending tasks and completed
tasks reside in memory shared by master process. This
combination is in fact implementation of a centralized pool
of pending tasks and a centralized pool of completed tasks.

3) PWP+CRP: Using PWP to implement pool of
pending tasks and using CRP to implement pool of
completed tasks. Both pool of pending tasks and completed
tasks are actually shared memory blocks distributed among
all workers processes. This combination is in fact
implementation of a distributed pool of pending tasks and
distributed pool of completed tasks.

4) PWP+PWP: Using PWP to implement both pools.
And all of the worker shared memory combined together
forms the pool of pending tasks, and the pool of completed
task resides in memory shared by master process. This
combination is in fact implementation of a distributed pool
of pending tasks and centralized pool of completed tasks.

V. EXPERIMENTAL RESULTS
We have modified an open source Motion JPEG decoder

— MJPEG Tools [25], and made it a parallel decoder using

Memory of Producer
private

Memory of Consumer
private

xp shared

vx

xq

Figure 7. CRP illustration.

Memory of Producer
private

Memory of Consumer
private

yp shared

vy

yq

Figure 8. PWP illustration.

418

master-worker structure as described in Section III. Then, we
designed and instrumented the shared memory between
master and worker processes using the following
combinations: CRP+CRP (R+R), CRP+PWP (R+W),
PWP+CRP (W+R) and PWP+PWP (W+W), as described in
subsection IV.C.

A TILE64 hardware platform is used to conduct the
performance evaluation. We ran the implemented decoders
on a TILExpress-20G card, a TILE64 development platform
featured with a TILE64 processor running at 700 MHz and 4
GBs of DDR2-800 memory.

Each of the decoders is setup to decode 4 videos files of
different resolutions. Table I lists the video test files used.
The files are placed in ram file system. Due to tiles located in
the last row are reserved for system use and are not available

to users when running programs on TILE64 hardware
platform, the maximum number of tiles we used is 56 (8
columns by 7 rows.) We measure decoder performance from
2 tiles (1 master process and 1 worker process) to 56 tiles (1
master process and 55 worker processes) to obtain a total of
880 sets of timing data. We also collect 4 sets of sequential
performance data to be the baseline for comparison. Table II
shows the number of performance data sets collected
between different configurations.

A. Speedup and Efficiency
Fig. 9 shows the speedup and efficiency results of the 4

decoders on different testing cases. These data are obtained
by recording time spent on main decoding loop in the
decoder and then compared to the same code segment in an

419

unmodified, sequential version of the decoder. Since parallel
versions contain at least one master process and one worker
process, the minimum number of cores required to run these
parallel decoders is 2. When the parallel decoders are
running using 2 cores, only the core that acts as worker
process is responsible for the decoding job. Therefore,
speedup and efficiency of the decoders on 2 cores would be
close to 1 and 0.5 respectively.

The results show that the PWP+CRP implementation
outperforms among all versions discussed in subsection
IV.C. It can also be observed that the implementations can be

separated into two groups by their speedup and efficiency
characteristics. The R+R and W+R decoders, which are
based on CRP result collection scales well when decoding
1080P videos. But the R+W and W+W decoders cannot
scale beyond 16 workers.

B. Runtime Breakdown of Master Process
While speedup and efficiency charts shown in Fig. 9

provide overall performance summary, these two charts
alone do not provide detailed information about processes
themselves. Therefore, runtime breakdown charts are used to
present these detailed information.

Due to running time of a master process decreases with
increasing number of available worker processes, we use the
percentage chart to better illustrate time spent by master
process. For worker processes, we show the summation of
total clock cycles spent by all worker processes. This enables
us to ping-point program scalability issues by observing how
much time have the worker processes actually spent on
certain parts of the system.

Looking at Fig. 10, it is possible to identify the reasons
why R+R and W+R do not scale well beyond 32 cores for

TABLE I. MOTION JPEG TEST FILES USED.

File Name Format Resolution Frames
deadline CIF 352×288 1374
city 4CIF 704×576 600
stockholm 720P 1280×720 604
factory 1080P 1920×1088 1339

TABLE II. PERFORMANCE DATA SETS OBTAINED.

Video Size Sequential Parallel
Vanilla R+R R+W W+R W+W

CIF 1 55 55 55 55
4CIF 1 55 55 55 55
720P 1 55 55 55 55
1080P 1 55 55 55 55

420

CIF video decoding. The worker processes drain the pool of
pending tasks at higher speed than the rate master process
fills the pool. Observing both Fig. 10 and 11, they show that
for implementations based on PWP result collection, time
spent by worker process on filling the pool of completed
tasks grows linearly with number of participating worker
processors in the system, degrading overall performance in
these cases.

VI. CONCLUSION AND FUTURE WORK
New generations of many-core processors bring higher

performance within same or lower power envelope. This
advantage comes with the price of complications to
application programming. In this paper, we explore the
design and implementation of a video decoder on the
TILE64 platform. We design a master-worker structure for
stream processing and propose two styles of shared memory
programming paradigm—consumer read programming and
producer write programming—for the TILE64 platform.
Experimental results show that the CRP best suits
implementation of result collection part in a master-worker
Motion JPEG decoder while PWP performs better in the task
distribution part.

