2012 IEEE 4th International Conference on Cloud Computing Technology and Science

Value-Based Tiering Management on Heterogeneous
Block-Level Storage System

Chai-Hao Tsai
Department of Computer Science
National Tsing Hua University, TW
Email: cmj0121@cs.nthu.edu.tw

Abstract—As the scale of datacenter continues to grow, it
is hard to keep servers homogenous, with the same hardware
and performance characteristics. Today’s datacenters commonly
operates on several generations of servers from multiple vendors,
and mix both high-end and low-end devices together to deliver
service quality requirement with lowest cost. However, the het-
erogenous environment also complicates the management of the
datacenters, especially in terms of resource allocation. In this
paper, we focus on the resource allocation of a tightly unified
block-level storage with SSD and HDD. We conduct experiments
to quantify the performance of difference access patterns on
each type storage devices. Then formulate our resource allocation
problem into a ILP (Integer Linear Programming), and proposed
data migration algorithms based on the observations. We evaluate
our solution by implementing a heterogenous storage consist of
HDD, SDD and iSCSI HDD, and show the data access response
time can be reduced by 27%.

Index Terms—Tiering management, SSD, heterogeneous stor-
age, performance

I. INTRODUCTION

As the scale of datacenter continues to grow, it is hard
to keep servers homogenous, with the same hardware and
performance characteristics. It is well known that many of
today’s datacenters are deployed incrementally and operated
on several generations of servers from multiple vendor. It
is also commonly seen for the cloud-based datacenters to
mix both high-end and low-end devices together, so that they
could satisfy the service quality requirement from varied web
applications/services with lowest cost. As a result, hetero-
geneous environment has become increasingly common and
popular for datacenter design. However, it also complicates the
management of the datacenters, especially in terms of resource
allocation, because variant of hardware has to be considered
as different types of resources with their own properties and
performance.

In this paper, we attempt to solve the resource allocation
problem of a heterogenous block-level storage for cloud
computing. The system infrastructure of cloud computing is
commonly consist of multiple tiers, and block-level storage is
one of the tier for providing the fundamental storage service.
Specifically, this paper considers a heterogenous block-level
storage that is consisted of both hard disk (HDD) and solid-
state drive (SSD) from varied vendors.

Many recent research considers SSD and HDD as the typical
model of hierarchical or multi-layer heterogeneous storage

393

978-1-4673-4510-1/12/$31.00 ©2012 IEEE

Jerry Chou
Department of Computer Science
National Tsing Hua University, TW
Email: jchou@cs.nthu.edu.tw

Yeh-Ching Chung.
Department of Computer Science
National Tsing Hua University, TW
Email: ychung@cs.nthu.edu.tw

system. Based on the difference properties between solid-
state and traditional disk, many harbingers try to find the
mathematical model for heterogeneous storage system [1].
There has been much research in optimizing the heterogeneous
or hybrid storage system with both solid-state and disk storage,
even on the crossed network environment. Some of them try to
integrate solid-state and disk into a hybrid storage system [2];
other try to make the solid-state disk as the traditional storage
cache or even make the traditional disk as the write buffer
such that solid-state disk can reduce the erase times [5] and
increase the lifetime [4]. More details on those approaches are
in Section II.

In contrast, this paper attempts to propose a general frame-
work that manages any forms of heterogenous storage device
based on the value of data. In general, we use the hot data
as the most valuable data in our assumption. For example,
the most commonly used data would be the hot data under
the usage assumption and these hot data should be placed
into high-end device such that can improve the performance
on the full system. We give the value for each data and
identify the popularity or importance such that we can use
these information to model the heterogeneous problem. This
model is based on the value we given and calculate the overall
value to decide the placement for each data.

We choose the random access as our performance subject.
Compared with popularity which can identified by the number
of usage, random is hard to be defined in block-level environ-
ment. Unlike in file-level, we can guess the video or music
files should be sequence read and the metadata or data index
would be random access. When random access pattern can
be valuation and be given the value for each type of access
pattern, we can model the problem into the mathematical
problem. Based on this valuation we can classify the data
blocks and placement data into the particular disk.

