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Abstract - As big data becomes popular, data warehouse 
needs the ability to process massive data fast. Hive is a data 
warehouse built on Hadoop. It provides SQL-like query 
language called HiveQL. Although there is a fault tolerance 
mechanism in Hive, its response time is long. Impala is 
another SQL engine on Hadoop that is compatible with 
Hive. Impala’s response time is short, but the data 
processed by Impala is constrained by memory size. 
Furthermore, it does not provide fault tolerance 
mechanism. We focus on designing a fusion SQL engine 
system that combines Hive and Impala. It provides a 
uniform interface and a fault tolerance mechanism. After 
the system parses the query from users, it leverages the 
preprocessed statistics to estimate the memory 
consumption, and chooses the SQL engine (Hive or Impala) 
to execute the query automatically. It makes Hive and 
Impala become complement of each other. 
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1    Introduction 
Data warehouse is a database designed for reporting, 

data analysis and decision-making. It is usually updated in 
batch and it contains large amount of historical data. 
Apache Hadoop [1] is a platform for the distributed 
processing of large data sets across a cluster of commodity 
computers. The data warehouse for big data processing is 
suitable to be built on Hadoop. 

Apache Hive [18] is the first data warehouse software 
built on Hadoop. It supports SQL-like query language 
called HiveQL. The HiveQL query will be compiled to 
several MapReduce jobs to execute. Hive relies on 
MapReduce, it provides fault tolerance mechanism, but the 
job will be run for a long time with high latency. Cloudera 
Impala [2] is a SQL engine on Hadoop and has its own 

massively parallel processing (MPP) engine. There is no 
disk writing in Impala except insertion operations; it 
processes data in memory. The characteristic makes it much 
faster than Hive. However, Impala does not spill to disk if 
intermediate results exceed the memory reserved by Impala 
on a node. The query would fail when any node involved 
processing the query is out of memory. The problem 
commonly occurs when joining two large tables. 

In our work, we attempt to integrate Impala and Hive 
into a fusion SQL engine system and accomplish the 
followings: 
• Offer a uniform query interface for Impala and Hive. 
• Propose a method to estimate Impala memory usage. 
• Automatic failover. 
• Better response time. 

The rest of the paper is organized as follows. Related 
work will be described in Section 2. Section 3 introduces 
the whole system overview and architecture. The estimation 
method of the query size is presented in Section 4. In 
Section 5, we show how to estimate Impala memory 
consumption. Experimental results are shown in Section 6. 
Section 7 are the conclusions and future work. 

2    Related Work 
Apache Hadoop [1] is an open-source implementation 

of Google File System [9] and MapReduce [7]. The Hadoop 
Distributed File System (HDFS) [17] provides high 
throughput access to data and is appropriate for large data 
sets. Apache Hive [18] is the first approach to data 
warehousing on Hadoop framework. Hive stores data on 
HDFS and it supports queries in SQL-like query language 
called HiveQL. 

Shark [19] runs on Apache Spark [20] instead of 
MapReduce, which is a data-parallel execution engine that 
is fast and fault-tolerant. Cloudera Impala [2] inspired by 
Dremel [12] has its own massively parallel processing 
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(MPP) SQL query engine that runs natively in Apache 
Hadoop. 

Ganapathi, et al. [8] propose a prediction framework 
that guides system design and deployment decisions such as 
scale, scheduling, and capacity. Gruenheid, et al. [10] use 
column statistics to improve the performance of HiveQL 
queries execution in Hive. Shi, et al. [16] propose HEDC++, 
a histogram estimator for data in the cloud. Okcan and 
Riedewald [13] focus on processing theta-joins using 
MapReduce. Hive [4], Shark [11] and Impala are also 
developing cost based optimizer to enhance the query 
performance. 

There is less work on hybrid SQL engine architecture on 
Hadoop framework. Similar approach for improving data 
warehouse on Hadoop is HadoopDB [5]. It combines 
parallel database and MapReduce framework, and queries 
multiple single-node databases by using MapReduce as 
communication layer. To the best of our knowledge, we are 
the first system to provide fusion SQL engine system on 
Hadoop framework. 

3    Fusion SQL Engine System 
The fusion SQL engine system is designed for 

leveraging two different SQL engines (Hive and Impala) on 
Hadoop platform to make the average query response time 
shorter. 

