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ABSTRACT

Dynamic binary translation (DBT) is a core technology to
many important applications such as system virtualization,
dynamic binary instrumentation and security. However, there
are several factors that often impede its performance: (1)
emulation overhead before translation; (2) translation and
optimization overhead, and (3) translated code quality. On
the dynamic binary translator itself, the issues also include
its retargetability to support guest applications from dif-
ferent instruction-set architectures (ISAs) to host machines
also with different ISAs, an important feature for system
virtualization. In this work, we take advantage of the ubig-
uitous multicore platforms, using multithreaded approach
to implement DBT. By running the translators and the dy-
namic binary optimizers on different threads on different
cores, it could off-load the overhead caused by DBT on the
target applications; thus, afford DBT of more sophisticated
optimization techniques as well as the support of its retar-
getability. Using QEMU (a popular retargetable DBT for
system virtualization) and LLVM (Low Level Virtual Ma-
chine) as our building blocks, we demonstrated in a multi-
threaded DBT prototype, called HQEMU, that it could im-
prove QEMU performance by a factor of 2.4X and 4X on the
SPEC 2006 integer and floating point benchmarks for x86
to x86-64 emulations, respectively, i.e. it is only 2.5X and
2.1X slower than native execution of the same benchmarks
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on x86-64, as opposed to 6X and 8.4X slowdown on QEMU.
For ARM to x86-64 emulation, HQEMU could gain a fac-
tor of 2.4X speedup over QEMU for the SPEC 2006 integer
benchmarks. *

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques; D.3.4
[Processors|: Code generation; D.3.4 [Processors|: Optimiza-
tion; D.3.4 [Processors]: Run-time environments

General Terms

Design, Performance

Keywords

Dynamic Binary Translation, Multi-Threaded, Multicores, Feedback-

Directed Optimization, LLVM, Hardware Performance Monitor-
ing, Traces

1. INTRODUCTION

Dynamic binary translators (DBT) that could emulate an
application binary in one instruction-set architecture (ISA)
on a host machine with a different ISA are gaining impor-
tance. It is because dynamic binary translation is the core
technology of system virtualization, an often required sys-
tem support in the new era of cloud and mobile computing.
DBT could also be used in binary instrumentation, security
monitoring and other important applications.

However, there are several factors that could impede the
effectiveness of a DBT: (1) emulation overhead before the
translation; (2) translation and optimization overhead; and
(3) the quality of the translated code. Retargetablity of the

ISPEC 2006 floating point benchmarks are not supported
on ARM platforms yet.



DBT is also an important requirement in system virtualiza-
tion. We would like to have a single DBT to take on ap-
plication binaries from several different ISAaes and retarget
them to host machines also in several different ISAaes. This
requirement imposes additional constraints on the structure
of a DBT and, thus, additional overheads.

As a DBT is running at the same time the application is
being executed, the overall performance of the translated
binary on the host machine is thus very sensitive to the
overhead of the DBT itself. A DBT could ill-afford to have
sophisticated techniques and optimizations for better codes.
However, with the ubiquity of the multicore processors to-
day, most of the DBT overheads could be off-loaded to other
cores. The DBT could thus take advantage of the multicore
resources and becomes multithreaded itself. This allows it
to become more scalable when it needs to take on more and
more large-scale multithreaded applications in the future.

In this work, we developed a multithreaded DBT proto-
type, called HQEMU, which uses QEMU [4], an efficient
and retargetable DBT system as its frontend for fast bi-
nary code emulation and translation. QEMU could emulate
and translate binary applications from several target ma-
chines such as x86, PowerPC, ARM and SPARC on popular
host machines such as x86, PowerPC, ARM, SPARC, Alpha
and MIPS. However, it lacks a sophisticated optimization
backend to generate more efficient code. We thus use the
LLVM compiler [18], also a popular compiler with sophisti-
cated compiler optimization as its backend, together with a
dynamic optimizer that uses on-chip hardware performance
monitor (HPM) to dynamically improve code for higher per-
formance. Several new trace formation and code optimiza-
tion techniques are also developed to generate more efficient
code. With the hybrid QEMU (frontend) + LLVM (back-
end) approach, we successfully addressed the dual issue of
good translated code quality and low translation overhead
on the target applications. Significant performance improve-
ment over QEMU has been observed.

The main contributions of this work are as follows:

e We developed a multi-threaded retargetable DBT on
muticores that achieved low translation overhead and
good translated code quality on the target binary ap-
plications. We showed that this approach could be
beneficial to both short-running and long-running ap-
plications.

e We propose a novel trace combination technique to
improve existing trace selection algorithms. It could
effectively combine/merge separated traces based on
the information provided by the on-chip HPM. We
demonstrate that such feedback-directed trace merge
optimization can significantly improve the overall code
performance.

e Experimental results show that HQEMU could im-
prove the performance by a factor of 2.4X and 4X
over QEMU, and are only 2.5X and 2.1X slower than
the native execution for x86 to x86-64 emulation using
SPEC2006 integer and floating point benchmarks, re-
spectively. For ARM to x86-64 emulation, HQEMU
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shows a gain of 2.4X speedup over QEMU for the
SPEC integer benchmarks (there is no ARM-version
of SPEC 2006 floating-point benchmarks).

