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Abstract—This paper introduces a prototype of Taiwan 
UniCloud, a community-driven hybrid cloud platform for 
academics in Taiwan. The goal is to leverage resources in 
multiple clouds among different organizations. Each self-
managing cloud can join the UniCloud platform to share 
its resources and simultaneously benefit from other 
clouds with scale-out capabilities. Accordingly, resources 
are elastic and sharable with each other such as to afford 
unexpected resource demands to each cloud. The 
proposed platform provides a web portal to operate each 
cloud via a uniform user interface. The construction of 
virtual clusters with multi-core VMs is supplied for 
parallel and distributed processing models. An object-
based storage system is also delivered to federate different 
storage providers. This paper not only presents the 
architectural design of Taiwan UniCloud, but also 
evaluates the performance to demonstrate the possibility 
of current implementation. Experimental results show 
the feasibility of the proposed platform as well as the 
benefit from the cloud federation. 

Keywords: community cloud; virtual cluster; vm migration; 
federated sotrage; portal 

I. INTRODUCTION

Cloud computing is an emerging topic recently. The core 
concept of cloud computing is to provision the resources of 
computer software and hardware as services. Users can access 
a variety of virtualized resources and services by various 
client devices anytime and anywhere. Benefiting from mature 
open-source cloud software, many organizations or campuses 
are able to build their clouds on premises. However, when lots 
of resource demands come together or a service request with 
a large resource requirement is arrived at a cloud system, it 
may lead the cloud in unexpected overloading or 
oversubscription situations. Consequently, single cloud could 
not support sufficient resources due to its physical hardware 
limit. The SLA (Service Level Agreement) would be violated 
[14, 15] while the cloud is neither scale-up with the capacity 
of available resources nor scale-out with the capability of 
federated clouds. To alleviate the predicament, Taiwan 
UniCloud (University Cloud) is proposed to leverage 
resources of different single clouds in Taiwan to overcome the 
sudden overloading of each cloud. 

Taiwan UniCloud is a community-driven hybrid cloud 
platform for academia to support cloud education, research, 
and application development. The self-managing cloud in 
each campus can join the UniCloud to contribute its cloud 
resources and benefit the distributed sharing resources from 
other participants. However, there are some challenges, 
including: 
� Different clouds may have various user interfaces, which 

results in a user having to be familiar with varied 
dashboard operations.  

� Each cloud may have different system calls or access 
APIs, which causes many efforts to leverage the 
existence of multiple clouds. 

� The inter-cloud cooperation is not mature in open-source 
software, which makes a single cloud platform hard to 
supply the collaborative services among multiple clouds. 

� The resource information is usually maintained by each 
self-managing cloud, which needs extra efforts  to 
retrieve the monitoring information from multiple 
clouds. 

� The live migration of a virtual machine (VM) is 
sometimes necessary across clouds. The big challenge is 
to online migrate a VM across clouds while keeping the 
service hosted by the VM is still available. 

Our contribution involves tackling the above issues while 
developing the Taiwan UniCloud platform. The current 
prototype enables the collaborative cloud services with the 
development of several major components: web portal, 
federated computation, and federated storage. In addition, 
based on the resource monitoring information, our platform 
could further supply SLA-based resource provisioning. This 
paper not only presents the architecture of Taiwan UniCloud, 
but also evaluates the performance to demonstrate the 
feasibility of our current implementation.  

In the current implementation, our platform could leverage 
the OpenStack-based campus clouds and the public Amazon 
clouds. Users could easily operate multiple cloud systems on 
a single portal and browse the resource status of different 
clouds. Users may further demand their needs through the 
UniCloud portal or deploy their cloud applications among 
multiple clouds. Experimental results demonstrate the 
feasibility of the proposed platform as well as the benefit from 
the cloud federation. 
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The rest of this paper is organized as follows. Section II 
presents the related work and distinguishes our work from 
existing research. Section III introduces the architecture of 
proposed cloud environment. Section IV shows the feasibility 
and experimental results. The conclusions and future work are 
finally given in Section V. 

II. RELATED WORK

Cloud providers such as Amazon [2], Google [4, 5],
Microsoft [13], and Salesforce [12] have built up the public 
clouds for hosting a variety of cloud services and applications. 
However, these cloud systems are mainly established for the 
commercial usage with high prices. In addition, it is difficult 
to clone these clouds on our on-premised server farm for 
testing, trial run or even academic education and research. 
With the rapid development of open-source cloud platforms, 
some open and free solutions could help us to build our clouds. 
A comparative study of current open-source cloud platforms 
could be referred to [16, 19, 20]. 