3.1 Overview 

 
Figure 1: The Workflow of Fusion SQL Engine 

 
Figure 2: Failover Mechanism 

Our system consists of two different SQL engines: 
Impala and Hive. We will get better performance when 
submit query to Impala, but query may fail if there is no 

sufficient memory. Hive can guarantee the execution will 
always complete but the performance is not as good as 
Impala. The fusion SQL engine system helps users to 
automatically determine which SQL engine to use when 
query arrives. 

As shown in Figure 1 and Figure 2, when the system 
starts, Selector loads the metadata and statistics from Hive 
Metastore. Selector will use the information later for SQL 
engine selection decision. When Client gets a query request, 
Client first asks the Selector which SQL engine should be 
chosen. The Selector estimates the memory usage of this 
query and replies to Client. Moreover, our system also 
supports failover mechanism. As shown in Figure 2, if 
Impala is first selected as SQL engine, once the query fails, 
Client will help to perform failover mechanism. It will 
notify the Selector there is an estimation error and send the 
query to Hive to get the query result. The Selector logs 
every failed query in Metastore to prevent from making the 
wrong estimation again. 

3.2 System Architecture 
The software stack and architecture are shown in Figure 

3. We will introduce them as follows. 

 

Figure 3: Fusion SQL Engine System Architecture 

3.2.1 Client 

The Client provides a uniform interface upon different 
SQL engines. It makes users use different SQL engines to 
execute query with the same data storage stored in HDFS. 

3.2.2 Selector 

Selector server loads the metadata and statistics from 
Hive Metastore when the system starts. Selector will use the 
information later for SQL engine selection decision. The 
information is stored in memory for fast access. 

Selector estimates memory usage of a query according 
the execution plan from Impala. Therefore, Selector gets 
Impala’s execution plan in text format via JDBC, and 
parses it to compute the estimated memory consumption. 
We will explain the estimation method in Section 4.4. 

There is a failover mechanism in Selector. Once the 
wrong estimation causes "memory limit exceeded" error, 
Client will notify the Selector to log this query. If Selector 
gets the same query next time, it will choose Hive directly 
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instead of Impala to avoid "memory limit exceeded" error. 

3.2.3 SQL Engine 

There are two SQL engines in the proposed system: 
Impala and Hive. Impala is faster since it puts data in 
memory, but it lacks of fault tolerance mechanism. 
Compared with Impala, Hive runs slower but is reliable. 
Our proposed system helps users to identify the 
characteristics of a query by estimating memory 
consumption. 

3.2.4 Metastore 

Metastore is one of the components in Hive and used for 
storing metadata. It uses relational database management 
system to store information. The first SQL-on-Hadoop is 
Hive. Most of following SQL engines on Hadoop are 
compatible with Hive. Metadata contain table schema, 
partition information, table statistics and column statistics. 

3.2.5 Stats Processor 

Stats Processor builds statistics data that will be used for 
Selector. For processing the massive dataset, it is written in 
MapReduce to speed up the performance. This analysis step 
does not need to be executed every time after the system 
starts. Only for the first time users import the data into the 
data warehouse, the system executes the analysis program 
to collect some statistics. These statistics data can help to 
improve the accuracy of estimation. 

4    Estimation of the Query Size 
In this system, we calculate the approximate memory 

consumption of a query relying on estimation of query size.  

4.1 Preliminary 
4.1.1 Terms 

• Predicate: Each WHERE or JOIN clause is called a 
predicate. 

• Cardinality: The number of rows that is expected to 
return by an operation. 

• Selectivity: A value between 0 and 1 that indicates the 
proportion of rows retrieved by one or multiple 
predicates. 

When we estimate the cardinality of this SELECT 
operation, we need to calculate the selectivity of each 
predicate denoted as SEL(P) where P is a predicate. We 
have equation (1) to calculate number of rows. 

#Row = Cardinality * Selectivity                (1) 

The selectivity of a predicate affects the result row size. 
Two methods of calculating selectivity will be described in 
Section 4.2 and Section 4.3. 