The rest of this paper is organized as follows. In Section
2, we introduce some related work. In Section 3, we describe
the model on our system and propose our methodology to
solve the hybrid storage device environment. Section 4 present
the detailed architecture and show the experiment results. We
conclude in Section 5 where we summarize our results.

@) con‘%)Euter
@
-~ soclety

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

II. RELATED WORK

The solid-state drive (SSD) is a storage technology based
on NAND flash memory with single-level cell (SLC) or multi-
level cell (MLC). Comparing to traditional hard disk drive
(HDD), SSD does not have the overhead for disk seek, spin
or rotation. Therefore, SSD has lower power consumption and
higher access speed for most I/O operations, in particularly
for random read. However, SSD wasn’t popular in the past
because it is much more expensive than disk [3], and it only
allows limited number of writes in its lifetime. But, as the price
of hardware continue decreasing, many modern datacenters are
building their storage systems with the mixing of SSD and
HDD.

Several storage architectures and management strategies are
designed specifically for heterogenous storage device consisted
of SSD and HDD. One common approach is to reduce disk
access by caching data in SSD, because SSD has better
performance for most I/O operations. But Kim et al found
SSD could have worse performance than disk in random write.
Thus, they proposed HeteroDrive [5] to redirect random write
requests into disk as the buffer for SSD. Another similar
approach is I-CASH [2] proposed by Jin Ren et al. -.CASH
puts all the modify data into disk continuously and write back
into SSD periodically. This gains the benefit of sequential write
on disk and reduce the times of write on SSD. [4] also shows
using HDD as the write buffer can extend the lifetime of SSD.
In contrast, this paper attempts to propose a general framework
that manages any forms of heterogenous storage device based
on the value of data.

Our work is also close related to the concept of information
lifecycle management (ILM) [12]. ILM comprises the policies,
processes, practices, and tools to address the management
problem in large scale storage system according to the business
value of information. Today, most of IT companies develop
their storage management product and architecture based on
the concept of ILM. Thus, there are also studies on data
valuation for hierarchical storage system management. In [1],
Xiaonan Zhao et al build a valuation model of heterogeneous
storage model by analyzing the frequency, granularity, distri-
bution and association of block-level read/write requests. [10],
[11] also build information valuation model at the file-level.
In this paper we determine the data value by considering the
data access pattern of random I/O requests on various storage
device, such that data can be placed into more a suitable type
of storage device.

III. MATHEMATICAL MODEL AND METHODOLOGY

In this section, we introduce the mathematical model and
some definitions we would use in the later sections, and then
model the tiering problem. First, we give some variable and
some mathematical model that is described our environment
and problem. Second, based on above model we propose our
method to solve this problem such that we can gain the benefit
of heterogeneous storage system.

394

978-1-4673-4510-1/12/$31.00 ©2012 IEEE

= a5 L+ 1

| Virtual Disk | | Virtual Disk |
<> 4% o o
| Mapping Table
= o = o Y P
= =™
(a) (b)

Fig. 1. The usage SSD in two scenario: Scenario (a) is the case which both
SSD and HDD are combined into one virtual disk. The mapping table handle
the re-direction of request. Scenario (b) is the case which SSD is the storage
cache of HDD.

block | popularity Access Pattern Factor ~ Valuation
a 100 Sequence x 1 100
b 50 Full Random x 2 100
c 80 Partial Random X 1.5 120

TABLE I
EXAMPLE OF BLIND SPOT FOR PLACEMENT: POPULARITY IS NOT ONLY
THE FACTOR USING ON PLACEMENT POLICY.

A. Mathematic model

There are various usage scenario to integrate SSD and HDD
into a heterogenous storage device. Most of them [4], [5]
consider SSD and HDD as different layers in the storage
hierarchy as shown in Figure 1 (b). But in our work, we
consider a more tightly integration as shown Figure 1 (a) where
different storage devices are mixed into a single unified hybrid
device through technique, such as mapping table.