The previous work [14] presents the InterCloud for the 
producer-consumer-based cloud federation. In the InterCloud, 
the Cloud Exchange acts as a market maker between the 
service consumers represented by users and the service 
providers represented by Cloud Coordinators. The goal is to 
supply the dynamic expansion or contraction of resource 
capabilities to handle the sudden variations of demands. An 
extended work [15] of the InterCloud is proposed to detail the 
design of a Cloud Coordinator. These works conduct a 
simulation-based experiment using the CloudSim and a small-
scale evaluation with the Eucalyptus-based cluster to 
demonstrate the feasibility of cloud federation. However, their 
works neither focus on constructing a cross-cloud virtual 
cluster nor a federated storage system across multiple clouds. 

Our work not only pays attentions on both federated 
computing resources and storage ones but also implements a 
preliminary prototype across clouds in different geographic 
locations. The Taiwan UniCloud adopts the viewpoint on top 
of multiple self-managing university clouds to leverage cloud 
resources. Moreover, we enable the cross-cloud virtual cluster 
with a virtual network over Internet, and the VM live 
migration across clouds. A federated storage system across 
different storage providers is also supplied in the current 
implementation. To realize our design, we adopt the 
OpenStack [9] as the basis of our platform. OpenStack could 
support high compatible cloud services with the public 
Amazon cloud in recent releases. Therefore, some 
preprocesses to realize the community-driven hybrid cloud 
could be simplified. The current prototype of Taiwan 
UniCloud can also provision cloud resources from different 
campus clouds and the public Amazon EC2 [1].

III. ARCHITECTURE AND IMPLEMENTATION

This section describes the proposed framework and 
presents the implementation details of our current prototype. 

A. System Overview 
As shown in Fig. 1, the current prototype focuses on the 

following issues: web portal, federated compute, federated 
storage, meta-cloud interface, and SLA-based resource 

provisioning. A uniform UniCloud Portal is developed to 
leverage and manipulate different clouds. The federated 
compute addresses the distributed computing services such as 
to support the virtual cluster computing for parallel 
programming. On the other hand, the federated storage 
focuses on leveraging storage resources across multiple 
storage providers to supply an object-based storage service. 
We further conduct the benchmarking on our platform and try 
to model the performance assurance for the fulfillment of 
SLA-based resource provisioning. 

Fig. 2 depicts an overview of our current implementation. 
A UniCloud portal is developed using the web framework. 
The restful APIs are adopted as the meta-cloud interface to 
facilitate the usage of cloud resources residing in different 
organizations or campuses. With the meta-cloud interface, our 
platform is able to supply the virtual clusters in which virtual 
resources may be obtained from multiple clouds. The virtual 
cluster is built upon a cross-cloud VLAN (Virtual Local Area 
Network) to interconnect with each virtual resource. The 
VLAN is constructed by exploiting the OpenStack quantum 
plugin and the Open vSwitch to manage the OpenFlow rules. 
Besides, the online VM migration across different clouds also 
adopts the GRE (Generic Routing Encapsulation) tunnel to 
keep the running service within a virtual cluster. 

B. UniCloud Portal  
The UniCloud portal aims at leveraging multiple 

geographic clouds. The major design consideration is to 
provide a uniform and simplified user interface. In the current 
implementation, the portal supports the manipulation of 

Fig. 1. Framework of current prototype

Fig. 2. Overview of the architectural design  
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OpenStack clouds and the VM operations of Amazon EC2. 
Fig. 3 presents that users can register their authorized 
information and provide the corresponding endpoints for each 
candidate cloud. By using the restful APIs, the authenticated 
users could create VMs or use those cloud resources they 
leased from multiple clouds. These manipulations are all 
accomplished on the same UniCloud portal.  

For most of users, they can install necessary packages after 
launching VMs. Users may also create VMs with their own 
images for the sake of deploying the prepared cloud 
applications. Accordingly, our UniCloud portal allows users 
to upload the compatible and customized VM images, as 
shown in Fig. 4. The portal can register these VM images to 
all candidate clouds for future VM launch.  

Moreover, the Ganglia monitoring system [17] is adopted 
to monitor the resource utilization of the UniCloud platform.
The portal provides a visualized GUI (Graphical User 
Interface) to report the status of cloud resources. Users can 
browse the static or dynamic information about their leased 
resources. Fig. 5 reveals the monitoring information about 
VMs hosted by Amazon EC2 and two campus clouds. In our 
current implementation, not only the resource information 
about virtual machines, but also the status of physical 
resources are all aggregated on the same UniCloud portal.  

C. Federated Compute 
The federated compute aims at supplying the construction 

of parallel and distributed computing environments across 
multiple clouds. The construction of a cross-cloud virtual 
cluster is presented first, following by the key techniques to 
enable the cross-cloud collaborative computing: the VLAN 
over WAN and the cross-cloud live migration. 