4.2 Number of Distinct Values (NDV) 
Impala uses the number of distinct values (NDV) to 

estimate the selectivity of a predicate in current version. 
The method is proposed by literature [15] and used in 
System R [6]. It is based on linear and uniform distribution 
assumption that assumes the number of occurrences of any 
value in a domain of an attribute is the same. The following 
are the selectivity formulas based on above assumption for 
two predicates p = x and p < x, p and x denote an attribute 
and a constant of an attribute respectively. 

We have equation (2) and equation (3) to calculate the 
selectivity. 

 

NDV is the number of distinct values of attribute p, and 
maxval and minval are the maximum and minimum values 
of attribute p. 

In many cases, the distribution is neither uniform nor 
linear. The above formulas would be inaccurate. Thus, for 
numeric data types, we will use histogram to improve the 
estimation. For non-numeric data type like string, we will 
use above NDV method. 

4.3 Histogram 
A histogram can describe the distribution of attribute 

values. We can build a single-dimensional histogram to 
record the value distribution for a single column. 

4.3.1 Dimension 

Single-dimensional histogram considers the frequency 
distribution of an individual attribute, and it is based on the 
attribute independence assumption that there is no 
correlation among the attributes. Multi-dimensional 
histogram considers the joint frequency distribution of 
several attributes. Although multi-dimensional histogram 
can handle complex join predicate more accurately, the 
overhead of building it is exponential to the number of 
columns. In most commercial databases, the 
single-dimensional histograms are often used. 

4.3.2 Equi-width Histogram and Equi-height Histogram 

For a traditional equi-width histogram, the internal 
length of each bucket is the same but the total frequency of 
each bucket is different. In contrast, for the equi-height 
histogram, the length of each bucket may be different but 
the total frequency of each bucket is the same. When the 
data are skewed, the selectivity estimation from equi-width 
histogram may be far from real selectivity.  

As shown in Figure 4 and Figure 5, we show an 
example for the equi-width and equi-height histogram, 
respectively. In this example, most of the customers are 23 
years old. If we use equi-width histogram to estimate 
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SEL(age < 22), the error rate of estimation would be larger 
than that of using equi-height histogram. 

The equi-height histogram is proposed by literature [14]. 
We leverage Piatetsky-Shapiro and Connell's proposed 
method to build equi-height histograms for every numeric 
column type and use it to estimate the query result size. 

  

Figure 4: Equi-width Histogram      Figure 5: Equi-height Histogram 

4.4 Building Equi-height Histogram Using 
MapReduce 

For processing massive data, we build equi-height 
histograms by using MapReduce. Stats Processor loads the 
metadata from Metastore and starts up a MapReduce job for 
each numeric column. 

 

Figure 6: Building Histogram using MapReduce 

As shown in Figure 6, the mapper in MapReduce 
program loads tuples from HDFS and extracts the values 
from columns. We use the attribute value as output key of 
mapper to leverage MapReduce shuffle mechanism. It 
guarantees that the reducer can retrieve keys in order. 
Therefore, in the reducer, we calculate attribute density 
value and endpoint of each bucket. Finally, the output of 
reducer will be stored into Metastore. The endpoints of the 
histogram in Figure 5 are 8, 23, 23, 23, 27 and 45. The 
statistics stored in Metastore would help estimate 
selectivity. 

5    Memory Consumption Estimation 

5.1 Impala Query Execution 
To estimate memory usage of Impala, we need to know 

how Impala executes our query. In this section, we describe 
the architecture of Impala and the memory consumption 
estimation from Impala query execution plan. 

5.1.1 The Architecture of Impala 

 
Figure 7: The Architecture of Impala 

Figure 7 shows overview of Impala architecture. Impala 
does not rely on MapReduce to achieve short response time 
requirement. It directly accesses data on HDFS with a 
specialized distributed query engine. There are two 
components in Impala: one is StateStore in the cluster, and 
the other is Daemon on each HDFS DataNode. StateStore 
takes responsibility for monitoring the health of each 
Daemon in the cluster. A SQL application connects to one 
of Daemons. This Daemon will be the coordinator to 
generate the query execution plan and coordinate with other 
Daemons. The exec engines in other Daemons stream the 
partial results back to the coordinator and the coordinator 
will response to the user application. 

5.1.2 Operations 

Select 

A select query extracts and filters some data from a 
table. Impala Daemon scans blocks in HDFS locally and 
then streams to another node for following operations. Each 
scan node holds some memory as a buffer. The size of 
buffer is related to number of blocks in HDFS. 