For the rest of paper, we use the following variables to
define our storage model.

Definition 3.1: Given n disks and m data blocks:

e x;; € {0,1} indicates whether block j is placed on disk
1 or not.

e v;; is the value if block j is placed on disk i.

e n; is the access frequency of block j.

e R is the number of replica for block j.

o C; is the capacity of disk .

The v;; is the one of the key variables on our model. It
is used to identify which block is more suitable to be placed
into solid-state disk than traditional disk or verse vice. The
precise extents of this value can significantly affect the result.
In general, frequent I/O or hot data should be placed into solid-
state disk instead of into traditional disk because of the high
speed and low latency properties of solid-state. But with this
coefficient, it is out of our estimation. Given the example on
Table I, if our placement is based on the popularity in Table I,
we can find that the priority of placement into solid-state disk
is a > ¢ > b. But considered the affection of access pattern,
the best choice should be c instead.

Based on these variables, our target is to find the best
selection such that the system can get the maximal benefit
(i.e. aggregated value). Thus, we formulate our problem as
follows:

@) con‘%%)Euter
(@)
-~ soclety

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

Compare block
with least valu

Swap two
€ blocks

On the fly

10 Update
Request Record

Off-peak
Integer Linear
Programming

Layout
reconfiguration

Fig. 2. The workflow of the trigger policy: When the new IO request coming,
the system update the record and identify the request is hot or not. In the
situation of on the fly, system only migration the block which value exceeds
the threshold. In the situation of off-peak, the system will consider the full
blocks and re-allocate into the suitable placement.

Definition 3.2: The target function:
Max {>° > w;j * ;; * n;j}, which the subject functions are

St w; = R;, for block j € [1,m)]
Z;n:l Lij S Ci7 for disk 1 € [l,n]
z;; € {0,1}

Subject to:

There are two major conditions for this equation. One is
the disk capacity which traditional disk has larger capacity
and solid-state disk has smaller one; another is the number of
replica for each data. Disk capacities is the factor that limited
the number of the data in disk. If the disk is full, we need to
swap out the data and swap in the more valuable data into disk.
The number of replica is used for the security and back-up. If
the system need to guarantee the quality of service (QoS) of
data, the number of replica should be set larger than 1.

In general, this problem is called the linear programming.
Linear programming (LP) is a method for determining the best
choice in the given mathematical model for some requirements
as linear relationships. LP is widely used in business and
economics. Many researchers focus on how to solve the LP
problem more efficiently. Simplex algorithm [13] is widely
used to solve LP problem and it can solve LP in polynomial
time in random problem. In the worse-case, Simplex algo-
rithm solves the LP problem in exponential time, but usually,
simplex method can provide the polynomial time complexity.

If the unknown variables are all required to be integers, the
problem is called an integer linear problem (ILP). Compared
with LP problem which can be solved efficiently in the worse
case, ILP are generally NP-hard. The binary ILP is the special
case for ILP where variable are required to be 0 or 1, and this
problem is one of the Karp’s 21 NP-complete problems [6],
[8]. In our case, our model is the binary ILP and it is NP-hard
problem. Therefore, we use a local maximal method to solve
ILP in our case as describe in Section III-B1.

B. Migration Policies

To maximize the storage performance descried in Def. 3.2,
our tiering management system has to migrate data among
blocks. However, data migration could be a costly opera-
tion in storage system and could cause severe performance

395

978-1-4673-4510-1/12/$31.00 ©2012 IEEE

degradation to users. Thus, as shown in Figure 2, depending
on the system loading, our tiering management system make
migration decision in two occasions: on the fly and off-peak.

