
Dynamic Data Partitioning and Virtual Machine Mapping: Efficient Data Intensive
Computation

Kenn Slagter
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan

kennslagter@sslab.cs.nthu.edu.tw

Ching-Hsien Hsu
Department of Computer Science

Chung Hua University
Hsinchu, Taiwan
chh@chu.edu.tw

Yeh-Ching Chung
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan

ychung@cs.nthu.edu.tw

Abstract— Big data refers to data that is so large that it exceeds
the processing capabilities of traditional systems. Big data can
be awkward to work and the storage, processing and analysis
of big data can be problematic. MapReduce is a recent
programming model that can handle big data. MapReduce
achieves this by distributing the storage and processing of data
amongst a large number of computers (nodes). However, this
means the time required to process a MapReduce job is
dependent on whichever node is last to complete a task. This
problem is exacerbated by heterogeneous environments.

In this paper we propose a method to improve MapReduce
execution in heterogeneous environments. This is done by
dynamically partitioning data during the Map phase and by
using virtual machine mapping in the Reduce phase in order to
maximize resource utilization.

Keywords—BigData; MapReduce; Hadoop; Virtual
Machine; Heterogeneous environment; Cloud Computing;
Parallel Computing.

I. INTRODUCTION
MapReduce is a programming model for creating

distributed applications that can process big data using a
large number of commodity computers. Originally developed
by Google[1,2], MapReduce enjoys wide use by both
industry and academia[3] via Hadoop[4]. The advantages of
MapReduce framework is that it allows users to execute
analytical tasks over big data without worrying about the
myriad of details inherent in distributed programming[3,5].
However, the efficacy of MapReduce can be undermined by
its implementation. For instance, Hadoop the most popular
open source MapReduce framework[5] assumes all the nodes
in the network to be homogenous. Consequently, Hadoop’s
performance is not optimal in a heterogeneous
environment[6].

In this paper we focus on the Hadoop framework. We
look in particular how MapReduce handles map input and
reduce task assignment in a heterogeneous environment.
There are many reasons why MapReduce might execute in a
heterogeneous environment. For instance, advances in
technology might mean new machines in the network are
different to old ones. Alternatively, MapReduce may be
deployed on a hybrid cloud environment, where computing
resources tend to be heterogeneous[7]. In summary, this
paper presents the following contributions

• A method to improve mapper performance in a
heterogeneous environment by dynamically
partitioning data at each node

• A method to improve virtual machine mapping for
reducers

• A method to improve reducer selection on a
heterogeneous systems

The rest of this paper is organized as follows. In section
2, we present some background on MapReduce. In section 3,
we present our proposed dynamic data partitioning and
virtual machine mapping methods. In section 4, we evaluate
our work, present our experimental results and discuss our
findings. Finally, in section 5, we present our conclusion and
prospects for future work.

II. MAPREDUCE
The purpose of MapReduce is to process large amounts

of data on clusters of computers. At the heart of MapReduce
resides two distinct programming functions, a map function
and a reduce function[8]. It is the responsibility of the
programmer to provide these functions. Two tasks known as
the mapper and reducer handle the map and reduce functions
respectively. In this paper, the terms mapper and reducer are
used interchangeably with the terms map task and reduce
task.

Figure 1. MapReduce data flow

The purpose of the map and reduce functions is to handle
sets of keys-value pairs. When a user runs a MapReduce
program, data from a file or set of files is split amongst the
mappers provided and read as a series of key-value pairs.
The mapper then applies the map function on these key-
value pairs. It is the duty of the map function to derive
meaning from the input, to manipulate or filter the data, and
to compute a list of key-value pairs. The list of key-value
pairs is then partitioned based on the key, typically via a hash
function. During this process, data is stored locally in
temporary intermediate file, as shown in Fig 1.

