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Abstract— Big data refers to data that is so large that it exceeds 
the processing capabilities of traditional systems. Big data can 
be awkward to work and the storage, processing and analysis 
of big data can be problematic. MapReduce is a recent 
programming model that can handle big data. MapReduce 
achieves this by distributing the storage and processing of data 
amongst a large number of computers (nodes). However, this 
means the time required to process a MapReduce job is 
dependent on whichever node is last to complete a task. This 
problem is exacerbated by heterogeneous environments.  

In this paper we propose a method to improve MapReduce 
execution in heterogeneous environments. This is done by 
dynamically partitioning data during the Map phase and by 
using virtual machine mapping in the Reduce phase in order to 
maximize resource utilization. 

Keywords—BigData; MapReduce; Hadoop; Virtual 
Machine; Heterogeneous environment; Cloud Computing; 
Parallel Computing.  

I.  INTRODUCTION 
MapReduce is a programming model for creating 

distributed applications that can process big data using a 
large number of commodity computers. Originally developed 
by Google[1,2], MapReduce enjoys wide use by both 
industry and academia[3] via Hadoop[4]. The advantages of 
MapReduce framework is that it allows users to execute 
analytical tasks over big data without worrying about the 
myriad of details inherent in distributed programming[3,5]. 
However, the efficacy of MapReduce can be undermined by 
its implementation. For instance, Hadoop the most popular 
open source MapReduce framework[5] assumes all the nodes 
in the network to be homogenous. Consequently, Hadoop’s 
performance is not optimal in a heterogeneous 
environment[6]. 

In this paper we focus on the Hadoop framework. We 
look in particular how MapReduce handles map input and 
reduce task assignment in a heterogeneous environment. 
There are many reasons why MapReduce might execute in a 
heterogeneous environment. For instance, advances in 
technology might mean new machines in the network are 
different to old ones. Alternatively, MapReduce may be 
deployed on a hybrid cloud environment, where computing 
resources tend to be heterogeneous[7]. In summary, this 
paper presents the following contributions 

• A method to improve mapper performance in a 
heterogeneous environment by dynamically 
partitioning data at each node  

• A method to improve virtual machine mapping for 
reducers 

• A method to improve reducer selection on a 
heterogeneous systems 

The rest of this paper is organized as follows.  In section 
2, we present some background on MapReduce. In section 3, 
we present our proposed dynamic data partitioning and 
virtual machine mapping methods. In section 4, we evaluate 
our work, present our experimental results and discuss our 
findings. Finally, in section 5, we present our conclusion and 
prospects for future work. 

II. MAPREDUCE 
The purpose of MapReduce is to process large amounts 

of data on clusters of computers. At the heart of MapReduce 
resides two distinct programming functions, a map function 
and a reduce function[8]. It is the responsibility of the 
programmer to provide these functions. Two tasks known as 
the mapper and reducer handle the map and reduce functions 
respectively. In this paper, the terms mapper and reducer are 
used interchangeably with the terms map task and reduce 
task.  

 
Figure 1.  MapReduce data flow  

The purpose of the map and reduce functions is to handle 
sets of keys-value pairs. When a user runs a MapReduce 
program, data from a file or set of files is split amongst the 
mappers provided and read as a series of key-value pairs. 
The mapper then applies the map function on these key-
value pairs. It is the duty of the map function to derive 
meaning from the input, to manipulate or filter the data, and 
to compute a list of key-value pairs. The list of key-value 
pairs is then partitioned based on the key, typically via a hash 
function. During this process, data is stored locally in 
temporary intermediate file, as shown in Fig 1. 

Eventually, all of the key-value pairs for a particular 
partition merge at a specific reducer. During the merge, all 
keys are sorted into a unique list of keys with a 
corresponding list of values for each of these keys. The 
reducer then executes in a loop a reduce function which takes 
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as input a key and a list of values. Once the reduce function 
finishes computing the data an output file is produced. Each 
reducer generates a separate output file. These files can be 
searched, merged or handled in whatever way the user wants 
once all reducers have completed their workload. 

