
�

Correlation Aware Technique for SQL to NoSQL Transformation

Jen-Chun Hsu, Ching-Hsien Hsu
Dept. Computer Science & Information Engineering

Chung Hua University
Hsinchu, Taiwan

cklkmnbvc@gamil.com, chh@chu.edu.tw

Shih-Chang Chen, Yeh-Ching Chung
Dept. Computer Science

National Tsing Hua University
Hsinchu, Taiwan

scc@sclab.csie.chu.edu.tw, ychung@cs.nthu.edu.tw

Abstract - For better efficiency of parallel and distributed
computing, Apache Hadoop distributes the imported data
randomly on data nodes. This mechanism provides some
advantages for general data analysis. With the same concept
Apache Sqoop separates each table into four parts and
randomly distributes them on data nodes. However, there is
still a database performance concern with this data
placement mechanism. This paper proposes a Correlation
Aware method on Sqoop (CA_Sqoop) to improve the data
placement. By gathering related data as closer as it could be
to reduce the data transformation cost on the network and
improve the performance in terms of database usage. The
CA_Sqoop also considers the table correlation and size for
better data locality and query efficiency. Simulation results
show that data locality of CA_Sqoop is two times better than
that of original Apache Sqoop.

Keywords - NoSQL; Cloud computing; Big Data; Data
locality; Sqoop
�

I. INTRODUCTION

 With the improvement and advancement of internet
technologies, people use the internet more and more in
daily life. Thus, huge amount of data is generated with
various formats. The ways to store data, analyze data and
find useful information become important issues. Cloud
Computing technologies are developed for those issues,
e.g., Google File System (GFS) [6], MapReduce
framework [5] and BigTable [4] proposed by Google in
2003, 2004 and 2006 for distributed file system, parallel
and distributed computing, and NoSQL database,
respectively.

 In 1984, John Gage created the phrase "The Network
is the computer" which described the concept of Cloud
Computing today. However, the internet technologies
were not good enough to realize this idea. The phrase
"Cloud Computing" is not a technology but a concept of
establishing a server cluster [3] in Cloud by virtualization
technologies and processing the large amount of data
stored in Cloud through the internet. Google proposed the
MapReduce framework to split data into small pieces and
execute the related jobs on nodes. The results will be
collected from nodes, integrated and then return back to
users. In this way, MapReduce transforms a single-node
processing job to a parallel processing job to improve the
execution efficiency.

 Although GFS, MapReduce and BigTable were

published, the source code was not released. After the
community developed Hadoop [8], enterprises and
programmers have a platform similar to GFS and
MapReduce framework to develop MapReduce related
technologies [7].

 Most enterprises still use relational database (RDB)
for business. However, as more and more data produced,
RDB lacks the ability to handle such size of data. Using
Cloud database is a possible solution and enterprises need
a tool to migrate data from RDB to Cloud database for
performance in terms of database usage.

 Apache Sqoop was developed for data migration from
RDB to NoSQL database. Sqoop becomes the top level
project in 2012 which enable users to migrate large size of
data to Cloud environment and to be accessed by Cloud
technologies.

 Different from the traditional means, files are split and
distributed in different Virtual Machines (VMs). However,
there will be an issue if a JOIN operation is performed
and its data of tables is distributed and stored on different
VMs.

 Sqoop splits each table into four parts by default and
use the Mapper of MapReduce framework to store data in
the cluster via JDBC driver during data migration. Data of
tables is then stored in the VMs where Hadoop executes
the Mapper randomly. The data is therefore distributed in
the VM cluster.

 Due to execute Mapper randomly in VMs, the bad
location of data in the cluster may increase the query time
because some data has to be transformed on network.

 This paper addresses above issues and enhances data
locality by analyzing the log of queries. RDB logs
everything including the queries which are submitted to
access database. By analyzing the log, tables which are
frequently used can be found and stored as closer as
possible in the VM cluster to avoid possible data
transformation and improve the overall performance.