Aggregate Function 

The aggregate function like SUM or MIN is performed 
on separated nodes and then merges the result on an 
aggregate node. 

Join 

In general, join operation consumes most of the memory. 
We focus on the join operation to determine which query 
can be executed by Impala. Impala uses hash join algorithm 
to implement the join operation. 

As shown in Figure 8, when joining two sets R and S, 
there are two phases to perform the operation. First, query 
planner chooses a smaller set R as the input for build phase. 
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It scans set R and builds the hash table of join attribute. 
Second, after the hash table is constructed, it scans the 
larger set S and matches set R by looking up the hash table. 
The set R must fit into the memory. 

 

Figure 8: Hash Join 

5.2 Estimation from Execution Plan 
To estimate the memory consumption for a query, we 

parse the query execution plan from Impala. Because join 
operation consumes most of the memory, we focus on it 
when estimating memory consumption. The hash table is a 
vector that contains pointers to the table entry data. When 
the vector is full, it will increase the size automatically. We 
take the hash table size into account. We set 
LOAD_FACTOR to 0.75; it means 75% buckets in the hash 
table contain an entry at least. Each bucket in the vector is a 
pointer which is 8 bytes in the x64 OS. The estimated 
memory usage of hash table is calculated in equation (4) 
and equation (5). 

 

 

We assume all entries would be distributed to all nodes 
uniformly, so memjoin will be equally divided by the number 
of nodes that involved in processing the join. 

As we mention above, we get the buffer size consumed 
by HDFS scan node from the query execution plan. There 
are several plan fragments for a query execution plan. Some 
of them can be executed in parallel, so we add the estimated 
memory of those plan fragments to calculate the total 
estimated memory of a node. The value is used to compare 
with the memory limit of Impala to determine whether the 
query can be executed by Impala or not. 

6    Experiments 
In this section, we evaluate the fusion SQL engine 

system and compare it with Impala and Hive. 

6.1 Experiments Settings 
The dataset for our experiments is from AWS [3]. The 

dataset is a database for the bookstore, which consists of 

three tables: books, customers and transactions. We 
generate the dataset as shown in TABLE 1. We build 
equi-height histograms for the dataset. 

We run our experiments on a cluster of 5 nodes. One of 
these nodes functions as the master node, while others 
nodes are set up as slaves. Because Impala is only 
supported under the CDH released from Cloudera, we use 
CDH 5.0.3 as Hadoop environment. The hardware and 
software configurations are described in TABLE 2 and 
TABLE 3. 

TABLE 1: Dataset Information 

Table Size #Records 

books 8GB 126,227,290 

customers 8GB 105,800,433 

transactions 16GB 339,799,026 

TABLE 2: Hardware Configuration 

Device Description 

CPU Intel Xeon E5520 @ 2.27GHz x 2 with HT 

RAM 24GB 

Disk 246GB 

Ethernet 1Gbps 

TABLE 3: Software Configuration 

Name Version 

OS Ubuntu 12.04.4 LTS x64 

Apache Hadoop 2.3.0 

Apache Hive 0.12.0 

Cloudera Impala 1.3.1 

MySQL 5.5.37 

6.2 Selectivity Estimation 
There are 3 queries in TABLE 4. Q1 and Q2 are scan 

queries with single selection predicate. Q3 is a join query 
with a selection predicate. We adjust the constant X to show 
the variation in estimations. 

TABLE 4: Queries for Selectivity Estimation 

# Query 

Q1 SELECT count(*) FROM books WHERE price < X 

Q2 SELECT count(*) FROM transactions WHERE quantity >= X 

Q3 SELECT count(*) FROM transactions JOIN books ON 
(transactions.book_id = books.id AND books.price < X) 

 
From the results shown in Figure 9, Figure 10, and 

Figure 11, we can find that the estimation values are close 
to real case values. We also calculate the mean absolute 
percentage errors (MAPE) in TABLE 5. All MAPE values 
are under 1.6%. 
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Figure 9: Selectivity Estimation for Q1 

 
Figure 10: Selectivity Estimation for Q2 

 
Figure 11: Selectivity Estimation for Q3 

TABLE 5: MAPE for Selectivity Estimation 

Query Mean Absolute Percentage Error 

Q1 1.565298873 

Q2 0.872011458 

Q3 1.568515777 

6.3 Memory Estimation 
In order to evaluate the memory consumption, we 

implement a monitoring program to monitor each Impala 
Daemon. When the program starts, it will connect the 
Impala StateStore to fetch the list of daemons. After the 
query is executed, monitor starts polling every Impala 
Daemon per second, and maintains the maximum of 
memory usage across all nodes. When the query is 
completed, the monitor will report the maximum memory 
usage. 