Upon a I/O request arrives, if the system load is high,
migration in large data quantity could serious degrade user
performance. Thus, we simply attempt to increase the overall
system value by swapping the storage location of the requested
data with on of the lowest value data in the system. On the
other hand, if the system is under utilized, we consider to
reallocate all blocks into more suitable location by solving
the equations in Def. 3.2. The two migration algorithm is
described in more detail in below.

1) Online Swapping Algorithm: Here we consider the sys-
tem is busy, and we propose Algo 1 that attempt to increase
the overall system value by swapping two individual data upon
each arriving request. More specifically, upon the arrival of
each request, our Algo 1 performs two operations. First is
to update a data list L that records the top-K data currently
having the lowest value. Second is to increase the total system
value by swapping the storage location of the requested data
with one the data from the top-K.

To maintain the top-K list, we compare the value of each
arriving requested data with the data in the list. If the requested
data has lower value than one of the data in the list, we insert
the requested data in the list and remove the the highest value
data from the list. Thus, the complexity of this operation is
O(K).

To swap the data position, we need to compute the new
value gained from swapping the requested data with each of
the data in the top-K list. Then we pick the data block from
the list that can result in the maximum value gain. The the
complexity of this operation is again O(K). As a matter of
fact, we could combine the two operations together into one
loop that scans through the top- /K list as shown in the pseudo-
code of our Algo 1.

Notice that K is a constant parameter to our algorithm.
Thus, the two operations only causes constant overhead to each
I/O request. As the value os K become larger, the constant
overhead increases, but the swapping benefit could also be
greater, because there are more candidate data for swapping.

Finally, since there is still a performance penalty from
swapping the data between disks, we only swap the data if the
overhead is less than some threshold. The value of threshold
is used to make the trigger not too sensitive to migration
frequently. If the system is not busy, the threshold can set
larger and vice versa.

2) Off-peak Reconfiguration Algorithm: When the system
load is light, it gives us an opportunity to reconfigure all the
block locations by solving the optimization problem in Eq. 3.2.
However, as state previously, the problem is NP-complete, and
it is still time consuming to solve it using existing ILP solver.
Therefore we propose a linear complexity heuristic method for
the problem as shown in Algo 2.

Our Algo 2 is constructed based on the following two
observations. (1). SSD has better performance than disk even
on the crossed network environment as shown in Figure 4. (2).

@) con‘1E1EpEuter
@
-~ soclety

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

Algorithm 1 Online Swapping Algorithm

Require: z 4: the current requested block; x z: the block with
the lowest value at its current placement.

Ensure: Compared with the value between original statue and
state after swap.

1: Update the record of the new request.

2: Maintain the minimal value list.

3: Set V' = v;; x n; be the value of the block.

4: Compared the value after the swapping V4 and original
value Vp

5. if then'Z—'2 > Threshold

6: Swap

7: else

8: No operation

9: end if

Algorithm 2 Off-Peak Reconfiguration Algorithm
Require: Given the blocks of data Blocks:{x1,zo,...} .
Ensure: The new placement of each block.

1. List; < ¢ for any disk 1.

2: Blocks.sort(s) by the key <— number n,;.

3: while Blocks is not Empty do

4: x = Blocks.pop(1)

5: for list in List.order(key=priority) do
6: if list is not Full then

7: Insert list < x and Break

8: else

9: y = list.Smallest

10: if ng * v, < ny*xv, then

11: list.pop(y)

12: Insert list < x

13: Insert Blocks < y and Break
14: end if

15: end if

16: end for

17: end while

More frequent accessed data contributes to higher percentage
of the total system value as defined in model in Def. 3.2.
Therefore, Algo 2 is consisted of the following steps.

First, in line 2 of Algo. 2, we sort all block by the number
of access and place them into storage system in order. Then,
we allocate into the particular disk according by the value
defined by Def. 3.2. If block wants to insert into solid-state
which is full, the module will choose the smallest value on
the solid-state, compared with the value between two. If the
new block is more suitable than original one, swap two block
and original would be re-allocate again. The detail are in line
5-13 of Algo. 2.

