

Adaptive Fusion SQL Engine on Hadoop Framework
Shu-Ming Chang1, Chia-Hung Lu1, Jiazheng Zhou1,

Wenguang Chen2, Ching-Hsien Hsu3, Hung-Chang Hsiao4, and Yeh-Ching Chung1

1Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
2Department of Computer Science and Technology, Tsinghua University, Beijing, China

3Department of Computer Science and Information Engineering, Chung Hua University, Taiwan
4Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan

{shuming, lu1227, jzhou}@sslab.cs.nthu.edu.tw,

cwg@tsinghua.edu.cn, chh@chu.edu.tw, hchsiao@csie.ncku.edu.tw, ychung@cs.nthu.edu.tw

Abstract - As big data becomes popular, data warehouse
needs the ability to process massive data fast. Hive is a data
warehouse built on Hadoop. It provides SQL-like query
language called HiveQL. Although there is a fault tolerance
mechanism in Hive, its response time is long. Impala is
another SQL engine on Hadoop that is compatible with
Hive. Impala’s response time is short, but the data
processed by Impala is constrained by memory size.
Furthermore, it does not provide fault tolerance
mechanism. We focus on designing a fusion SQL engine
system that combines Hive and Impala. It provides a
uniform interface and a fault tolerance mechanism. After
the system parses the query from users, it leverages the
preprocessed statistics to estimate the memory
consumption, and chooses the SQL engine (Hive or Impala)
to execute the query automatically. It makes Hive and
Impala become complement of each other.

Keywords: Data Warehouse; SQL Engine on Hadoop;
Hive; Impala, Fusion SQL Engine

1 Introduction
Data warehouse is a database designed for reporting,

data analysis and decision-making. It is usually updated in
batch and it contains large amount of historical data.
Apache Hadoop [1] is a platform for the distributed
processing of large data sets across a cluster of commodity
computers. The data warehouse for big data processing is
suitable to be built on Hadoop.

Apache Hive [18] is the first data warehouse software
built on Hadoop. It supports SQL-like query language
called HiveQL. The HiveQL query will be compiled to
several MapReduce jobs to execute. Hive relies on
MapReduce, it provides fault tolerance mechanism, but the
job will be run for a long time with high latency. Cloudera
Impala [2] is a SQL engine on Hadoop and has its own

massively parallel processing (MPP) engine. There is no
disk writing in Impala except insertion operations; it
processes data in memory. The characteristic makes it much
faster than Hive. However, Impala does not spill to disk if
intermediate results exceed the memory reserved by Impala
on a node. The query would fail when any node involved
processing the query is out of memory. The problem
commonly occurs when joining two large tables.

In our work, we attempt to integrate Impala and Hive
into a fusion SQL engine system and accomplish the
followings:
• Offer a uniform query interface for Impala and Hive.
• Propose a method to estimate Impala memory usage.
• Automatic failover.
• Better response time.

The rest of the paper is organized as follows. Related
work will be described in Section 2. Section 3 introduces
the whole system overview and architecture. The estimation
method of the query size is presented in Section 4. In
Section 5, we show how to estimate Impala memory
consumption. Experimental results are shown in Section 6.
Section 7 are the conclusions and future work.

2 Related Work
Apache Hadoop [1] is an open-source implementation

of Google File System [9] and MapReduce [7]. The Hadoop
Distributed File System (HDFS) [17] provides high
throughput access to data and is appropriate for large data
sets. Apache Hive [18] is the first approach to data
warehousing on Hadoop framework. Hive stores data on
HDFS and it supports queries in SQL-like query language
called HiveQL.

Shark [19] runs on Apache Spark [20] instead of
MapReduce, which is a data-parallel execution engine that
is fast and fault-tolerant. Cloudera Impala [2] inspired by
Dremel [12] has its own massively parallel processing

Int'l Conf. on Advances in Big Data Analytics | ABDA'15 | 27

(MPP) SQL query engine that runs natively in Apache
Hadoop.