Eventually, all of the key-value pairs for a particular
partition merge at a specific reducer. During the merge, all
keys are sorted into a unique list of keys with a
corresponding list of values for each of these keys. The
reducer then executes in a loop a reduce function which takes

2013 IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-5095-4/13 $31.00 © 2013 IEEE

DOI 10.1109/CloudCom.2013.134

220

as input a key and a list of values. Once the reduce function
finishes computing the data an output file is produced. Each
reducer generates a separate output file. These files can be
searched, merged or handled in whatever way the user wants
once all reducers have completed their workload.

III. PROPOSED TECHNIQUES AND IMPLEMENTATION
The research model for this study is presented in Fig. 2,

which shows a network that consists of several physical
machines. Each physical machine (PM) has a limited number
of virtual machines (VM). Without losing generality, virtual
machines are used as a basic unit with which to execute a
task. The virtual machine may run a map task or a reduce
task. Due to the heterogenerous nature of the environment,
the processing capabilities of any particular virtual machine
may differ from other virtual machines in the environment.

Figure 2. Dataflow of MapReduce model with the proposed dynamic data
partitioner and a virtual machine mapper. Six Map tasks and three Reduce
tasks run on virtual machines with differing processing capabilities.

A. Dynamic Data Partitioning
In Hadoop, a MapReduce job begins by first reading a

large input file. This file is usually stored on the Hadoop
Distributed File System (HDFS). Since Hadoop assumes the
environment is homogenous, the data from this file is split
into fixed sized pieces. Hadoop then creates a mapper for
each split. In a homogenous cluster each node has the same
processing power and capabilities. In this case, each mapper
will finish processing its split at approximately the same
time. In a heterogeneous network, nodes that process faster
than others will complete their work earlier.

Since data access rates between nodes on the HDFS are
inconsistent due to issues of data locality, we propose a
dynamic data partitioner that partitions data on a node
irrespective of other nodes on the network. An example of
the dynamic data partitioner is shown in Fig. 3. In this
example, a 600GB file is used as input data. In this scenario,
the data is divided up into six equal sized pieces, and sent to
six virtual machines. Each of these virtual machines then
executes a map task. Each virtual machine is given a value n
that indicates the relative processing ability of that virtual
machines VPU. This is based on the number of virtual
processing units (VPU) of that virtual machine, and the
physical machine it is running on. For instance, the virtual
machine VM1 has an n value of 10 and the virtual machine
VM2 has an n value of 2. This means that VM1 is able to
process data 5 times faster than VM2. The processing speed
of each virtual machine is calculated prior to execution using
a profiling tool.

Figure 3. Dynamic Data Partitioner

As previously mentioned, the proportion of data to be
reassigned amongst virtual machines is determined by the
processing ability of all the virtual machines running on the
same physical machine. The following algorithm calculates
the amount of data to be assigned to each virtual machine:

Algorithm 1 Data Repartitioning
Input:

SPM: set of all physical machines
PM : physical machine
VM : virtual machine

1. for each PM on SPM
2. //calculate fragment size
3. for each VM on PM
4. totalDataSize = totalDataSize + VM.splitSize
5. totalSpeed = totalSpeed + VM.processingSpeed
6. end for
7. fragmentSize = totalDataSize / totalSpeed
8. //calculate data to be reassigned to each VM
9. for each VM on PM
10. VM.splitSize = VM.processingSpeed * fragmentSize
11. end for
12. end for

Once the initial input splits are designated to each virtual

machine the DDP repartitions the data on each physical
machine. On PM1 there is three virtual machines VM1, VM2
and VM3. VM1 has a VM processing rate of 10, VM2 has a
VM processing rate of 2 and VM3 has a processing rate of 8.
Each virtual machine has an initial split size of 100GB.
Consequently, the total data size of the three virtual
machines is 300GB, and the total speed of the three virtual
machines is 20 units. The input split is then divided into
fragments. The size of fragment is calculated using the
following equation:

fragmentSize = totalDataSize / totalSpeed (1)

The split size for each virtual machine is then reassessed
by multiplying the VPU speed of each virtual machine by the
fragmentSize. For PM1 the fragmentSize is 300/20 = 15.

splitSize = VM.processingSpeed * fragmentSize (2)