The rest of this paper is organized as follows: Section 2 pro-
vides the details of our multi-threaded hybrid QEMU+LLVM
DBT system. Section 3 discusses the problems of existing
trace selection approaches, and presents our trace combina-
tion strategy. Section 4 evaluates the effectiveness of our
cross-ISA emulation. Section 5 gives some related work. Fi-
nally, Section 6 concludes this paper.

2. TRACE-BASED HYBRID DYNAMIC BI-
NARY TRANSLATOR

In this section, we first give a brief overview of QEMU. Then
we elaborate on the design details of the multi-threaded
trace-based hybrid dynamic binary translator HQEMU.

2.1 Overview of QEMU

QEMU is an efficient and retargetable DBT system that en-
ables both full-system virtualization and process-level em-
ulation. Its core translation engine is called Tiny Code
Generator (TCG), which provides a small set of IR opera-
tions (about 142 operation codes). The main loop of QEMU
translates and executes the emulated code one basic block
at a time. When a block of the guest code is fetched, disas-
sembled and translated into TCG intermediate code, TCG
improves the intermediate code with two simple optimiza-
tion passes: register liveness analysis and store forwarding
optimization. Dead code elimination is also done as a by-
product of these two optimization passes. Finally, the in-
termediate code is translated into the host code with a one-
to-one mapping. Without further optimizations, there are
often many redundant load and store operations left in the
generated host codes. Although the code quality is not as
good as it should be, the whole translation process includ-
ing the optimizations incurs negligible overhead. These de-
sign considerations make QEMU an ideal choice for emulat-
ing short-running applications or applications with few hot
blocks. Some of the experimental results are presented in
Section 4.

2.2 Multi-Threaded Hybrid DBT Systems

The goal of this work is to design a DBT system that could
emit high-quality host codes, but exert low overhead on the
running applications. The requirements of low overhead and
high-quality codes are often in conflict with each other on
a single-core system. To find a good balance, one needs to
select optimization schemes that are highly cost effective.
This approach, however, limits many optimization opportu-
nities because it is very difficult to find sufficient optimiza-
tion schemes that meet such criteria. Instead, we adopt a
hybrid multi-threaded approach to deal with such issues.

Fig. 1 illustrates the organization of HQEMU. It has an en-
hanced QEMU as its frontend, and an LLVM together with
a dynamic binary optimizer (DBO) as its backend. DBO
uses a HPM-based feedback-directed runtime optimization
scheme. The details of DBO are discussed in Section 3. In
its current implementation, QEMU is running on one thread
and LLVM+DBO are running on another. Two code caches:
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a block-code cache and a trace cache, are built in the DBT
system that host translated binary codes at different opti-
mization levels.

The two translators are designed for different purposes. The
translator in the enhanced QEMU (i.e. TCG) acts as a fast
translator. TCG translates guest binary at the granular-
ity of a basic block, and emits translated codes to the block
code cache. It also keeps the translated guest binary in its
TCG intermediate representation (IR) for further optimiza-
tion in the HQEMU backend. The emulation module (i.e.
the dispatcher in QEMU) coordinates the translation and
the execution of the guest program. It kicks start TCG
when an untranslated block is encountered. The purpose of
the emulation module and the fast translator is to perform
the translation as quickly as possible, so we could switch
the execution to the translated code in the block code cache
for a higher performance. When the emulation module de-
tects that some code region has become hot and is worthy
of further optimization, it sends a request to the optimiza-
tion request FIFO queue together with the translated guest
binary in its TCG IR format. The requests will be serviced
by the HQEMU backend translator/optimizer running on
another thread (and on another core).

For the HQEMU backend translator/optimizer, we use an
enhanced LLVM compiler because it consists of a rich set
of aggressive optimization passes and a just-in-time runtime
system. When the LLVM optimizer receives an optimization
request from the FIFO queue, it converts its TCG IRs to
LLVM IRs directly instead of converting guest binary from
its original ISA [17]. This approach simplifies the backend
translator tremendously because TCG IR only consists of
about 142 different operation codes instead of a much larger
set in most guest ISAs. Many LLVM compiler optimization
passes are performed on the LLVM IR, and finally highly op-
timized host code is emitted to the trace cache. A rich set of
program analysis facilities and powerful optimization passes
in LLVM are helpful in generating such high quality host
codes. For example, redundant memory operations could be
eliminated via the LLVM register promotion optimization.
LLVM also selects the best host instructions sequences. For
example, it could replace several scalar operations by one
SIMD instruction. These analysis and optimization passes
could incur considerable overhead. However, such overheads
are hidden because the LLVM translator is running on the
other thread (and on another core) without interfering with
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the execution of the guest program.