1)Cross-Cloud Virtual Cluster 
A virtual cluster is composed by a set of VMs which may 

be supplied from a single cloud or multiple clouds. Fig. 6
illustrates an environment of a virtual cluster across two 
campus clouds, in which two VMs are launched in each cloud. 
One of the VMs serves as a master of the virtual cluster and 
the others are slaves. The master is randomly chosen and 
associated with a public IP so that users outside the cloud can 
connect to the virtual cluster. The inter-connections among 
VMs within a virtual cluster are constructed with a cross-
cloud network to form a VLAN.

To easy the construction of a virtual cluster, the one-click 
provisioning is supplied on the web portal. All necessary 
software packages are automatically installed via the post-
script functionality supplied by OpenStack. The default 
packages in a virtual cluster include NIS, NFS, and SSH  keys. 
In addition, the Torque is also adopted for the job scheduling 
and allocation. Fig. 7 depicts a workflow to construct a typical 
cluster computing environment. While launching a virtual 
cluster, a VM is configured as a master or a slave according to 
the pre-defined virtual cluster configuration. During the 
construction, the master collects the information of all slaves 
such as to update the mapping between IP and hostname of 
slaves and exchange the SSH keys. After the successful 
installation, users can login to the master via the associated 
public IP and login to other slaves from the master without 
typing passwords. The virtual cluster would not be created 
when any one step in the process fails. To make the system be 
more reliable, the runtime failures would be handled in the 
future work. 

Users can request any number of VMs to form a virtual 
cluster. How to make an optimal decision for VM deployment 

Fig. 3. Access authorization for multiple clouds

Fig. 4. Image management among multiple clouds  

Fig. 5. Resource information about VM instances

Fig. 6. Illustration of a cross-cloud virtual cluster
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on multiple clouds is an interesting issue, but beyond the 
scope of this paper. Instead, we focus on the fundamental 
features to enable the construction of a cross-cloud virtual 
cluster. In the current implementation, all VMs in a virtual 
cluster are equally distributed to multiple clouds. VM images 
and installation scripts for both master and slave are 
reconfigurable. As a result, the MPI or Hadoop packages 
could be installed to provision a parallel and distributed 
computing environment.   

2)VLAN over WAN 
The VLAN over WAN mechanism highly depends on the 

network configuration of each OpenStack cloud. In 
OpenStack Grizzly, a recommended network configuration is 
to use the quantum plugin to manage the network and the GRE 
tunnel to interconnect all the nodes, includes both network 
node and compute node [10]. Fig. 8 depicts a sample network
architecture across two OpenStack clouds. Each node has two 
Open vSwitches: br-int and br-tun. The br-int is used for the 
intra-node communication and the br-tun is used for the inter-
node communication. The network node is equipped with an 
additional br-ex vSwitch for the communication in/out the 
cloud. Note that the name of a vSwitch is changeable and 
therefore could be distinct in different clouds. 

The VLAN inside an OpenStack cloud is accomplished 
using the 802.1Q VLAN tag (vid in short) accompanied with 
the GRE tunnel ID (tid in short). Each VM is connected to the 
br-int of a compute node with a vid via the corresponding 
Open vSwitch port. For VMs residing in the same VLAN, if 
they are hosted by the same compute node, each VM can 
communicate with others through the same vid. If they are 
hosted by different compute nodes, the tid is used as a unique 
identifier of VLAN across multiple nodes. That is, when a 
packet is sent from br-int to br-tun, the vid is converted to a 
tid according to which VLAN it belongs to, and will be 
converted back (from tid to vid) in reversed course. In short, 
VLAN in OpenStack cloud is uniquely identified by the tid,
which may be mapped to different vids in different nodes. This 
mechanism enables a cross-node VLAN and allows the 
flexible assignment of vid in different nodes. 

To enable the cross-cloud VLAN, the UniCloud should 
consider four issues: 
� How to form the federated VLAN? 
� How to identify the VLAN information? 
� How to comply with OpenStack networking? 
� How to connect the subnet of each VLAN? 
To solve the first issue, a dynamic VLAN mapping 

mechanism is proposed. The mechanism allows a dynamic 
connection of VLANs in different clouds to form a federated 
VLAN. Once a VLAN of each single cloud is chosen, its tid
is recorded in the mapping table as shown in Table 1. The 
proposed mechanism has some benefits. First, the assignment 
of tid to the VLAN would not destroy the original design of 
OpenStack. Second, the mechanism is applicable to both 
existing and new creating VLANs, even for a new joined 
cloud. Third, not all clouds have to participate in the federated 
VLAN, e.g., the VLAN 3 in Table 1, which presents a more 
flexibility for the constitution of a federated VLAN. 

For the second issue, the cross-cloud GRE tunnel is 
established pairwisely between the br-tun of a network node 
in each cloud. Since all the cross-cloud packets pass through 
the network node, the br-tun preserves the tid information to 
identify the source VLAN of a packet. The sender-initiate 
approach is used to correct the mapping of tid according to the 
VLAN ID mapping table. That is, a cloud that sends the packet 
to another cloud is responsible for correcting the tid before 
propagating the packet through br-tun. This procedure can be 
automatically configured by setting openflow rules in the br-
tun vSwitch, as described next following. 