III. PROPOSED TECHNIQUES AND IMPLEMENTATION  
The research model for this study is presented in Fig. 2, 

which shows a network that consists of several physical 
machines. Each physical machine (PM) has a limited number 
of virtual machines (VM). Without losing generality, virtual 
machines are used as a basic unit with which to execute a 
task. The virtual machine may run a map task or a reduce 
task. Due to the heterogenerous nature of the environment, 
the processing capabilities of any particular virtual machine 
may differ from other virtual machines in the environment.  

 

Figure 2.  Dataflow of MapReduce model with the proposed dynamic data 
partitioner and a virtual machine mapper. Six Map tasks and three Reduce 
tasks run on virtual machines with differing processing capabilities. 

A. Dynamic Data Partitioning 
In Hadoop, a MapReduce job begins by first reading a 

large input file. This file is usually stored on the Hadoop 
Distributed File System (HDFS). Since Hadoop assumes the 
environment is homogenous, the data from this file is split 
into fixed sized pieces. Hadoop then creates a mapper for 
each split. In a homogenous cluster each node has the same 
processing power and capabilities. In this case, each mapper 
will finish processing its split at approximately the same 
time. In a heterogeneous network, nodes that process faster 
than others will complete their work earlier. 

Since data access rates between nodes on the HDFS are 
inconsistent due to issues of data locality, we propose a 
dynamic data partitioner that partitions data on a node 
irrespective of other nodes on the network. An example of 
the dynamic data partitioner is shown in Fig. 3. In this 
example, a 600GB file is used as input data. In this scenario, 
the data is divided up into six equal sized pieces, and sent to 
six virtual machines. Each of these virtual machines then 
executes a map task. Each virtual machine is given a value n 
that indicates the relative processing ability of that virtual 
machines VPU. This is based on the number of virtual 
processing units (VPU) of that virtual machine, and the 
physical machine it is running on. For instance, the virtual 
machine VM1 has an n value of 10 and the virtual machine 
VM2 has an n value of 2. This means that VM1 is able to 
process data 5 times faster than VM2. The processing speed 
of each virtual machine is calculated prior to execution using 
a profiling tool.  

 
Figure 3.  Dynamic Data Partitioner 

As previously mentioned, the proportion of data to be 
reassigned amongst virtual machines is determined by the 
processing ability of all the virtual machines running on the 
same physical machine. The following algorithm calculates 
the amount of data to be assigned to each virtual machine: 

 
Algorithm 1 Data Repartitioning 
Input:  

SPM: set of all physical machines 
PM : physical machine 
VM : virtual machine 

1. for each PM on SPM 
2.   //calculate fragment size 
3.   for each VM on PM 
4.      totalDataSize  = totalDataSize  + VM.splitSize 
5.    totalSpeed = totalSpeed + VM.processingSpeed 
6.   end for 
7.   fragmentSize = totalDataSize  /  totalSpeed 
8.   //calculate data to be reassigned to each VM 
9.   for each VM on PM 
10.    VM.splitSize = VM.processingSpeed * fragmentSize 
11.   end for 
12. end for 

 
Once the initial input splits are designated to each virtual 

machine the DDP repartitions the data on each physical 
machine. On PM1 there is three virtual machines VM1, VM2 
and VM3. VM1 has a VM processing rate of 10, VM2 has a 
VM processing rate of 2 and VM3 has a processing rate of 8. 
Each virtual machine has an initial split size of 100GB. 
Consequently, the total data size of the three virtual 
machines is 300GB, and the total  speed of the three virtual 
machines is 20 units. The input split is then divided into 
fragments. The size of fragment is calculated using the 
following equation: 

fragmentSize = totalDataSize / totalSpeed                        (1) 