The backend LLVM translator could also spawn more worker
threads to accelerate the processing of optimization requests
if there are many of them waiting in the queue. We also ap-
ply the structure of non-blocking FIFO queue [22] to reduce
the overhead of communication among these threads. With
the hybrid QEMU+LLVM approach, we could benefit from
the strength of both translators. This approach successfully
addresses the dual issue of good translated code quality and
low translation overhead.

2.3 Trace Optimization Support

A typical binary translator needs to save and restore pro-
gram contexts when the control switches between the ex-
ecution in the dispatcher and from the translated code in
the code cache. The saving and restoring of registers during
such context switches could incur significant overhead. In
the execution of the translated code from the code cache,
we may again need to load and store registers during code
region transition. The problem is that DBT usually trans-
lates one code region at a time, often at the granularity of
one basic block. Hence, it conducts register mapping only
within this code region. To ensure the correctness of emu-
lation, the values of the guest registers are required to be
stored back to the memory before control is transferred to
the next code region, and be reloaded at the beginning of
the next code region. Even if two code regions have a di-
rect transition path (e.g. through block chaining, shadow
stack [8] or IBT'C [26]) and also have the same guest to host
register mappings, values of the guest registers still need to
be stored and reloaded because we cannot be sure if any of
these code regions could be the jump target of an unknown
code region.

Because of these independently translated code regions and
the resulting frequent storing and reloading of registers dur-
ing code region transitions, the performance could be very
poor. Such high transition overheads can be alleviated by
enlarging the granularity of code regions. The idea is to
merge many small code regions into larger ones, called traces,
and thus eliminating the redundant load and store opera-
tions by promoting such memory operations to register ac-
cesses within traces. Traces are code regions with a single
entry and multiple exits. They have been shown to im-
prove performance because of improved locality, increased
indirect branch prediction accuracy, and opportunities for
inter-procedural optimizations [6, 21]. Through trace for-
mation, we not only can apply more code optimizations but
also can eliminate the high overhead of region transitions.

Since such optimizations can be done in separate threads
running on different cores without interfering with the em-
ulation of the guest application, we try to explore more op-
timization opportunities on those traces. A relaxed version
of Next Ezecuting Tail (NET) [12] is chosen as our trace se-
lection algorithm. In the original NET scheme, it considers
every backward branch as an indicator of a cyclic execution
path, and terminates the trace formation at such backward
branches. We relax such a backward-branch constraint, and
stop trace formation only when the same program counter
(PC) is executed again. This relaxed algorithm is similar to
the cyclic-path-based repetition detection scheme in [14].
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Figure 2: An example of trace detection and pseudo code of
the profiling and prediction stubs.

In HQEMU, a trace is detected and formed by locating a hot
execution path through an instrumentation-based scheme.
Fig. 2 gives an example of the trace detection and forma-
tion scheme. Two small pieces of codes: a profiling stub
and a prediction stub, are inserted at the beginning of each
translated code region in the block code cache. The profil-
ing stub determines whether a block is becoming hot or not;
the prediction stub will then append a hot code block to a
recording list. The pseudo code of these two stubs is shown
in Algorithm 1 in Figure 2.

To detect a hot trace, we have to locate the head code
block of the candidate trace first. During the emulation, the
QEMU dispatcher gets the starting PC of the next guest
basic block to be executed. The dispatcher looks up a di-
rectory to locate the translated host code block pointed to
by this PC. If there is a miss in the directory, the emulation
modules translates the guest block and add an entry to the
directory. If it is a hit, the basic block has been translated
before and a cyclic execution path is found. This basic block
is a potential trace head and its associated profiling routine
is enabled. The counter is incremented each time this block
is executed. When the counter reaches a threshold, the pre-
diction routine is enabled to record the blocks following the
head block executed in the recording list. When the pre-
diction routine detects that a head block is already in the
recording list, a cyclic path is formed and the trace pre-
diction stops. The execution history in the recording list
is packed as a request to the LLVM translator through the
optimization request FIFO queue. The LLVM translator pe-
riodically polls requests from FIFO queue.

After LLVM optimization, the head block of the trace is
patched a direct jump (line 2 in Algorithm 1) and the ex-
ecution is redirected from the unoptimized codes to the opti-
mized codes. This jump patching is processed asynchronously
by the LLVM translator, and is transparent to the emulated
programages execution threads. We use self-branch patch-
ing mechanism proposed in [15] to ensure the patching is
completed correctly when a multi-thread application is em-
ulated. The store/load of registers to/from memory within
a trace is optimized by promoting these memory operations
to register accesses. Since a trace is formed because of its
hotness, significant block transition overhead is avoided.

3. TRACE MERGING
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Figure 3: A CFG of three basic blocks and traces generated
with NET trace selection algorithm.
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Figure 4: Trace combination with HPM sampling.