The third issue is to deal with the openflow rules in an 
OpenStack cloud. The OpenStack has some protection 
schemes to prevent the broadcast storm and to protect the 
network by dropping illegal packets, such as the packets 
coming with unregistered vid, tid, or MAC address. However, 
with the default rules, multicast packets will not be forwarded 
to the cross-cloud GRE tunnel. To solve this issue, we aim at 
forwarding the packet via the federated VLAN while not 
compromising the original networking schemes used in 
OpenStack.  

Fig. 7. Workflow of constructing a typical cluster environment
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Fig. 8. Sample of the network architecture across two 
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Table 1: Example of the mapping table for VLAN ID using
the dynamic VLAN mapping mechanism

Cloud A Cloud B Cloud C
Federated VLAN 1 tid=1 tid=2 tid=1
Federated VLAN 2 tid=2 tid=1 tid=3
Federated VLAN 3 tid=4 tid=5
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Therefore, two openflow rules are proposed as add-ons to 
the original rules: 
� For all packets coming from another cloud (this can be 

determined by the used port of Open vSwitch), one rule 
directly forwards them to all br-tun switches of compute 
nodes in this cloud. 

� For all incoming packets with the tid registered in a
federated VLAN, one rule converts the tid according to 
the VLAN ID mapping table and sends it to the 
corresponding cloud. 

Note that these add-on rules do not violate the design principle 
of OpenStack networking. First, the broadcast storm will not 
appear because all multicast packets coming from other cloud 
are confined to the local cloud only. The original rules in 
OpenStack takes over the prevention of the broadcast storm in 
a local cloud. Second, only the packets with vid registered in 
a federated VLAN will be forwarded to other clouds, so that 
other illegal usage of the network is still protected. 

Regarding the fourth issue, all VMs in the same VLAN 
should be put into the same subnet so that VMs can 
communicate with each other using the assigned private IP, 
even those VMs are hosted by multiple clouds. A feasible 
network configuration is proposed: (1) all the federated 
VLANs are assigned within the same private IP subnet, e.g., 
192.168.5.0/24; (2) in order to avoid the IP conflict, the 
gateway IP address and the DHCP range of each VLAN in the 
same federation are exclusive, e.g., one VLAN is assigned 
with the IP range from 192.168.5.1 to 192.168.5.50 while the 
other one is assigned from 192.168.5.51 to 192.168.5.100. In 
the current prototype system, as a proof of concept, the 
assignments of a subnet and the IP ranges are pre-configured.
Nevertheless, sophisticated policies or rules can be easily 
developed to automate the decision making. 

3)Cross-Cloud Live Migration 
The goal of cross-cloud live migration is to migrate a VM 

residing in the same federated VLAN from one cloud to 
another one. Meanwhile, all the network state are preserved 
during the migration process, i.e., all original TCP 
connections will still be alive before and after the migration 
process. This goal is difficult for the cross-cloud paradigm due 
to two essential issues: the functionality issue and the IPv4 
mobility issue.

Regarding the first issue, none of open-source cloud 
platforms inherently provides the live migration feature across 
two clouds. Therefore, as a proof of concept, we exploit the 
libvirt API to perform the cross-cloud live migration on 
OpenStack VMs. Before presenting the solution, several basic 
requirements for the live migration are highlighted in our 
current prototype: 1) all clouds adopt the hypervisor with the 
same version; 2) all clouds use similar or compatible hardware 
in the hypervisor point of view; 3) each cloud has a shared file 
system (like NFS) to store all VM instances for the candidate 
compute nodes. 

The detail procedure of a cross-cloud live migration is 
given as follow: 
� Retrieve the domain information of a candidate VM. 
� Configure the shared instance directory for the candidate 

VM in both source and destination clouds. 

� Configure DNAT to expose the TCP ports used in live 
migration if a compute node is behind the NAT. 

� Configure openflow rules on the destination compute 
node (in br-int) to accept the MAC address of the VM.  

� Call libvirt APIs to perform the cross-cloud live 
migration. 

� Correct the vid of the VM according to which VLAN it 
belongs to in the destination compute node. 

The second issue is that different clouds own a different 
range of public IP addresses. Once a VM is migrated from one 
cloud to another cloud, the public IP address associated for the 
connection to the Internet should be varied. Consequently, the 
original TCP connection will be broken while the public IP is 
changed after the migration. To solve this issue, we apply the 
GRE tunnel and openflow rules to hold the original public IP 
and redirect those packets sent to this IP address to the 
migrated VM. As shown in Fig. 9, with the proposed 
mechanism, a VM associated with the floating IP can keep 
receiving the connection from that IP address even if the VM 
is migrated to another cloud. 