IV. IMPLEMENT AND EXPERIMENT

In this section, we first briefly explain the implementation
of our work. Then we discuss how to build our data valuation
model. Finally, we evaluate the performance results from our
valuation model and data placement algorithms.

978-1-4673-4510-1/12/$31.00 ©2012 IEEE

396

Server
CPU Intel Xeon L5640
Memory 24GB
oS CentOS 5.8 with kernel version 2.6.18-274.e15
Network D-link DGS-1210-24
Make and model Capacity solid-state ~ Network
WD-2003ABYX 2T
Intel-SSDSA2M080G2GC 80G Y
KINGSTON-SV100S264G 64G Y
M4-CT128M4SSD2 128G Y Y
Hitachi-HDS723020BLA642 | 2T Y
TABLE II

IN OUR EXPERIMENTS, WE BUILT A HETEROGENOUS STORAGE THAT
CONSISTS OF FIVE DIFFERENT TYPES OF DISKS

| File System |

= TF
CITTTTITT]

o

—> [[Tavere] Covamper > <2222t

Fig. 3. The implementation of our heterogenous storage system management
mechanism.

Dump Statistic
Information

Minimal Value
Data Block

SSD

HDD

iSCSI disk

A. Implementation

To evaluate our storage management mechanism. we built
a heterogenous system consisted of diverse range of devices.
As summarized in Table II, our heterogenous environment in-
cludes five different disks: one local traditional disk, two local
SSDs, one remote traditional disk, and one remote SSD. The
three remote disks are placed on a remote server that connected
to our local server by ethernet cable though the iSCSI protocol.
We implement our block-level data management mechanism
as a kernel module in CentOS 5.8 with kernel version 2.6.18.
The architecture of the implementation is shown in Figure 3.

First of all, as we know, OS handles I/O requests in the unit
of logic block address (LBA). However, in practice, it would
be too costly to record information and manage data in such
fine granularity. Thus, in our implementation, we group many
logic blocks into a single ”Unit” as the definition of data for
our management mechanism. As illustrated by Figure 3, our
mechanism controls the device mapping table in OS to map
each Unit of data blocks onto different disks. Upon the arrival
of a I/O request from file system, it is then redirected to the
raw disk that holds the Unit of the data block.

Our kernel module implements two key components. One
is the monitor that records the information of each ”Unir” for
our data migration algorithms. Currently, we records the access
pattern and access frequency. The other one is the controller
that either swap data on-the-fly using Algo 1, or reconfigure
the whole data placement using Algo 2. Based on the new data
placement position, the controller then migrates data among
disks, and modifies the colorred OS LBA mapping table.

@) con‘%%)Euter
(@)
-~ soclety

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

B. Valuation Modeling

As describe in Section III, our approach is based on a data
valuation model that captures the value v; ; of placing data ¢
on disk j. So here, we describe how to determine the value
of v;; for our experiments in the next subsection.

In the experiments, we decide to use the I/O response time
as our performance metric. As shown in previous studies,
SSD and traditional disk have different response time between
random access and sequential access, or between write and
read requests. But the differences may actually depend on
the degree of randomness and the performance of devices.
Therefore, our objective is to quantify the correlation between
response time, access pattern and types of disk.

Specifically, we consider the degree of randomness by the
distance between two consecutive requests. For the experi-
ments, we modified a commonly used disk profile hdparm [9]
to generate I/O requests separated in a given distance (i.e.
number of sectors), and collect the average response time of
the requests. Figure 4 reports our I/O response time measure-
ments versus the distance (i.e. randomness) for each of the
five types of disk used in our storage system. We varied the
distance from O sector to 190 sectors, and we conducted the
experiments for both read and write requests. As can be seen
in the figure, the read and write requests must be considered
separately, because they have quite different characteristic and
behavior. According to the results, given the randomness of a
data and type of request (i.e. read or write), we can determine
its corresponding value in each type of disks.