Although the overhead of region transitions at the basic-
block level can be reduced with the trace formation and op-
timization, the redundant load /store operations during tran-
sitions among traces could still incur noticeable overheads.
The reason is that the only traces NET algorithm could han-
dle are either a straight fall-through path or a simple loop.
It cannot deal with a hot code region that has a more com-
plex control flow graph (CFG). Figure 3(a) shows a simple
code example with three basic blocks. Applying NET on
this code region will result in two separate traces as shown
in Figure 3(b). The known flaw of such trace selection al-
gorithms includes trace separation and early exits [16]. In
order to overcome such problems, we force the merging of
problematic traces that frequently jump among themselves.
For example, if there are frequent jumps between the two
traces shown in Figure 3(b), we will force the merging of
those two traces into one with its CFG as shown in Figure
3(a).

The biggest challenges of such trace merging are (1) how
to efficiently detect such problematic traces; and (2) when
to merge them at runtime. One feasible approach is to use
the same instrumentation-based NET algorithm described
in Section 2.3, but insert routines to detect the separation
of traces and early exits. This approach, however, will in-
cur substantial overhead because they are often frequently-
executed hot code regions. Instead, we use a feedback-
directed approach with the help of on-chip hardware per-
formance monitor (HPM) to perform trace merging. The
workflow of such trace merging in DBO is shown in Figure
4.

The DBO (shown in Figure 4) consists of three components:
a profile analyzer, a trace filter and a trace combiner. At
first, as DBO continues to receive sampled profile, the profile
analyzer collects sampled PCs and accumulates the sample
counts for each trace to determine the degree of hotness of
each trace. In the second step, the trace filter selects the
hot candidate traces for merging. In our algorithm, a trace



Table 1: Compiler optimization flags.

Optimization flags

Native | -02 -fno-strict-aliasing
x86 -02 -fno-strict-aliasing -m32 -msse2 -mfpmath=sse
ARM -02 -fno-strict-aliasing -mfloat-abi=softfp

-mfpu=neon -mcpu=cortex-a8 -ftree-vectorize -ffast-math

has to meet three criteria to be considered as a hot trace:
(1) the trace is in a stable state; (2) the trace is in the 90%
cover set (to be explained later); and (3) the sampled PC
count of the trace must be greater than a threshold.

To determine if a trace has entered a stable state, a circular
queue is maintained in the trace filter to keep track of the
traces executed in the most recent N sampling intervals. The
collection of traces executed in the most recent sampling
interval is put in an entry of the circular queue, and the
oldest entry at the tail of the queue is discarded if the queue
overflows. We consider a trace is in a stable state if it appears
in all entries of the circular queue. The top traces that
contribute to 90% of total sample counts are collected as
the 90% cover set.

The trace combiner then chooses the traces that are likely
to cause trace separation for merging. Note that, in trace
optimization, we apply the concept in NET algorithm to
collect the basic blocks that form a cyclic path for optimiza-
tion. The same concept is applied here in trace merging. All
traces that form cyclic paths after merging are collected by
the trace combiner. However, we do not limit the shape of
the merged trace to a simple loop here. Any CFG that has
nested loops, irreducible loops, or several loops in a trace,
can be formed as a merged trace. Moreover, it is likely to
collect several groups of traces for trace merging at a time.

Finally, the groups of traces merged by the trace combiner
are passed to the LLVM translator through the optimiza-
tion request FIFO queue for further optimizations. After a
merged trace is optimized by the LLVM translator, its ini-
tial sample count is set to the maximum sample count of
the component traces that form the merged trace. More-
over, the sample counts of the component traces are reset to
zero so that they will not affect the formation of the next
90% cover set for future trace combination.

4. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
HQEMU framework. Detailed analysis of overall perfor-
mance, overhead of trace generation, and overhead of trace
merging are provided to verify the effectiveness of the pro-
posed framework.

4.1 Experimental Setup

All performance evaluation is performed on a system with
one 3.3 GHz quad-core Intel Core i7 processor and 12 GBytes
main memory. The operating system is 64-bit Gentoo Linux
with kernel version 2.6.30. The SPEC2006 benchmark suite
is tested with test and reference inputs in the experiments
and for two different ISAs, ARM and x86 to show the re-
targetability of HQEMU. All benchmarks are compiled with
GCC 4.4.2 for the x86 guest ISA and GCC 4.4.1 [9] for the
ARM guest. LLVM version 2.8 is used in our framework and
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the default optimization level (-O2)is used for JIT compila-
tion. Because SPEC2006 benchmarks are all single-thread
programs, we run only one thread in the LLVM translator
and this thread is capable of handling all the optimization
requests. The trace profiling threshold is set to 50 and the
maximum length of a trace is 16 basic blocks. We use Perf-
mon?2 [24] for performance monitoring with HPM and the
sampling interval used in the experiments set at 1 million cy-
cles/sample. The size of circular queue, N, for trace merging
in the dynamic optimizer is set to 8.