D. Federated Storage  
The goal of our federated storage service is to integrate the 

storage services provided by different clouds participating in 
the UniCloud environment. Since each cloud is managed by 
its own cloud service provider or third-party organization, the 
storage services may be varied significantly in many ways, in 
terms of API interface, I/O performance, geographic location, 
level of data availability, reliability or security, etc. Therefore, 
our proposed service not only allows users to specify their 
requirements for their data, but also designs a matchmaking 
strategy to select the proper storage providers for storing the 
data. To achieve our goal, some key research questions are 
addressed in our approach.  
� How to provide a unified storage service API? 
� How to select a proper storage provider for servicing 

each storage request? 
� Can we achieve better I/O performance through a 

federated storage environment? 
Our federated cloud storage system consists of three main 

components as shown in Fig. 10. The actual data is stored in 

Fig. 9. Packet flow after the VM migration
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multiple storage providers, which may be provided by 
different participants in UniCloud. The federated cloud 
storage manager is responsible for three important tasks: (1) 
collecting the information of all storage providers; (2) 
deciding where to store the data through a matchmaking 
policy; (3) resolving data lookup requests from the storage 
client. At the client side, we deploy a client daemon of the 
federated cloud storage to serve storage requests. The client 
daemon is mainly composed of two sub-components. One is 
the wrapper which defines a unified I/O interface based on the 
S3-like restful protocol which is useful to negotiate with 
various storage providers. Accordingly, arbitrary storage 
providers can be plug-in or register into our storage system. 
The other subcomponent is the lookup cache which prevents 
redundant lookup operations between I/O requests. When a 
lookup request of the data location is sent to the storage 
manager, the data transfer is directly performed between the 
storage provider and the user while the desired data is located.   

In our current implementation, we support a basic object 
storage service to demonstrate our approach and benefit. The 
user APIs are summarized in Table 2. Through the APIs, users 
could upload/download files, or create, delete, and list folders.
Instead of selecting the storage location for each file or data 
object, we select the data location at the per-folder basis. In 
other words, all the files immediately under a folder must be 
stored in the same storage provider, but a sub-folder can be 
stored separately from its parent folder. For example, all the 
files under “/folder1” can be stored in storage provider1, but 
the files under “/folder1/subfolder” can be stored in another 
storage provider.  

We made this design decision for many reasons. First, all 
the files under the same folder are likely to have similar 
storage requirements and file properties. Therefore, the same 
storage provider can satisfy all their needs. Second, the 
amount of metadata we need to store by the manager is 
reducible such as to improve the scalability of our system. 
Last but not least, our client side cache can effectively 
minimize the number of data lookup requests when users 
access multiple files under the same folder. Therefore, our 
storage selection decision happens when users call 
“create_folder()” request along with a given description. The 

description allows users to specify the desired storage 
requirements and preferences. Our matchmaking algorithm 
can select the best storage provider to store the files. Details 
of the description are explained next. 

Each storage provider in our system is characterized by a 
list of attributes, such as “availability”, “reliability”, and 
“performance“, etc. Assume that the value of these attributes 
is normalized between 0 and 1, and a greater value means the 
higher quality resource. The values is either measured by our 
storage manager or given by the storage providers. Based on 
these attributes, users may specify their storage requirements 
using three types of rules: constraint, preference, and hint.
The complete syntax of our resource description is defined in 
Fig. 11. The constraint is a more restrict rule that allows users 
to specify a threshold value on a certain attribute, so that the 
selected candidates must satisfy the given requirement. 
However, users have to require extensive knowledge to set the 
proper threshold values for their data. If the value is too high, 
the storage system might not be able to find any candidates; if 
too low, the results may fail to meet user’s expectation. 

Therefore, our second rule, preference, only asks users to 
specify the level of importance of an attribute to their data, in 
terms of HIGH, MED or LOW. The level of importance
implies two things in our matchmaking algorithm. First, it 
represents the requirement of resource quality relative to all 
other storage providers. For example, the HIGH means the 
attribute value of the selected candidates should be ranked in 
the top 33% from our resource pool, while the LOW only 
requires the selected candidates to be ranked within 66%.
Second, it indicates the importance of an attribute relative to 
other attributes. In other words, when multiple candidates are 
satisfied with all the given requirements from users, our 
matchmaking algorithm selects the one that has higher values 
from more important attributes.  

Moreover, we consider that most of users are only familiar 
with the type of data from their applications, but not familiar 
with the meaning of system-defined attributes. Therefore, our 
third requirement rule is a hint that automatically generates the 
proper preference based on the type usage of data given from 
users. Users may also overwrite the preference on a specific 
attribute according to the second rule.  