We demonstrate that implementation choices for a given
design on a many-core system will directly impact the
performance and scalability of a program. We plan to further
explore this topic by applying CRP and PWP onto more
complicated designs such as hierarchical master-worker
structures. And we would also like to see how CRP and PWP
fit with applications of different data patterns such as those
on video encoders.

REFERENCES
[1] S. Borkar, "Thousand core chips: a technology perspective," Proc.

44th Design Automation Conf. (DAC 07), 2007, pp. 746-749, DOI:
10.1145/1278480.1278667.

[2] J. Parkhurst, J. Darringer, and B. Grundmann, "From single core to
multi-core: preparing for a new exponential," Proc. IEEE/ACM Intl.
Conf. Computer-Aided Design (ICCAD 06), Nov. 2006, pp. 67-72,
DOI: 10.1145/1233501.1233516.

[3] L. Karam, I. AlKamal, A. Gatherer, G. Frantz, D. Anderson, and B.
Evans, "Trends in multicore DSP platforms," IEEE Signal Process.
Mag, vol. 26, pp. 38–49, 2009, DOI: 10.1109/MSP.2009.934113

[4] H. Sutter, "The free lunch is over: a fundamental turn toward
concurrency in software," Dr. Dobb's Journal, vol. 30, pp. 202-210,
Mar. 2005.

[5] G. Chen, F. Li, S. W. Son, and M. Kandemir, "Application mapping
for chip multiprocessors," Proc. 45th Design Automation Conference
(DAC 08), June 2008, pp. 620-625, DOI: 10.1145/1391469.1391628.

[6] T. Scogland, P. Balaji, W. Feng, and G. Narayanaswamy,
"Asymmetric interactions in symmetric multi-core systems: analysis,
enhancements and evaluation," Proc. Intl. Conf. High Performance
Computing, Networking, Storage and Analysis (SC 08), Nov. 2008,
pp. 1-12, DOI: 10.1109/SC.2008.5219748.

[7] B. So, A. Ghuloum, and Y. Wu, "Optimizing data parallel operations
on many-core platforms," in 1st Workshop on Software Tools for
Multi-Core Systems (STMCS 06) 2006.

[8] M. Kudlur and S. Mahlke, "Orchestrating the execution of stream
programs on multicore platforms," Proc. ACM SIGPLAN Conf.
Programming language design and implementation (PLDI 08), 2008,
vol. 43, pp. 114-124, DOI: 10.1145/1375581.1375596.

[9] G. Tan, N. Sun, and G. R. Gao, "A parallel dynamic programming
algorithm on a multi-core architecture," Proc. 19th ACM Symp.

Parallel Algorithms and Architectures (SPAA 07), 2007, pp. 135-144,
DOI: 10.1145/1248377.1248399.

[10] J. Berthold, M. Dieterle, R. Loogen, and S. Priebe, "Hierarchical
master-worker skeletons," in Practical Aspects of Declarative
Languages (PADL 08), LNCS 4902, P. Hudak and D. Warren, Eds.:
Springer-Verlag, 2008, pp. 248-264, DOI: 10.1007/978-3-540-77442-
6_17.

[11] A. Benoit, L. Marchal, J. F. Pineau, Y. Robert, and F. Vivien,
"Scheduling concurrent bag-of-tasks applications on heterogeneous
platforms," IEEE Trans. Computers, vol. 59, pp. 202-217, 2010, DOI:
10.1109/TC.2009.117.

[12] Tilera corporation, http://www.tilera.com.
[13] H. Hoffmann, D. Wentzlaff, and A. Agarwal, "Remote store

programming," in High Performance Embedded Architectures and
Compilers, LNCS 5952, Y. Patt, P. Foglia, E. Duesterwald, P.
Faraboschi, and X. Martorell, Eds.: Springer-Verlag, 2010, pp. 3-17,
DOI: 10.1007/978-3-642-11515-8_3.

[14] R. Kumar, V. Zyuban, and D. M. Tullsen, "Interconnections in multi-
core architectures: understanding mechanisms, overheads and
scaling," Proc. 32nd International Symposium on Computer
Architecture (ISCA 05), June, 2005, pp. 408-419, DOI:
10.1109/ISCA.2005.34.

[15] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian, and A.
Davis, "Handling the problems and opportunities posed by multiple
on-chip memory controllers," Proc. 19th Intl. Conf. Parallel
Architectures and Compilation Techniques (PACT 10), Sep. 2010, pp.
319-330, DOI: 10.1145/1854273.1854314.

[16] D. Abts, N. D. E. Jerger, J. Kim, D. Gibson, and M. H. Lipasti,
"Achieving predictable performance through better memory
controller placement in many-core CMPs," Proc. 36th Intl. Symp.
Computer Architecture (ISCA 09), June 2009, pp. 451-461, DOI:
10.1145/1555754.1555810.