We compare the results to the native runs whose executa-
bles are compiled to the host which is a 64-bit x86 (i.e.
x86-64). Since the default of GCC compilation on x86-64
is with SSE enabled, native runs can benefit from SSE in-
structions. Therefore, we also compile the benchmarks in
guest ISA with SIMD enabled. All compiler optimization
flags used for each architecture are listed in Table 1. Four
different configurations are used to evaluate the effectiveness
of HQEMU:

e QEMU which is the vanilla QEMU version 0.13 with
the fast TCG translator.

e LLVM which uses the same modules of QEMU ex-
cept that the TCG translator is replaced by the LLVM
translator.

e HQEMU-S which is the single threaded HQEMU with
TCG and LLVM translators running on the same thread.

¢ HQEMU-M which is the multi-threaded HQEMU,
with TCG and LLVM translators running on separate
threads.

In both the QEMU and the LLVM configurations, code
translations are conducted at block granularity without trace
formation, and in the HQEMU-S and the HQEMU-M con-
figurations, trace formation and trace merging have been
applied.

4.2 Performance of HQEMU

Fig. 5 illustrates the overall performance results of x86-32
to x86-64 emulations over the native runs. The Y-axis is
the normalized execution time over native execution time.
Note that in all the figures, we do not provide the confidence
intervals because there was no noticeable performance fluc-
tuation among different runs. Fig. 5(a) and 5(b) show the
results of SPEC2006 CINT and CFP benchmarks with test
input sets, respectively. In Fig. 5(a), the slowdown factors
of QEMU over native execution range from 2.5X to 21X
and the geometric mean is 7.7X. Most performance results
of LLVM are better than or close to QEMU except for four
benchmarks: perlbench, gcc, libquantum and xalancbmk.
The reason why LLVM configuration has large slowdowns
with these four benchmarks is because too much transla-
tion overhead are paid without sufficient amortization. On
the other hand, benchmark hmmer and h264ref are two of
the cases where the benefit of optimized code outweighs the
translation overhead, so that the LLVM configuration out-
performs the QEMU configuration.

As for HQEMU-M, all benchmarks run faster than both the
QEMU and the LLVM configurations, including the four
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benchmarks that the LLVM configuration lost to QEMU. cludes some DBT related optimizations such as block chain-
The performance difference is significant. In Fig. 5(a), the ing and indirect branch prediction as well as compiler opti-
average slowdown of QEMU for CINT is 7.7X, and 12.8X mizations such as redundant load/store elimination. Redun-
for LLVM, while the slowdown to native run is only 4X dant load/store elimination is effective in reducing instruc-
for HQEMU-M. In Fig. 5(b), the average slowdowns of tions generated. The trace formation and trace merging of
QEMU and LLVM are both 9.95X for CFP while the slow- HQEMU further eliminate lots of redundant load/store in-
down is only 3.3X for HQEMU-M. Although the perfor- structions related to architecture state emulation. Through
mance of HQEMU-S is not as impressive as HQEMU-M, trace formations, HQEMU achieves significant improvement
it still outperforms both QEMU and LLVM. For test input over both QEMU and LLVM. For reference input driven
driven runs, fast translation is considered important, and runs, the benefit of HQEMU-M is not as outstanding as in
QEMU outperforms LLVM, based on the averaged slowdown Fig. 5(a) and 5(b) when compared to HQEMU-S. This is
numbers. However, many of the benchmarks can still ben- because the translation overhead is playing less a role for ref-
efit from better optimized code even with short runs. This erence input driven runs. As shown in Fig. 5(c) and 5(d),
is where HQEMU shines, its start-up of emulation works HQEMU-M is about 2.5X and 2.1X slower than native runs
as in QEMU, but when the code reuse is high, it switches with CINT and CFP benchmarks, respectively. Compared
the execution to the trace-optimized code. The longer the to the slowdowns of QEMU, HQEMU-M is 2.4X and 4X
code runs, the greater the speed up from optimized traces. faster than QEMU, for CINT and CFP, respectively.
In order to minimize the impact of optimization overhead,
HQEMU-M allows more than one thread to handle indepen- For CFPs, the speedup of LLVM and HQEMU over QEMU
dent TCG translations and LLVM translations. It allows the is greater than that of CINT. This is partly due to the cur-
emulation thread runs like QEMU, while hot traces are se- rent translation ability of QEMU/TCG. The QEMU/TCG
lected for optimization. When the translation load becomes translator does not emit floating point instructions of the
high (i.e. the queue of translation requests get filled up), host machine. Instead, all floating point instructions are
HQEMU-M may even fork more threads to minimize the emulated via helper function calls. By using the LLVM com-
impact of translation delay. With this multi-threaded ap- piler infrastructure, such help functions can be inlined and
proach, the emulation thread can keep going without wait- get floating point host instructions generated directly in the
ing for the optimization. When the optimization thread fin- code cache.
ishes the translation, the optimized code is placed in the
trace cache. Via an atomic patch to the block code cache, Fig. 6 illustrates the performance results of ARM to x86-
the emulation can direct subsequent execution to the trace 64 emulations over native execution (running x86-64 binary
cache and start to benefit from optimized traces. natively). The results of CFP benchmarks are not listed be-
cause most CFP benchmarks are written in Fortran and the
Fig. 5(c) and 5(d) present the results of SPEC2006 bench- ARM toolchain we use does not provide cross-compilation
marks with reference inputs. Unlike test input driven runs, for Fortran. Thus, only results of CINT benchmarks are
the programs spend much more time running in the opti- presented. The performance results of Fig. 6 are similar
mized code caches. As the result shows, the LLVM con- to the results of Fig. 5 — HQEMU-M is 2.4X faster than
figuration outperforms QEMU since the optimization over- QEMU for CINT and is only 3.4X slower than native runs.