Fig. 10. Architecture of the federated storage system

Table 2: APIs of the federated storage system
Type Command Parameter

File upload_file filename, parent folder fullpath
download_file filename, parent folder fullpath

Folder
list_folder folder fullpath
create_folder folder fullpath, description
delete_folder folder fullpath

attribute={BW, Availability, Reliability}
level = {HIGH, MED, LOW}
type = {LOG, BACKUP, ACTIVE, TEMP}
description = {constraint}*; {preference}*; {hint}*;
constraint = {attribute} {“<“ || “>” || “=“} {values} 

preference = {attribute} : {level}
hint ={type}

Fig. 11. Syntax of the requirement description for storage
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Table 3 lists a couple of data types, default preferences, and 
file characteristics, which are commonly used in storage 
applications. Note that, all the settings in the table are 
configurable in our system based on user experience, resource 
condition, and other factors. The discussion on how to 
configure these system parameters is out of the scope of this 
paper. Instead, we only present the design and mechanism of 
the system to provide the usability and flexibility of our 
storage service. 

Based on the given resource requirement above, our 
matchmaking algorithm is divided into four phases. The first 
phase is to filter the candidates that do not satisfy with the 
threshold according to the constraint rule. The second phase is 
to filter the candidates that are not ranked within a preferred 
percentile among all resource providers according to the level 
of preference. The third phase is to calculate the total value of 
a candidate by aggregating all the attribute values and 
weighted by the attribute preference. Finally, our system 
selects the candidate with the highest total value to be the final 
decision. As shown by our evaluation results, our 
matchmaking algorithm can select more proper storage 
provider for users with different requirements and preferences,
and maximize their I/O performance. 

E. SLA-Based Resource Provisioning 
The goal of SLA-based resource provisioning is to assign 

desired resources to requests such the service level agreement, 
companied with requests, can be satisfied. In cloud computing, 
there are different types of SLAs, such as the availability of 
services. In the UniCloud, the SLA-based resource 
provisioning focuses on performance assurance, whose 
objective is to ensure the provisioned virtual machines can 
have similar performance as physical machines. Moreover, 
the utilization of physical machines is expected to be as high 
as possible, which means the provisioning algorithm will 
consolidate virtual machines if such an action does not affect 
the performance of SLA. 

Our approach consists of three steps: machine 
benchmarking, performance modeling, and dynamic 
provisioning. In the first step, we analyze the major 

performance degradation on cloud platforms. In the second 
step, we build the performance models, based on the analysis 
in the first step, to predict the performance degradation. In the 
last step, we develop a dynamic allocation mechanism to 
adjust the resource allocation according to the VM behaviors 
and our performance models.

In our analysis, the major performance degradation of cloud 
platforms comes from two factors: virtualization and 
consolidation. To quantify their influences, two overhead 
metrics are defined: the virtualization overhead and the 
consolidation overhead. Given a program p, let t1 be the 
execution time of p on a physical machine; t2 be the execution 
time of p on a virtual machine that is running solely on a 
physical machine; and t3 be the execution time of p on a virtual 
machine that is running with other virtual machines. The 
virtualization overhead of p is defined as (t2-t1)/t1; and the 
consolidation overhead of p is (t3-t1)/t1.   

The virtualization overhead and the consolidation overhead 
are varied on different cloud platforms owing to the 
techniques and machine specification in use. Therefore, a 
benchmarking tool is designed to measure those metrics. We 
further categorize the computing resources as CPU, memory, 
and disk IO according to the difference in performance 
degradation under virtualization and consolidation. For 
instance, with hardware support virtualization, the 
virtualization and consolidation overhead of CPU benchmarks 
are almost zero. However, for disk IO, the virtualization 
overhead can be nearly 50% for write and 40% for read. Table 
4 lists the benchmarking results on UniCloud. 

The performance model is built based on the profiles of 
programs and the measured metrics of performance 
degradation. We use monitoring tools to obtain the profile of 
programs, or more specifically, the running virtual machines. 
In UniCloud, the launched virtual machine is managed by 
KVM (Kernel-based Virtual Machine) [6] hypervisor, which 
is a process running on physical OS. Performance monitoring 
and profiling tools, such as PAPI (Performance API) [11], can 
generate the desired profiles of VMs. Most modern machines 
have hardware counters for instructions and hardware 
information, such as cache miss rate. PAPI can read the 
information online and report them in real time. We use the 
linear model to estimate the total performance degradation of 
the VM. For instance, if ai is the percentage of instructions 
using computing resource i, and the performance degradation 
of computing resource i is bi, the total performance 
degradation of the VM is estimated as ∑ ����

�
��� , where K is 

the number of computing resources. 
The provisioning for VM requests follows the OpenStack 

procedure, which consists of two parts: filtering and weighting. 
In the filtering stage, the qualified computing resources (PM) 
are selected; in the weighting stage, one of the qualified PM is 
chosen according to some cost functions. Initially, since there 
is no programming execution information, we use the 
requested resources as the filtering criteria in the filtering 
stage. That is, the system finds a physical machine that fits the 
specification to host the request virtual machine. After the VM 
is running, the scheduler polls the monitoring subsystem to 
obtain the runtime information of the virtual machines, such 
as memory usage, disk IO frequency, etc. When some 