Therefore, for PM1, where VM1 has a VPU value of 10,
its split size is reassessed to be 10 * 15 = 150GB. All other
data splits are calculated using the same method. The results
are summarized in the following table:

221

TABLE I. SUMMARY OF INPUTSPLIT DISTRIBUTION

Physical
Machine

Virtual
Machine

VPU Initial
Input
Split

Final
Input
Split

1

1 10 100GB 150GB
2 2 100GB 30GB
3 8 100GB 120GB

2

4 6 100GB 90GB
5 4 100GB 60GB
6 10 100GB 150GB

B. Virtual Machine Mapping
In Hadoop, a master node determines where mappers or

reducers reside on a network. When assigning a mapper to a
node, it is important that it is located on or near the data it
will access. This is because transferring data from one node
to another takes time and delays task execution. The problem
of determining where to place a task on the network so that it
is close to the data it uses is known as data locality. Data
locality is a key concept in MapReduce and has a major
impact on its performance. Even though Hadoop uses this
concept when determining where to execute its mappers, it
does not exploit this concept for its reducers and locate
reducers near these partitions. We therefore propose for this
purpose a virtual machine mapper (VMM) which allocates
the reducer to the appropriate physical machine based on
partition size and the availability of a virtual machine.

Figure 4. Virtual Machine Mapper

Fig. 4 shows a simple example of the VMM ascribing
reduce tasks to physical machines. In this example, there are
six mappers on two physical machines, with three mappers
per physical machine. Since this job requests three reduce
tasks, each mapper creates three partitions. The total amount
of data to be received by each reducer is then deduced by
summing up the respective partition at each mapper.

Based on the concept of data locality, reducers are
assigned locations on physical machines based on where the
data for each reducer is stored. On a physical machine there
are multiple virtual machines. Once a reducer is assigned to a
physical machine the reducer is assigned whichever virtual
machine has the fastest processing speed. The algorithm for
the virtual machine mapper is presented as follows:

Algorithm 2 Virtual Machine Mapper
Input:

SPM: set of physical machines
PM: physical machine
SVM: set of virtual machines
VM: virtual machine
i reducer index
j partition index

1. //retrieve partition metadata
2. SPM = the set of all physical machine on the network
3. reducers = array of all reducers
4. for each PM on SPM
5. for each mapper on PM
6. for i = 1 to NumberOfReducers
7. for j = 1 to NumberOfPartitions
8. reducers[i].partition[j].size = mapper.partition[i].size
9. reducers[i].partitionSize += mapper.partition[i].size
10. end for
11. end for
12. end for
13. //assign reducers to physical machines based on

reducers[i].partition[j].size and available VM’s
14. sortByBestfitAndPriority(reducers)
15. //assign reducer to fastest VM
16. for each PM on SPM
17. SVM = the set of all virtual machines on the PM
18. reducers = array of reducers on PM
19. //sort virtual machines based on speed.
20. sortByProcessingSpeed(SVM)
21. for i = 1 to PM.numberOfReducers
22. SVM[i] = reducers[i]
23. end for
24. end for

In Fig. 4 there are two physical machines. Both physical
machines have three virtual machines each running a
mapper. Each mapper produces three data partitions, which
are assigned to three reducers. Using Algorithm 2, reducer 1
is assigned to physical machine 1, virtual machine 1. This is
because physical machine 1 stores the largest fraction of the
data designated for that reducer. Similarly, reducer 2 and
reducer 3 are assigned to a virtual machine on physical
machine 2. On physical machine 1 there are three viable
virtual machines (VM1, VM2, VM3). Reducer 1 is assigned
to VM1 as it has the fastest processing speed. On physical
machine 2 there are also three viable virtual machines (VM4,
VM5, VM6) each with different processing speeds. Since
reducer 3 has more data stored on physical machine 2, it is
assigned to the fastest virtual machine (VM6). Consequently,
reducer 2 is assigned to the second fastest virtual machine
(VM4). In this example, all of the reducers are allocated to a
virtual machine on an appropriate physical machine. If there
are no virtual machines available, the reducer is allocated to
another physical machine. This is first done using the best fit
selection method. If a physical machine has more reducers
requesting a virtual machine than there are available virtual
machines, the VMM has to locate the reducer to another
physical machine. Instead of rejecting reducers based on a
first come first served (FCFS), the VMM assesses the size of
the data contributed to the reducer by each physical machine.
The VMM then gives priority to those reducers with the
greatest difference between their largest data contribution
and their second largest data contribution.