 The rest of this paper is organized as follows. Section
2 presents the related work. Section 3 introduces how
Apache Sqoop works. In section 4, we present the
proposed method, CA_Sqoop, to improve the data locality.
Section 5 gives the performance evaluation. Finally,
section 6 concludes this paper.

II. RELATED WORK

2014 7th International Conference on Ubi-Media Computing and Workshops

978-1-4799-4266-4/14 $31.00 © 2014 IEEE

DOI 10.1109/U-MEDIA.2014.27

43

�

 With the coming of digital age, enterprises have to
keep up with data growth explosion. RDB lacks the
ability to handle such amount of data for real-time system,
e.g., telecom billing systems. A research [10] compared
MapReduce and SQL on large scale data processing. The
result shows RDB had better performance with small data,
but MapReduce performed better while size of data
increased. LoadAtomizer [1] presented algorithms to
solve the scheduling and load balancing problems.

 JOIN is a frequently used database operation. Many
researches had proposed solutions to improve the
performance of JOIN [11, 12]. Hive [16] provides
SQL-like query language, HiveQL, to access data in
NoSQL storage, e.g., HBase. However, the MapReduce
jobs of JOIN operations generated by Hive are not
efficient.

 Hive generates MapReduce jobs for queries one by
one. Thus, the relation between queries is not considered.
YSmart [15] addressed this issue and tried to merge
operations according to the relation between queries.
YSmart successfully avoided unnecessary JOIN operation,
improved the query time and was integrated to Hive in
2012.

 NoSQL databases were designed to process
unstructured data [13, 14], but enterprises want to
leverage the ability of NoSQL to process structure data.
Clydesdale [9] proposed a framework on Hadoop for
above issue without modifying the complicated
architecture of Hadoop but presenting several techniques
to speed up the operation of processing structured data.

III. IMPORT DATA TO NOSQL

 In the age of information explosion, anything can be
digitalized, e.g. books and figures. As time goes by, the
size of digital data grows and is hard to know how large it
actually is. IDC says the total data size of Digital universe
is 0.18 ZB in 2006. RDB is obviously not able to
processing such kind of data in terms of size. However,
Cloud Computing is designed for the Big Data including
data storing, processing and analyzing.

 Hadoop, an Apache top level open source project,
provides a distributed system architecture and is mainly
consisted of Hadoop Distributed File System (HDFS) and
MapReduce. HDFS was developed based on the concept
of GFS to connect nodes together and form a large scale
of distributed file system. HDFS was designed to process
large amount of data and provide safe storage architecture
to avoid hardware failure. It was also designed for
write-once-read-many file access model, which provides
simple consistency mechanism and increase the
throughput of data transformation. HDFS duplicates the
data on different data nodes to make sure users can still
access their data if any data node crashes.

Fig. 1 shows Apache Sqoop system architecture. Sqoop
focuses on migrating large scale of data between RDB

and Hadoop. Through Sqoop, users can migrate data to
HDFS or HBase in command line mode with ease. Sqoop
became an Apache top level project in March, 2012.

Figure 1. Apache Sqoop system architecture

 With the rapid growth of data, processing and

analyzing data with RDB, e.g., MySQL, becomes
inefficient. MapReduce can be an alternative to improve
the performance after Sqoop migrates data to Hadoop.

 Apache Sqoop splits a table into four parts and
migrate them to HDFS or HBase through JDBC by
Mapper. However, the nodes for executing Mappers is
randomly decided by Hadoop. Data is therefore stored on
random data nodes which results in a bad data locality.

 Queries are used to access databases and shown the
data with different meaning. JOIN is a frequently used
operation which merges two table according to specific
columns. If the data of two tables is distributed on eight
data nodes, data transformation on network cannot be
avoided to perform the JOIN operation. The speed of data
accessing on network is obviously slower than that in
local disks. Therefore, data locality should be increased to
avoid data transformation on network and enhance the
performance of JOIN operation. Section 4 proposes an
algorithm to allocate data to nodes according necessary
information to address this issue.