head is very much amortized. The speed up from LLVM in-
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Figure 6: CINT2006 results of ARM to x86-64 emulation

with test and reference input.

From the observation of the results, QEMU is suitable for
emulating short runs or programs with very few hot blocks.
The LLVM configuration is better for long running programs
with heavy reuse of translated codes. HQEMU has success-
fully combined the advantages of QEMU and LLVM and
can efficiently emulate both short- and long-running appli-
cations. Furthermore, the trace selection and merging in
HQEMU expand the power of LLVM optimization to sig-
nificantly remove redundant load/stores. With HQEMU,
cross-ISA emulation is getting closer to the performance of
native runs.

4.3 Resultsof Trace Generation and Merging
To evaluate the impact of trace generation and trace merg-
ing, we use x86-32 to x86-64 emulation with SPEC2006
benchmarks as an example to show how the optimizations
eliminate the emulation overhead incurred from code region
transitions. In this experiment, the total number of memory
operations for each benchmark is measured for (a) LLVM,
(b) HQEMU with trace formation only and (¢) HQEMU
with both trace formation and merging. The differences be-
tween (a) and (b) represent the number of redundant mem-
ory accesses eliminated by trace formation; the difference
between (b) and (c) represents the impact of trace merging.

The hardware monitoring counters, MEM_INST_RETIRED:LOADS
and MEM_INST_RETIRED:STORES, are used here to collect the
total number of memory operations. Table 2 lists the results
of the measurement. Column two and three present the total
number of traces generated and merged in the benchmark
and the values are accumulated if the benchmark has multi-
ple input sets. Each trace is associated with a version num-
ber and is initially set to zero. After the trace merging, the
version number of the new trace is the maximum version of
the traces merged plus one. The maximum version of each
benchmark is listed in column four. The reduced number
of memory operations by trace formation (b-a) and trace
merging (c-b) is listed in column five and six, respectively.
The last column presents the improvement contributed from
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proach over HPM sampling for trace merging.

trace merging and trace formation.

From the results of column five and six in the table, we can
see that most redundant memory operations are eliminated
by trace formation for almost all benchmarks. libquantum,
astar and calculix are benchmarks that have significant
improvement from trace merging. As for libquantum, the
hottest code region of it is composed of three basic blocks
and the CFG is shown in Fig. 3(a). The code region is then
divided into two separate traces by the NET trace selection
algorithm. During trace transitions, almost all general pur-
pose registers of the guest architecture need to be stored
and reloaded again. In addition, there are billions of tran-
sitions between these two traces for the entire execution.
Through trace merging, HQEMU successfully merges these
two traces into one big region with CFG shown in Fig. 3(a)
and keeps the execution staying inside this region without
the aforementioned transition overhead. Thus, the perfor-
mance of libquantum is improved by 71%. The other two
benchmarks also exhibit similar trace separation behaviors.

In Table 2, the performance of several benchmarks shows
slight degradation from trace merging. The result is due
to two reasons. First, the trace merging is based on HPM
based sampling. Even though the sampling frequency is low,
it still introduces overhead. Second, as the number of host
registers becomes insufficient for aggressive register promo-
tion of architecture state mapping, this may end up with
register spilling and adversely increases the total number of
memory operations.

4.4 Overhead of Trace Generation

Table 3 lists the number of traces generated by HQEMU and
the breakdown of time for the SPEC2006 benchmarks with
reference inputs. The translation time represents the time
spending on trace generation by the thread of the LLVM
translator. As the table shows, most benchmarks spend less
than 1% of total time conducting trace translation. gcc is
a special benchmark which has lots of basic blocks and no
clear hot regions. About 160 thousand traces are generated
at runtime which costs about 236 and 301 seconds for emu-
lating the x86-32 and ARM guest architectures, respectively.
The translation time is about 25% of the total execution
time. Thanks to the multi-threaded approach of HQEMU,
this significant translation overhead can often be hidden by
running the translation thread on an otherwise idled core
to minimize the impact to the emulation thread. This also
matches the performance results of gcc in Fig. 5(c) and 6(b)
which shows HQEMU-M improves HQEMU-S by a factor of
24% and 19% for x86 and ARM guest, respectively.