222

IV. EVALUATION
To evaluate the performance of the proposed technique,

we implemented the dynamic data partitioner and virtual
machine mapper and tested these methodologies with a
900GB randomly generated input data file on a simulated
MapReduce environment. The heterogeneous environment is
tested using either 2 or 5 virtual machines per physical
machine. The total number of virtual machines used was 10,
20 or 30 virtual machines.

(a) (b)

(c) (d)

Figure 5. Map Completion Time: (a) low heterogeneity, vm = 2 (b) low
heterogeneity, vm = 5 (c) high heterogeneity, vm = 2 (d) high
heterogeneity, vm = 5

 (a) (b)

 (c) (d)

Figure 6. Reduce Completion Time: (a) low heterogeneity, vm = 2 (b)
low heterogeneity, vm = 5 (c) high heterogeneity, vm = 2 (d) high
heterogeneity, vm = 5

In Fig. 5, we explored map completion time. In the Map
phase, the Dynamic Data Partitioner repartitions the input
split size based on virtual machine performance. Map
completion time reduced, by a factor of 44%, when the
number of virtual machines per physical machine increased.
This highlights how inefficient Hadoop’s implementation is
in a heterogeneous environment.

In Fig. 6, we explored reduce completion time. In the
Reduce phase, the Virtual Machine Mapper selects which
virtual machine a reducer should reside. Fig. 6(a) shows an
improvement in reduce completion time of 14%, Fig. 6(b)
shows an improvement in reduce completion time of 16%,
Fig. 6(c) shows an improvement in reduce completion time
of 23%, and Fig. 6(d) shows an improvement in reduce
completion time of 29%. These simulation results show that
our proposed methods save more time as heterogeneity
increases.

V. CONCLUSION AND FUTURE WORK
This paper is based on MapReduce and the Hadoop

framework. Its purpose is to improve the performance of
MapReduce distributed application when executing in a
heterogeneous environment. By dynamically partitioning
input data being read by map tasks and by judicious
assignation of reduce tasks based on data locality using a
Virtual Machine Mapper. Simulation and experimental
results show an improvement in MapReduce performance,
improving map task completion time by up to 44% and
reduce task completion time by up to 29%.

In future research, this work can be expanded to
dynamically determine the number of reducers deployed on
the MapReduce environment. This is an important topic,
which analyzes the cost-benefits of increasing the number of
reducers, and compares whether the impact on performance
justifies the amount of computing resources used

REFERENCES
[1] J. Dean and S. Ghemawat, "MapReduce: simplified data processing

on large clusters," Communications of the ACM, vol. 51, 2008, pp.
107-113.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google file
system," in ACM SIGOPS Operating Systems Review, 2003, pp. 29-
43.

[3] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, "Parallel
data processing with MapReduce: a survey," ACM SIGMOD Record,
vol. 40, 2012, pp. 11-20.

[4] http://hadoop.apache.org
[5] J. Dittrich and J.-A. Quiané-Ruiz, "Efficient big data processing in

Hadoop MapReduce," Proceedings of the VLDB Endowment, vol. 5,
2012, pp. 2014-2015.

[6] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares,
and X. Qin, "Improving mapreduce performance through data
placement in heterogeneous hadoop clusters," in Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010
IEEE International Symposium on, 2010, pp. 1-9.

[7] S. Khalil, S. A. Salem, S. Nassar, and E. M. Saad, "Mapreduce
performance in heterogeneous environments: A Review."
International Journal of Scientific and Engineering Research (IJSER),
vol. 4, issue 4, 2013, pp. 410-416.

[8] T. White, Hadoop: The definitive guide: 3rd Edition, O'Reilly Media,
Inc., 2012.

223