To prevent from waiting for a large result set streaming 
back, we use a limit clause in the SQL. For example, in 
TABLE 6, we use "LIMIT 10" to fetch the first 10 rows of 
result. 

As illustrated in Figure 12, if the scanning range is small, 
the data may not occupy all of the buffers. It makes our 
estimation in those cases slightly higher than actual 
memory usage. From this experiment result, the MAPE we 
get is 5.766993529%. 

TABLE 6: Query for Memory Estimation 

# Query 

Q4 
SELECT * FROM transactions JOIN books ON 
(transactions.book_id = books.id AND books.price < X) 
LIMIT 10 

 
Figure 12: Memory Estimation 

6.4 Performance Evaluation 
We evaluate the performance of fusion SQL engine 

system and compare it to that only with Hive or with Impala. 
We set the memory limitation of Impala and maximum 
heap size of Hive to 8GB. Hive, Impala and the fusion SQL 
engine (FSE) will execute all the SQL queries in TABLE 7 
for comparison. 

Q5 is a normal scanning and aggregation query; Q6 is 
similar to Q5 with an additional filter predicate; Q7 is a 
sorting and aggregation query; Q8 causes two large tables 
join that does not fit in memory. Q9 is a complex query 
with sub query, sorting, join, aggregation operations. 

In Figure 13, for most of the cases (Q5, Q6, Q7, and 
Q9), the query execution time in FSE and Impala is quite 
shorter than Hive. However, for the case of Q8, Impala 
cannot execute it because of the memory size limitation. It 
will fail at 34.437 seconds. In FSE, it chooses the Hive as 
the SQL engine to execute the query. Therefore, the 
performances of our proposed FSE and Hive are similar. 
The overhead of FSE is under 1 second; it is caused by the 
simple computation and the communication between Client 
and Selector. 

The speedup is described in TABLE 8. In aggregation 
operations (Q5 and Q6), we get about 2.53x-5.18x better 
than Hive, and we get about 3.82x in the join operations 
(Q9). It shows that the fusion SQL engine system can 
improve the performance in most of the queries. Our fusion 
SQL engine can correctly select the best-fit SQL engine 
(Hive or Impala) to execute a query for a given dataset. 
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TABLE 7: Queries for Performance Evaluation 

# Query 

Q5 SELECT COUNT(*) FROM transactions 

Q6 SELECT COUNT(*) FROM customers WHERE name = 
'Harrison SMITH' 

Q7 SELECT category, count(*) cnt FROM books GROUP 
BY category ORDER BY cnt DESC LIMIT 10 

Q8 
SELECT * FROM transactions JOIN books ON 
(transactions.book_id = books.id AND books.price < 80) 
LIMIT 10 

Q9 

SELECT tmp.book_category, ROUND(tmp.revenue, 2) 
AS revenue FROM (SELECT books.category AS 
book_category, SUM(books.price * transactions.quantity) 
AS revenue FROM books JOIN transactions ON 
(transactions.book_id = books.id AND books.price < 80) 
GROUP BY books.category) tmp ORDER BY revenue 
DESC LIMIT 10 

 
Figure 13: Performance Evaluation 

TABLE 8: Speedup of FSE Based on Hive and Impala 

# FSE vs. Hive FSE vs. Impala 

Q5 2.53 0.98 

Q6 3.50 0.96 

Q7 5.18 0.94 

Q8 1.00 N/A 

Q9 3.82 0.98 

7    Conclusions and Future Work 
In this paper, we propose a fusion SQL engine (FSE) 

system on Hadoop framework. We can correctly select the 
best-fit SQL engine (Impala or Hive) to execute a query for 
a given dataset and therefore get the best performance. We 
also implement a failover mechanism. In the future, we will 
try to support partition table, add sampling based 
estimation. 
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