Table 2: Measures of traces with x86 to x86-64 emulation for SPEC2006 benchmarks with reference input

CINT2006
Benchmark | # Trace | # Comb. | Ver. | A(10%) | B(10®) | Impro.
perlbench 13123 5 1 113.9 7.7 -1.0%
bzip2 3076 41 2 212.1 24.0 2.7%
gce 159830 81 4 214.2 4.8 -0.5%
mecf 269 9 3 23.2 5.1 4.7%
gobmk 43310 216 4 138.1 16.5 -0.3%
hmmer 939 0 0 136.0 0.0 -0.7%
sjeng 1437 30 5 152.2 40.0 1.8%
libquantum 219 1 1 26.8 290.5 71.7%
h264ref 6314 11 2 441.2 31.4 1.4%
omnetpp 1773 5 1 31.0 8.0 -1.4%
astar 1053 21 5 88.9 56.1 17.0%
xalancbmk 3224 1 1 115.6 3.5 -1.0%
CFP2006
Benchmark # Trace | # Comb. | Ver. | A(101°) | B(101%) | Impro.
bwaves 367 3 2 113.0 .5 -2.5%
gamess 10675 60 5 400.6 25.8 3.2%
zeusmp 1705 48 2 157.3 20.4 2.7%
cactusADM 970 1 2 194.6 -20.9 -2.6%
namd 1088 0 0 227.9 .6 -0.6%
dealll 3918 9 1 117.6 8.2 0.5%
soplex 2474 20 3 37.6 46.0 11.9%
povray 1961 7 3 64.0 -4.9 -3.2%
calculix 3492 5 1 400.2 238.6 21.4%
tonto 5046 28 3 138.9 6.5 -0.5%
lbm 165 1 1 65.9 7 10.4%
wrf 5449 14 2 348.7 10.3 -0.4%

Table 3: Numbers of traces generated by HQEMU and the breakdown of time for SPEC2006 ref inputs. Unit of time: second.

CINT2006 x86 to x86-64 ARM to x86-64
Benchmark # Trace | Total Time Trans. Time # Trace | Total Time Trans. Time
perlbench 13123 1271 22.8 (1.8%) 10313 1276 29.5 (1.4%)
bzip2 3076 1117 5.9 (0.5%) 3427 1128 9.7 (0.9%)
gce 159830 914 | 235.8 (25.8%) 144408 1223 | 300.5 (24.6%)
mecf 269 451 .7 (0.2%) 218 370 .8 (0.2%)
gobmk 43310 1560 61.2 (3.9%) 47625 2503 88.8 (3.5%)
hmmer 939 1029 1.9 (0.2%) 661 1748 2.5 (0.1%)
sjeng 1437 1696 2.3 (0.1%) 1282 2520 2.8 (0.1%)
libquantum 219 841 .5 (0.1%) 249 891 .8 (0.1%)
h264ref 6314 1937 13.8 (0.7%) 5396 2622 20.8 (0.8%)
omnetpp 1773 838 3.8 (0.5%) 1351 1417 4.9 (0.3%)
astar 1053 670 2.1 (0.3%) 941 908 2.6 (0.3%)
xalancbmk 3224 762 8.3 (1.1%) 2889 1200 11.2 (0.9%)
Average 0.6% 0.6%

CFP2006 x86 to x86-64

Benchmark # Trace | Total Time | Trans. Time

bwaves 367 951 1.2 (0.1%)

gamess 10675 2312 25.6 (1.1%)

zeusmp 1705 1093 6.3 (0.6%)

cactusADM 970 1597 2.2 (0.1%)

namd 1088 710 2.8 (0.4%)

dealll 3918 1034 6.7 (0.6%)

soplex 2474 548 6.5 (1.2%)

povray 1961 782 4.4 (0.6%)

calculix 3492 2188 6.7 (0.3%)

tonto 5046 2133 11.3 (0.5%)

Tbm 165 617 0.5 (0.1%)

wrf 5449 1998 12.0 (0.6%)

Average 0.3%
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45 Overhead of Trace Merging

In this sub-section, we discuss the overhead of trace merging
based on two approaches: HPM sampling and instrumen-
tation. For HPM sampling, we measure the overhead by
enabling HPM sampling but do not actually merge traces
as they are detected. The HPM sampling overhead ranges
from 0.7% (milc) to 3.7% (xalancbmk) and is 1.4% of the
total execution time on average for SPEC2006 benchmarks.
As for instrumentation, we insert profiling and prediction
routines of NET in code regions of all traces to detect cases
for trace merging. When the hot traces form a cyclic path,
these traces are merged. We present the overhead by com-
paring the performance of instrumentation-based approach
to those of HPM sampling. The slowdown factor is normal-
ized to the time of HPM sampling and is shown in Fig. 7.
The average overhead of instrumentation-based approach is
about 24.9% for CINT and 11.7% for CFP. The results in-
dicate that HPM sampling could be very cost effective for
the detection of trace merging.