IV. CORRELATION AWARE TECHNIQUE

 Relational database usually has a log file to store
operations including configuration, modification and
query. The log file is usually used to monitor the database.
In addition, the logged operations can be treated as the
queries accessing to the database. Thus, once the log file
is analyzed, we can know the tables which are frequently
use by queries.

 Table I demonstrates a matrix showing degree of
Table Correlation (TC) by analyzing queries in the log file.
Taking Table 1 and Table 2 as an example, the degree is
15 which means there were 15 queries accessing these
two table simultaneously according to history records.
Similarly, there were 45 queries accessing Table 4 and
table 5 according to the log.
 In addition to the degree of table correlation, the size

44

�

of tables can also be considered. In some cases, it is not
necessary to put two relative small tables together even
though the degree of table correlation is high. Hadoop
assigns a task to one of the nodes, which owns more data
to reduce the cost data transformation. Such concept is
also applied in this work to improve the performance
according to table sizes.

TABLE I. Example of table correlation

Table

Correlation
(TC)

Table1 Table2 Table3 Table4 Table5

Table1 15 25 63 21

Table2 82 24 34

Table3 72 12

Table4 45

Table5

V. PERFORMANCE ANALYSIS

 The simulation results of Sqoop and the proposed
method, CA_Sqoop, are given in this section to show the
performance while considering table placement. In the
simulation, the effect of replication is not considered.
The ranges of parameters in the simulation are given as
follows.

� Table Size : 1~10 GB
� Table Correlation : 1~1000
� Node Capacity : 2~50
� # of Tables : 20~300
� # of Nodes : 60~100

 Figures 2 and 3 are the results of with different

number of node capacity while importing tables to
clusters. Fig. 2 gives the improvement on data locality
with a small cluster while Fig. 3 presents the results with
a large cluster. CA_Sqoop overcomes Sqoop with better
data locality even the node capacity is increased.

Figure 2. Importing twenty tables to a small cluster

Figure 3. Importing one hundred tables to a large cluster

 Fig. 4 presents smaller difference in data locality
while the number of table is increased. The results also
show a smaller space to be improved while there are more
tables to be migrated from RDB.

Figure 4. Importing different number of tables to a cluster

 Fig. 5 shows that CA_Sqoop increases data locality

with wider range of correlation. The reason is that
CA_Sqoop aims at improving the operations related to
larger tables.

Figure 5. A database has different correlation range.

Fig. 6 gives the results of importing one hundred tables

to clusters with different number of nodes. Although

45

�

original Sqoop has less data locality while number of
nodes increased, CA_Sqoop can derive higher data
locality in the same situation.

Figure 6. Impact on different sizes of cluster

 Those simulations show that our approach CA_Sqoop

can get more data locality than tradition Sqoop. We
believe that locality can reduce data transmission by
network and improve MapReduce join performance.

VI. CONCLUSIONS

 The design of distributed file system provides the
ability to execute jobs in parallel while data is split and
imported to nodes randomly. However, this behavior may
not be good for processing some data which is frequently
used. To improve the data placement may enhance the
performance in terms of database usage and is the
motivation of this paper.

 JOIN is one of the frequently used operations to
database and requires much resource. While performing
JOIN on a distributed file system, it is sensible to execute
jobs on some nodes. If data is not distributed in these
nodes, data transformed from other nodes through
network is necessary and will affect the execution time of
JOIN. The design of the proposed method, CA_Sqoop, is
to first analyze the log to know which tables are
frequently used for JOIN. Then generate TCS and
distribute above tables on the same node if possible.

 Simulation results show that CA_Sqoop can improve
the data locality in all scenarios even importing 300 tables
to the distributed file system. With CA_Sqoop, the time
of data transformation and job execution can be
significantly improved.