From Figure 4 we also have the following observations. For
the read request, the performance of solid-state is pretty stable
when the access distance is more than 10 sectors. Compared
with the solid-state, the response time of traditional disk is
almost linear growth by the distance, while the iSCSI disk
has the same result after controlling the distance large than
60 sectors. Integrated experimental result between solid-state,
disk and iSCSI, we can find that the traditional disk is batter
than solid-state disk when the distance between requests closed
is smaller than about 50 sectors, and the iSCSI does not affect
the performance significantly on this case.

On the other hand, for the write request shown in Figure 4
(b), we found the performance of solid-states is about 8 times
of the performance of traditional disk. The iSCSI also have
much better performance than traditional disk likely due to the
network buffering effect. As we observers that the iSCSI disk
would return the finish signal even if the data has not written
into the remote disk.

C. Performance Evaluation

We use the block-level OLTP1 data access trace log from
UMass Trace Repository [7] to drive our evaluation. The trace
log is collected from a financial service server. Our evaluation
was conduct on a heterogenous storage previously described
in Section IV-A. We show the performance improvement of
our approach by comparing the request response time with
and without our tiering management mechanism. Without our
tiering management mechanism, we assume the storage system

397

978-1-4673-4510-1/12/$31.00 ©2012 IEEE

Disk Properties (read)

~—Local HDD -=-Local SSD 1 Local SSD 2 —=iSCSISSD —iSCSI HDD

Response Time (us)
w & w
g &8 8
8 8 8

0 20 a0 60 20 100 120 140 160 180 200

Distance (sectors)

(a) Disk read request response time versus randomness (i.e. distance between
consecutive requests)

Disk Properties (write)

—+—Local HDD -=-LocalSSD1 -+Local SSD2 -=iSCSISSD —iSCSI HDD

12000
10000 M\/
8000

6000

4000

Response Time (us)

0 20 10 60 80 100 120 140 160 180 200
Distance (sectors)

(b) Disk read request response time versus randomness (i.e. distance between
consecutive requests)

Fig. 4. We control the distance of two consecutive requests and report its
performance impact on the average response time for different types of disks
denoted in Table II.

simply combines all disk linearly in an order, and no data
migration would occur.

In our experiment, we re-play the I/O request in the trace
log and report the average response time of every 500 re-
quests as a stage over the time. The Figure 5 and Table III
summarize the results. For the first two stages of requests,
we have lower improvement because our system was in a
learning stage to collect the access pattern of new records and
cause more data migrations. The information inaccuracy and
the migration overhead limit the performance improvement
from our approach. For the next four stages of requests,
the system became more stable, and the hot data could be
more accurately identified. Thus the system performance was
clearly improved comparing to the results without our tiering
management. Finally, we found the access pattern of data
blocks was changed for the last stage of requests. As a result,
the performance improvement was decreased. However, as
our system continues to profiling the access pattern of data
blocks, we expect the improvement to increase once again after
the access pattern become more stable. Overall, we observed
an average improvement in I/O request response time from
3.8% ~ 27.2%.

. IEEE
@ computer
. soclety

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

stage | without with improvement
tiering management | tiering management
1 800.25 794.81 6.8%
2 734.71 731.71 3.8%
3 733.85 659.78 11.3%
4 884.88 705.39 25.4%
5 901.05 708.47 27.2%
6 667.18 575.12 16.0%
7 737.87 734.54 4.5%
TABLE III

THE AVERAGE REQUEST RESPONSE TIME AND PERFORMANCE
IMPROVEMENT REPORTED FROM OUR EXPERIMENTS USING THE OLTP1

TRACE.
1000
900
— 800 ~ N\
n
E ~— _z
= 700 ~_— \//
g 600 N’
-
s 500
g
s 400
o
» 300
)
& 200
—— Without tiering management
100 —— With tiering management
0
1 2 3 4 5 6 7 8
Request (five hundred)
Fig. 5. The average response time of every hundred requests from the trace

log of OLTPI.