The split size for each virtual machine is then reassessed 
by multiplying the VPU speed of each virtual machine by the 
fragmentSize.  For PM1 the fragmentSize is 300/20 = 15. 

splitSize = VM.processingSpeed *  fragmentSize           (2) 

Therefore, for PM1, where VM1 has a VPU value of 10, 
its split size is reassessed to be 10 * 15 = 150GB. All other 
data splits are calculated using the same method. The results 
are summarized in the following table: 
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TABLE I.  SUMMARY OF INPUTSPLIT DISTRIBUTION 

Physical 
Machine 

Virtual 
Machine 

VPU Initial 
Input 
Split 

Final 
Input 
Split 

1 

1 10 100GB 150GB 
2 2 100GB 30GB 
3 8 100GB 120GB 

2 

4 6 100GB 90GB 
5 4 100GB 60GB 
6 10 100GB 150GB 

 

B. Virtual Machine Mapping 
In Hadoop, a master node determines where mappers or 

reducers reside on a network.  When assigning a mapper to a 
node, it is important that it is located on or near the data it 
will access. This is because transferring data from one node 
to another takes time and delays task execution. The problem 
of determining where to place a task on the network so that it 
is close to the data it uses is known as data locality. Data 
locality is a key concept in MapReduce and has a major 
impact on its performance. Even though Hadoop uses this 
concept when determining where to execute its mappers, it 
does not exploit this concept for its reducers and locate 
reducers near these partitions. We therefore propose for this 
purpose a virtual machine mapper (VMM) which allocates 
the reducer to the appropriate physical machine based on 
partition size and the availability of a virtual machine. 

 

 
Figure 4.  Virtual Machine Mapper 

Fig. 4 shows a simple example of the VMM ascribing 
reduce tasks to physical machines. In this example, there are 
six mappers on two physical machines, with three mappers 
per physical machine. Since this job requests three reduce 
tasks, each mapper creates three partitions. The total amount 
of data to be received by each reducer is then deduced by 
summing up the respective partition at each mapper. 

Based on the concept of data locality, reducers are 
assigned locations on physical machines based on where the 
data for each reducer is stored. On a physical machine there 
are multiple virtual machines. Once a reducer is assigned to a 
physical machine the reducer is assigned whichever virtual 
machine has the fastest processing speed. The algorithm for 
the virtual machine mapper is presented as follows: 

Algorithm 2 Virtual Machine Mapper 
Input:  

SPM:  set of physical machines 
PM:  physical machine 
SVM:         set of virtual machines 
VM:  virtual machine  
i reducer index 
j partition index 

1. //retrieve partition metadata  
2. SPM = the set of all physical machine on the network 
3. reducers = array of all reducers 
4. for each PM on SPM 
5.    for each mapper on PM 
6.       for i = 1 to NumberOfReducers 
7.       for j = 1 to NumberOfPartitions 
8.         reducers[i].partition[j].size = mapper.partition[i].size 
9.         reducers[i].partitionSize += mapper.partition[i].size 
10.      end for 
11.      end for 
12. end for 
13. //assign reducers to physical machines based on 

reducers[i].partition[j].size and available VM’s 
14. sortByBestfitAndPriority( reducers ) 
15. //assign reducer to fastest VM  
16. for each PM on SPM 
17.   SVM = the set of all virtual machines on the PM 
18.   reducers = array of reducers on PM 
19.   //sort virtual machines based on speed. 
20.   sortByProcessingSpeed( SVM ) 
21.   for i = 1 to PM.numberOfReducers 
22.     SVM[i] = reducers[i] 
23.   end for 
24. end for  
 