����������

[1] Masato Asahara, Shinji Nakadai and Takuya Araki,
“LoadAtomizer: A Locality and I/O Load aware Task
Scheduler for MapReduce, ” in 4th IEEE International

Conference on Cloud Computing Technology and Science
(CloudCom), pp. 317-324, 2012.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt and Andrew
Warfield, “Xen and the Art of Virtualization, ” SOSP '03
Proceedings of the nineteenth ACM symposium on Operating
systems principles, vol. 37, Issue 5, pp. 164-177, December
2003.

[3] Kasim Selcuk Candan, Jong Wook Kim, Parth Nagarkar,
Mithila Nagendra and Ren-wei Yu, “Scalable Multimedia Data
Processing in Server Clusters,” IEEE MultiMedia, pp. 3-5,
2010.

[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C., Hsieh
Deborah A., Wallach Mike Burrws, Tushar Chandra, Andrew
Fikes, and Robert E.Gruber, “Bigtable: A Distributed Storage
System for Structured Data,” 7th UENIX Symposium on
Operating Systems Design and Implementation, pp. 205-218,
2006.

[5] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters, ” Communications of the
ACM, vol. 51, no. 1, pp. 107–113, 2008.

[6] Sven Groot, “Jumbo: Beyond MapReduce for Workload
Balancing,” Fuzzy Systems and Knowledge Discovery (FSKD),
2011 Eighth International Conference on Cloud Computing
Technology and Science, vol. 4, pp. 2675-2678, 2011. July.

[7] C. Jin and R. Buyya, “Mapreduce programming model for
net-based cloud computing, ”in Proceedings of the 15th
International Euro-Par Conference on Parallel Processing,
Euro-Par (Berlin, Heidelberg), pp. 417–428, 2009.

[8] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy
Katz and Ion Stoica, “Improving MapReduce Performance in
Heterogeneous Environments, ” 8th Symposium on Operating
Systems Design and Implementation, pp. 29–42, 2008. Dec.

[9] Andrey Balmin, Tim Kaldewey, Sandeep Tata, ”Clydesdale:
Structured Data Processing on Hadoop, “ACM SIGMOD
International Conference on Management of Data, pp.
705-708,2012.

[10] Jenq-Shiou Leu, Yun-Sun Yee, Wa-Lin Chen,”Comparison of
Map-Reduce and SQL on Large-scale Data Processing,”
International Symposium on Parallel and Distributed
Processing with Applications, pp. 244-248, 2010.

[11] Steven Lynden, Yusuke Tanimura, Isao Kojima and Akiyoshi
Matono,” Dynamic Data Redistribution for MapReduce Joins,”
IEEE International Conference on Coud Computing
Technology and Science, pp. 717-723, 2011.

[12] Dawei Jiang, Anthony K. H. Tung, and Gang Chen,”
MAP-JOIN-REDUCE: Toward Scalable and Efficient Data
Analysis on Large Clusters,”IEEE Transactions on knowledge
and Data Engineering, vol. 23, no. 9, pp. 1299-1311, 2011.

[13] Hung-Ping Lin, ”Structured Data Processing on MapReduce in
NoSQL Database, ”Master Thesis in National Chiao Tung
University, 2010.

[14] Meng-Ju Hsieh, Chao-Rui Chang, Jan-Jan Wu, Pangfeng Liu
and Li-Yung Ho, ”SQLMR : A Scalable Database Management
System for Cloud Computing, ”International Conference on
Parallel Processing (ICPP), pp. 315-324, 2011.

[15] Rubao Lee, Tian Luo, Yin Huai, Fusheng Wang, Yongqiang He,
and Xiaodong Zhang, ” YSmart: Yet Another
SQL-to-MapReduce Translator, ” International Conference on
Distributed Computing Systems, pp. 25-36, 2011.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S.
Anthony, H. Liu, P. Wyckoff, and R. Murthy, “Hive - a
warehousing solution over a Map-Reduce framework, ”PVLDB,
vol. 2, no. 2, pp. 1626–1629, 2009.

46