5. RELATED WORK

Dynamic binary translation is widely used for many pur-
poses: transparent performance optimization [2, 19, 27], se-
curity monitoring [25], runtime profiling [20, 23] and cross-
ISA emulation [8, 3]. With the advances of multicore ar-
chitectures, several multithreaded DBT systems exploiting
abundant multicore resources for optimization have been
proposed in the literatures. However, most of them have
very different objectives and approaches in their designs.

A very related work to HQEMU is [17] which also integrates
QEMU and LLVM in their DBT system. In their framework,
the authors target small programs with ARM to x86-64 em-
ulation. It sends one block at a time to LLVM translator
when the TCG translator determines it is worthy of opti-
mization. Hence, the performance of the translated code
was very poor. They also did not consider the retargetabil-
ity issue of their DBT. It requires a different binary to LLVM
translator for each different ISA, instead of using TCG as an
IR as in HQEMU. Unlike their framework, HQEMU applies
sophisticated LLVM optimization on traces. Therefore, we
can benefit from the advantages of long traces. HQEMU also
exposes the opportunities to eliminate redundant load/store
instructions during code region transitions.

Ha [13] and Bohm [5] proposed the strategy of spawning
one or multiple helper thread(s) for JIT trace compilation
so that concurrent interpretation and JIT trace compilation
can be achieved. Their approach conducts trace profiling
and prediction while interpreting guest programs. Instead
of using interpreter, our emulation process is based on JIT
compilation. We instrument trace detection routine in the
block binary code and efficiently redirect execution to trace
cache as soon as the optimized code is ready. They also did
not use HPM to reduce profiling overhead as in HQEMU
during trace merge and optimization. The Java HotSpot
VM’s parallel garbage collector [1] spawns multiple garbage
collection threads to decrease garbage collection overhead
and hence increase application throughput. Its threading
strategy does not improve the quality of code and requires
the execution of guest program to stop while garbage col-
lection is being performed. In contrast, our goal is to re-
optimize guest program at runtime, and guest code quality
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can be improved significantly.

COREMU [28], a full-system emulator based on QEMU,
emulates multiple cores by creating multiple instances of se-
quential QEMU emulators. The system is parallelized by as-
signing multiple QEMU instances to multiple threads. With
the same goal of COREMU, PQEMU [11] takes a different
approach to have only one instance of QEMU but parallelizes
it internally. Through sophisticated arrangement of critical
sections, PQEMU achieves minimal overhead in locking and
unlocking shared data. The advantage of their approach
is that the performance of emulating multi-thread program
can be enhanced because each guest thread is handled by a
separate emulator thread. However, the emulation of single-
thread program cannot benefit as much because they did not
try to optimize the target guest code in each thread. In con-
trast, HQEMU assigns DBT functions to separate threads
so very sophisticated optimizations can be applied to each
guest thread without incurring overheads on the applica-
tion threads, and the performance of both single-thread and
multi-thread guest programs can be improved on multicore
systems.

Hiniker et al. [16] address the trace separation problem
in two trace selection algorithms, NET and LEI. The au-
thors focus on the issues of code expansion and locality
for same-ISA DBT systems. A software-based approach
for trace merge is also proposed. Davis and Hazelwood
[10] also use software-based approach to solve trace sepa-
ration problem by performing a search for any loops back
to the trace head. Our work targets cross-ISA DBT sys-
tems and addresses the issues of trace separation problem
especially for the performance and emulation overhead. We
reduce redundant memory operations during region transi-
tions and use a novel trace combination approach based on
HPM sampling techniques. ADORE [19] is a lightweight
dynamic optimization system based on HPM. Using HPM
sampling profiles, performance bottlenecks of the running
applications are detected and optimized. Chen et al. [7]
proposed some techniques to improve the accuracy of HPM
sampling profiles. These work motivate us to exploit HPM-
based sampling techniques for our trace merge algorithm.
However, [7] and [19] are not multi-threaded DBTs.

6. CONCLUSION

In this paper, we presented HQEMU, a multi-threaded retar-
getable dynamic binary translator on muticores. HQEMU
runs a fast translator (QEMU) and an optimization-intensive
translator (LLVM) on different processor cores. We demon-
strated that such multi-threaded QEMU+LLVM hybrid ap-
proach can achieve low translation overhead and good trans-
lated code quality on the target binary applications. We
showed that this approach could be beneficial to both short-
running and long-running applications.

We have also proposed a novel trace merging technique to
improve existing trace selection algorithms. It could effec-
tively merge separated traces based on the information pro-
vided by the on-chip hardware HPM. It could remove redun-
dant memory operations incurred from transitions among
translated code regions. It could also detect and merge
traces that have trace separation and early exit problems
using existing trace selection algorithms. We demonstrate



that such feedback-directed trace merge optimization can

significantly improve the overall code performance.
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