Table 3: Example of pre-defined system parameters in the 
federated cloud storage

Type Availability Reliability Perfor-
mance File Size R/W

Ratio
LOG HIGH MED LOW Small 0

BACKUP LOW HIGH MED Large 0
ACTIVE HIGH HIGH HIGH Small 0.5
CACHE MED LOW LOW Small 1

BIGDATA HIGH HIGH MED Large 1

Table 4: Measured virtualization overhead and consolidation 
overhead of UniCloud

Overhead CPU Memory Disk
Virtualization 0.01 0.03 0.30

Consoli-
dation

CPU 0.01 0.01 0
Memory 0.13 0.52 0.03
Disk -0.07 -0.25 0.54
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profiling information is gathered, we use the performance 
modeling as the filtering conditions. If the current 
provisioning cannot guarantee the SLA performance, the 
action of migration is taken. On the other hand, if there are 
some VMs that can be consolidated without scarifying their 
performance, the consolidation process will be activated.  

IV. EVALUATION

To illustrate the achievement of our UniCloud platform, we 
design some experiments to explore the feasibility in terms of 
federated compute and federated storage.

A. Federated Compute 
To evaluate the federated computation, two geographically 

different campus clouds are deployed. One cloud is located in 
NTHU at HsihChu and the other one is located in NTCU at 
TaiChung. Each cloud is composed of three servers with the 
installation of OpenStack Grizzly, in which one server acts as 
both the controller node and the network node while two 
servers act as compute nodes for the VM hosting. Different 
campus clouds may have heterogamous hardware equipment. 
Detail information about the testing environment is listed in 
Table 5. 

The construction of a virtual cluster is equally to deploy 
VMs on two clouds with the same instance flavors. The 
NASA NPB [7] is exploited to estimate the feasibility of 
collaborative cloud services over the UniCloud prototype. We 
adopt the EP (Embarrassingly Parallel) benchmark to evaluate 
the performance of a cross-cloud virtual cluster. The problem 
size of Class B and Class C [8] are both assigned to the 
experiments with a varied number of VMs. Experimental 
results are also averaged in several rounds.  

Fig. 12 and Fig. 13 reveal that the EP problem with the 
larger size takes higher average time to complete the 
computation. The average execution time of Class C is higher 
than that of the Class B. In addition, the more the VMs are 
launched in a virtual cluster, the less the average time will be. 
Particularly, the average execution time of NTHU cloud 
outperforms that of the NTCU cloud due to the computing 
capability of hardware equipment.  

On the other hand, the performance of a cross-cloud virtual 
cluster is moderate. The average execution time of a cross-
cloud virtual cluster is longer and shorter than that of single 
NTHU cloud and that of single NTCU cloud, respectively. 
That is because some VMs in a cross-cloud virtual cluster are 
allocated in the NTHU cloud and the others are resided in the 
NTCU cloud. In addition, each single cloud cannot fulfill a 
large demand while more VMs are required. The experiment 
demonstrates that our UniCloud platform can supply the large 
demand of a virtual cluster across multiple clouds. 

B. Federated Storage 
We conduct real experiments to show the performance 

benefit from using our federated cloud storage approach in 
UniCloud. In our testing environment, we setup four storage 
providers and each is based on different file systems and 
configurations as shown in Table 6 and Table 7.  

For simplicity, here we consider performance as the only 
resource property in our setting. As a result, we observe these 

storage providers differ in I/O performance when servicing 
various types of I/O requests. For example, SP1 and SP4 has 
better I/O performance for writing large file, but SP2 and SP3 
has better I/O performance for reading large file. Therefore, 
our objective is to maximize the overall I/O performance by 
placing files onto the storage providers that could achieve the 
highest throughput according to their access pattern. 

Our evaluation is based on a real file access trace of a FTP 
server during a ten-day period [18]. We extract the file upload 
and download operations, and observe three important 
workload characteristics from the trace: (1) the file access 
requests are distributed over folders following the 80/20 rule. 
In other words, the 80 percent of file upload or download 
requests occurs in 20 percent of the folders; (2) the file size 
distribution can be classified into small and large files, and 
each of them can be characterize by a normal distribution 

Table 5: Hardware Software information for the experiment

Site
Hardware Software

Node CPU Ram OS Hyper-
visor

NTHU 
Cloud

Controller Intel 
X5670 24GB Ubuntu 

12.04 KVMCompute1
Compute2

NTCU 
Cloud

Controller Intel
E5520 18GB Ubuntu 

12.04 KVMCompute1

Compute2 Intel 
5130 2GB

Fig. 12. Results of a virtual cluster running with Class B of 
the EP

Fig. 13. Results of a virtual cluster running with Class C of 
the EP  
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function as shown in Fig. 14; (3) the size of files within the 
same folder is similar. As shown in Fig. 15, all the large files 
are located in three folders. 