[17] X.-Y. Lin, C.-Y. Huang, P.-M. Yang, T.-W. Lung, S.-Y. Tseng, and
Y.-C. Chung, "Parallelization of motion JPEG decoder on TILE64
many-core platform," in Methods and Tools of Parallel Programming
Multicomputers (MTPP 10), LNCS 6083, C.-H. Hsu and V.
Malyshkin, Eds.: Springer-Verlag, 2011, pp. 59-68, DOI:
10.1007/978-3-642-14822-4_7.

[18] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, et al.,
"TILE64 processor: a 64-core SoC with mesh interconnect," Proc.
IEEE Intl. Solid-State Circuits Conf. (ISSCC 08), Feb, 2008, pp. 88-
598, DOI: 10.1109/ISSCC.2008.4523070.

[19] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J.
Hennessy, "Memory consistency and event ordering in scalable
shared-memory multiprocessors," Proc. 17th Intl. Symp. Computer
Architecture (ISCA 90), 1990, pp. 15-26, DOI:
10.1145/325164.325102.

[20] W. Thies and S. Amarasinghe, "An empirical characterization of
stream programs and its implications for language and compiler
design," Proc. 19th Intl. Conf. Parallel Architectures and
Compilation Techniques (PACT 10), Sep. 2010, pp. 365-376, DOI:
10.1145/1854273.1854319.

[21] M. I. Gordon, W. Thies, and S. Amarasinghe, "Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs,"
Proc. 12th Intl. Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS 06), Oct. 2006, pp. 151-
162, DOI: 10.1145/1168857.1168877.

[22] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, "Models
and issues in data stream systems," Proc. 21st Symp. Principles of
Database Systems (PODS 02), 2002, pp. 1-16, DOI:
10.1145/543613.543615.

[23] J. Park and W. J. Dally, "Buffer-space efficient and deadlock-free
scheduling of stream applications on multi-core architectures," Proc.
22nd ACM Symp. Parallelism in Algorithms and Architectures (SPAA
10), June 2010, pp. 1-10, DOI: 10.1145/1810479.1810481.

[24] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.
Cetintemel, Y. Xing, et al., "Scalable distributed stream processing,"
in Conf. Innovative Data Systems Research (CIDR 03), Jan. 2003.

[25] MJPEG Tools, http://mjpeg.sourceforge.net.

421

0

5

10

15

20

25

30

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56

Sp
ee

du
p

Number of cores used

Speedup of CIF Decoding
R+R R+W W+R W+W

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56

Ef
fic

ie
nc

y

Number of cores used

Efficiency of CIF Decoding
R+R R+W W+R W+W

0

5

10

15

20

25

30

35

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56

Sp
ee

du
p

Number of cores used

Speedup of 4CIF Decoding
R+R R+W W+R W+W

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56

Ef
fic

ie
nc

y

Number of cores used

Efficiency of 4CIF Decoding
R+R R+W W+R W+W

0

5

10

15

20

25

30

35

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56

Sp
ee

du
p

Number of cores used

Speedup of 720P Decoding
R+R R+W W+R W+W

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56

Ef
fic

ie
nc

y

Number of cores used

Efficiency of 720P Decoding
R+R R+W W+R W+W

0

10

20

30

40

50

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56

Sp
ee

du
p

Number of cores used

Speedup of 1080P Decoding
R+R R+W W+R W+W

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56

Ef
fic

ie
nc

y

Number of cores used

Efficiency of 1080P Decoding
R+R R+W W+R W+W

Figure 9. Speedup and efficiency results of the 4 implemented decoders on 4 different video frame sizes.

422

0
1E+10

2E+10

3E+10

4E+10
5E+10

6E+10

7E+10

number of cores used

CIF Runtime Breakdown of Worker Processes

Drain Decode Fill Sync Other
2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56

CRP+CRP CRP+PWP PWP+CRP PWP+PWP

su
m

of
 c

lo
ck

 c
yc

le
s o

f a
ll

w
or

ke
rs

0%

20%

40%

60%

80%

100%

number of cores used

CIF Runtime Breakdown of Master Processes

Fill Drain Sync Loop
2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56

CRP+CRP CRP+PWP PWP+CRP PWP+PWP

pe
rc

en
ta

ge
 o

f t
ot

al
ru

nt
im

e

Figure 10. Runtime breakdown of CIF decoding.

0

2E+11

4E+11

6E+11

8E+11

1E+12

number of cores used

1080P Runtime Breakdown of Worker Processes

Drain Decode Fill Sync Other
2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56

CRP+CRP CRP+PWP PWP+CRP PWP+PWP

su
m

of
 c

lo
ck

 c
yc

le
s o

f a
ll

w
or

ke
rs

0%

20%

40%

60%

80%

100%

number of cores used

1080P Runtime Breakdown of Master Processes

Fill Drain Sync Loop
2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56 2 8 16 24 32 40 48 56

CRP+CRP CRP+PWP PWP+CRP PWP+PWP

pe
rc

en
ta

ge
 o

f t
ot

al
ru

nt
im

e

Figure 11. Runtime breakdown of 1080P decoding.

423