V. FUTURE WORK AND CONCLUSIONS

We model the heterogeneous resource problem for a block-
level storage in distributed and heterogeneous environment.
By modeling the problem, we can find the theoretically best
solution and find the useful information that can classify the
data by the degree of randomness.

Using the modified benchmark tool hdparm, we built our
data valuation model based on the relationship between the
randomness of data, the type of disk, and the performance
of I/0O access. Based on the valuation model, we proposed
an on-line and an off-line data placement strategies. Upon
receiving each I/O request, we use a data swap strategy to
improve system performance without introducing too much
overhead. The periodically, we use a off-line reconfiguration
algorithm to maximize the performance by finding the more
suitabable for all data.

Using our work, the heterogeneous storage can gain the
benefit of the solid-state drive on performance and the benefit
of the disks on the capacities. Using the solid-state accounted
the 10% capacities of all, we can improve the performance on
response time for about 3.8% ~ 27.2%.

In the future work, we will continue our work in several
directions. (1) In this work, we determine the data value

978-1-4673-4510-1/12/$31.00 ©2012 IEEE

based on the data access randomness. But in the future,
we would like to explore other more parameters. (2) We
would like to keep improving our heuristic algorithm for data
reconfiguration. (3) We will attempt to apply our approach at
the file-level. In file-level environment, we could collect more
information to classify the data, include the last time of usage
or modify, the type or the owner of file, even the size of the
file, which can more helpful on the decision.

(1]

(2]

(3]

[4]

(3]

(6]

(71
(8]

(91

REFERENCES

Xiaonan Zhao, Zhanhuai Li and Leijie Zeng. “A Hierarchical Storage
Strategy Based on Block-Level Data Valuation”. Fourth International
Conference on Networked Computing and Advanced Information Man-
agement, IEEE, 2008, Page(s): 3641

Jin Ren and Qing Yang. “I-CASH: Intelligently Coupled Array of SSD
and HDD”. High Performance Computer Architecture (HPCA), IEEE,
2011, Page(s): 278-289

Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety
and Antony Rowstron. “Migrating Server Storage to SSDs: Analysis of
Tradeoffs”. European conference on Computer systems (EuroSys), ACM,
2009, Page(s): 145-158

Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan and
Ted Wobber. “Extending SSD Lifetimes with Disk-Based Write Caches”.
USENIX conference on File and storage technologies (FAST), ACM, 2010,
Page(s): 8-8

Sang-Hoon Kim, Dawoon Jung, Jin-Soo Kim and Seungryol Maeng.
“HeteroDrive: Reshaping the Storage Access Pattern of OLTP Workload
Using SSD”. International Workshop on Software Support for Portable
Storage (IWSSPS), 2009, Page(s):13-17.

bitprog, Solve binary integer programming problems.
http://www.mathworks.com/help/toolbox/optim/ug/bintprog.html.
MATLAB.

UMass Trace Repository. http://traces.cs.umass.edu/index.php/Storage/Storage.
KHACHIAN, L G. Polynomial algorithms in linear programming. Zhur-
nal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 1980, Vol. 20,
Page(s) 51-68

hdparm - get/set SATA/IDE
http://linux.die.net/man/S/hdparm.

device parameters.

[10] Ying Chen, information valuation for information lifecycle management,

Proceedings of international Conference on Autonomic Computing (ICAC
05), June 2005, pp. 135-146.

[11] Muzhou Xiong, Hai Jin, Song Wu, Information Lifecycle Management

[12] ILM Definition

in Multi-Gird Environment, Proceeding of the fourteenth national confer-
ence on information and storage techniques, September 2006, pp. 175-
184.

and Scope an ILM framework, July,2004.
http://www.snia.org/forums/dmf/programs/ilmi/DMF-ILM Vision2.4.pdf.

[13] J. A. Nelder and R. Mead. “A simplex method for function minimiza-

tion”. The Computer Journal, 1965, Page(s): 308-313.

. IEEE
@ computer
. soclety