The experiments firstly create folders that content the files 
for I/O requests. According to the expected I/O pattern in that 
folder, we classify the folders into five types: LOG, 
BIGDATA, CACHE, BACKUP, ACTIVE. The file size and 
read/write ratio of each type are listed in Table 3. Hence, when 
we use the federated storage API to create these folders in our 
system, we also specify the type as a hint in the folder 
description. Our matchmaking algorithm will place those 
folders to a proper storage provider based on the performance 
measured in our system as shown in Table 7. For example, the 
BACKUP data means writing large files. Our matchmaking 
algorithm will sort candidates based on the performance for 
writing a large file, and place the file to SP4.  In contrast, the 
BIGDATA means reading large files, so that the file will be 
allocated to SP3. As shown in Fig. 15, our random generated 
files are distributed across all four storage providers due to 
each of them can achieve the best I/O performance for a 
certain type of files. For example, SP1 is selected for small 
file writes; SP2 is selected for small file reads; SP3 is selected 
for large file reads; and SP4 is selected for large file writes. 

Finally, we exploit FABAN [3] to generate the workload 
request for file upload and download according to our 
observed workload characteristics. FABAN has been widely 
used for evaluating Cloud services, and it can measure the 
response time of each service request (i.e. a file upload or 
download request in our experiments). In each run of our 
experiments, we continue sending I/O requests into our 
system for over 30 minutes, and we report the performance 
results by taking the average over five runs. 

As shown in Fig. 16, our federated storage, named as FCSS 
in the plot, significantly outperforms any other single storage 
providers by at least 35%, and reaches almost 20MB/s 
throughput in average. The second best storage provider, SP3, 

only achieves 15 MB/s. In Fig. 17, we further breakdown the 
performance comparison with respect to each type of files. As 
shown, our federated storage may not achieve the better 
performance for individual type of data access. However, our 
matchmaking algorithm can explore multiple storage options, 
and optimize for each type of data. Therefore, we can still 
significantly improve the overall I/O performance, and satisfy 
their individual requirement for availability, reliability or any 
other resource properties. 

V. CONCLUSIONS

This paper introduces a prototype of Taiwan UniCloud that 
is a community-driven hybrid cloud platform for academics to 
support education, research, and application development in 
cloud computing. Each self-managing cloud can join the 
UniCloud to share its resources and simultaneously leverage 
the resources and scale-out capabilities of other clouds. The 
architectural of UniCloud is presented and corresponding 
issues we tackled are also discussed in terms of a cross-cloud 
virtual cluster, VLAN over WAN, live migration across 
clouds, and a federated storage across different providers. The 
feasibility of our current implementation is also demonstrated 
through various experiments. Based on the platform, a large 
resource demand is affordable based on the federated 
computation and the collaborative cloud services and 
applications could be further sustained. In addition, the 
federated storage gains the overall performance of 
matchmaking between disparate data types and different 
access properties among multiple storage providers.  

The future work will include adding more campus clouds 
to the UniCloud platform. We will also continue investigating 
methods for improving the performance, as well as enriching 
functionalities of our platform, for instance a self-adaptive 
framework for multi-cloud resource provisioning, integrating 
with more APIs to improve the interoperability with other 
clouds services, and investigating security concerns. A trial 
run of cloud applications for academic education and research 

Table 6: Configurations of four storage providers in our
federated storage environment

Storage 
Provider

File
System

Replication 
Factor

Number of 
Nodes

SP1 Swift 3 5
SP2 Ceph 3 18
SP3 Ceph 2 4
SP4 HDFS 2 4

Table 7: Measured I/O throughputs for various I/O patterns 
in our federated storage environment
Storage 
Provider

Small file (1MB) Large file (100MB)
Read Write Read Write

SP1 4.60
MB/s

0.68 
MB/s

6.50
MB/s

20.17
MB/s

SP2 15.01
MB/s

0.65 
MB/s

29.49
MB/s

14.50
MB/s

SP3 11.49
MB/s

0.44 
MB/s

30.70
MB/s

11.92
MB/s

SP4 8.07
MB/s

0.67 
MB/s

11.53
MB/s

22.40
MB/s

Fig. 14. File size distribution from the FTP trace log

Fig. 15. File location distribution in federated storage 
according to the matchmaking results
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is also considerable to improve the reliability of handling 
runtime failures. The long-term vision of our UniCloud is to 
provide an open and self-sustained cloud ecosystem to deliver 
infrastructure resources, runtime platform, and software 
application as a service for users. 
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