In Fig. 4 there are two physical machines. Both physical 
machines have three virtual machines each running a 
mapper. Each mapper produces three data partitions, which 
are assigned to three reducers. Using Algorithm 2, reducer 1 
is assigned to physical machine 1, virtual machine 1. This is 
because physical machine 1 stores the largest fraction of the 
data designated for that reducer. Similarly, reducer 2 and 
reducer 3 are assigned to a virtual machine on physical 
machine 2.  On physical machine 1 there are three viable 
virtual machines (VM1, VM2, VM3). Reducer 1 is assigned 
to VM1 as it has the fastest processing speed. On physical 
machine 2 there are also three viable virtual machines (VM4, 
VM5, VM6) each with different processing speeds. Since 
reducer 3 has more data stored on physical machine 2, it is 
assigned to the fastest virtual machine (VM6). Consequently, 
reducer 2 is assigned to the second fastest virtual machine 
(VM4). In this example, all of the reducers are allocated to a 
virtual machine on an appropriate physical machine. If there 
are no virtual machines available, the reducer is allocated to 
another physical machine. This is first done using the best fit 
selection method. If a physical machine has more reducers 
requesting a virtual machine than there are available virtual 
machines, the VMM has to locate the reducer to another 
physical machine. Instead of rejecting reducers based on a 
first come first served (FCFS), the VMM assesses the size of 
the data contributed to the reducer by each physical machine. 
The VMM then gives priority to those reducers with the 
greatest difference between their largest data contribution 
and their second largest data contribution. 
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IV. EVALUATION 
To evaluate the performance of the proposed technique, 

we implemented the dynamic data partitioner and virtual 
machine mapper and tested these methodologies with a 
900GB randomly generated input data file on a simulated 
MapReduce environment. The heterogeneous environment is 
tested using either 2 or 5 virtual machines per physical 
machine. The total number of virtual machines used was 10, 
20 or 30 virtual machines.   
 

 
(a)    (b) 

 
(c)    (d) 

Figure 5.  Map Completion Time: (a) low heterogeneity, vm = 2 (b) low 
heterogeneity, vm = 5 (c) high heterogeneity, vm = 2 (d) high 
heterogeneity, vm = 5 

 
              (a)     (b) 

 
             (c)                         (d) 

Figure 6.  Reduce Completion Time: (a) low heterogeneity, vm = 2 (b) 
low heterogeneity, vm = 5 (c) high heterogeneity, vm = 2 (d) high 
heterogeneity, vm = 5 

In Fig. 5, we explored map completion time. In the Map 
phase, the Dynamic Data Partitioner repartitions the input 
split size based on virtual machine performance. Map 
completion time reduced, by a factor of 44%, when the 
number of virtual machines per physical machine increased. 
This highlights how inefficient Hadoop’s implementation is 
in a heterogeneous environment. 

In Fig. 6, we explored reduce completion time. In the 
Reduce phase, the Virtual Machine Mapper selects which 
virtual machine a reducer should reside. Fig. 6(a) shows an 
improvement in reduce completion time of 14%, Fig. 6(b) 
shows an improvement in reduce completion time of 16%, 
Fig. 6(c) shows an improvement in reduce completion time 
of 23%, and Fig. 6(d) shows an improvement in reduce 
completion time of 29%. These simulation results show that 
our proposed methods save more time as heterogeneity 
increases. 

V. CONCLUSION AND FUTURE WORK 
This paper is based on MapReduce and the Hadoop 

framework. Its purpose is to improve the performance of 
MapReduce distributed application when executing in a 
heterogeneous environment. By dynamically partitioning 
input data being read by map tasks and by judicious 
assignation of reduce tasks based on data locality using a 
Virtual Machine Mapper. Simulation and experimental 
results show an improvement in MapReduce performance, 
improving map task completion time by up to 44% and 
reduce task completion time by up to 29%.  

In future research, this work can be expanded to 
dynamically determine the number of reducers deployed on 
the MapReduce environment. This is an important topic, 
which analyzes the cost-benefits of increasing the number of 
reducers, and compares whether the impact on performance 
justifies the amount of computing resources used 
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