Ganapathi, et al. [8] propose a prediction framework
that guides system design and deployment decisions such as
scale, scheduling, and capacity. Gruenheid, et al. [10] use
column statistics to improve the performance of HiveQL
queries execution in Hive. Shi, et al. [16] propose HEDC++,
a histogram estimator for data in the cloud. Okcan and
Riedewald [13] focus on processing theta-joins using
MapReduce. Hive [4], Shark [11] and Impala are also
developing cost based optimizer to enhance the query
performance.

There is less work on hybrid SQL engine architecture on
Hadoop framework. Similar approach for improving data
warehouse on Hadoop is HadoopDB [5]. It combines
parallel database and MapReduce framework, and queries
multiple single-node databases by using MapReduce as
communication layer. To the best of our knowledge, we are
the first system to provide fusion SQL engine system on
Hadoop framework.

3 Fusion SQL Engine System
The fusion SQL engine system is designed for

leveraging two different SQL engines (Hive and Impala) on
Hadoop platform to make the average query response time
shorter.

3.1 Overview

Figure 1: The Workflow of Fusion SQL Engine

Figure 2: Failover Mechanism

Our system consists of two different SQL engines:
Impala and Hive. We will get better performance when
submit query to Impala, but query may fail if there is no

sufficient memory. Hive can guarantee the execution will
always complete but the performance is not as good as
Impala. The fusion SQL engine system helps users to
automatically determine which SQL engine to use when
query arrives.

As shown in Figure 1 and Figure 2, when the system
starts, Selector loads the metadata and statistics from Hive
Metastore. Selector will use the information later for SQL
engine selection decision. When Client gets a query request,
Client first asks the Selector which SQL engine should be
chosen. The Selector estimates the memory usage of this
query and replies to Client. Moreover, our system also
supports failover mechanism. As shown in Figure 2, if
Impala is first selected as SQL engine, once the query fails,
Client will help to perform failover mechanism. It will
notify the Selector there is an estimation error and send the
query to Hive to get the query result. The Selector logs
every failed query in Metastore to prevent from making the
wrong estimation again.

3.2 System Architecture
The software stack and architecture are shown in Figure

3. We will introduce them as follows.

Figure 3: Fusion SQL Engine System Architecture

3.2.1 Client

The Client provides a uniform interface upon different
SQL engines. It makes users use different SQL engines to
execute query with the same data storage stored in HDFS.

3.2.2 Selector

Selector server loads the metadata and statistics from
Hive Metastore when the system starts. Selector will use the
information later for SQL engine selection decision. The
information is stored in memory for fast access.

Selector estimates memory usage of a query according
the execution plan from Impala. Therefore, Selector gets
Impala’s execution plan in text format via JDBC, and
parses it to compute the estimated memory consumption.
We will explain the estimation method in Section 4.4.

There is a failover mechanism in Selector. Once the
wrong estimation causes "memory limit exceeded" error,
Client will notify the Selector to log this query. If Selector
gets the same query next time, it will choose Hive directly

28 Int'l Conf. on Advances in Big Data Analytics | ABDA'15 |

instead of Impala to avoid "memory limit exceeded" error.

3.2.3 SQL Engine

There are two SQL engines in the proposed system:
Impala and Hive. Impala is faster since it puts data in
memory, but it lacks of fault tolerance mechanism.
Compared with Impala, Hive runs slower but is reliable.
Our proposed system helps users to identify the
characteristics of a query by estimating memory
consumption.

3.2.4 Metastore

Metastore is one of the components in Hive and used for
storing metadata. It uses relational database management
system to store information. The first SQL-on-Hadoop is
Hive. Most of following SQL engines on Hadoop are
compatible with Hive. Metadata contain table schema,
partition information, table statistics and column statistics.

3.2.5 Stats Processor

Stats Processor builds statistics data that will be used for
Selector. For processing the massive dataset, it is written in
MapReduce to speed up the performance. This analysis step
does not need to be executed every time after the system
starts. Only for the first time users import the data into the
data warehouse, the system executes the analysis program
to collect some statistics. These statistics data can help to
improve the accuracy of estimation.

4 Estimation of the Query Size
In this system, we calculate the approximate memory

consumption of a query relying on estimation of query size.

4.1 Preliminary
4.1.1 Terms

• Predicate: Each WHERE or JOIN clause is called a
predicate.

• Cardinality: The number of rows that is expected to
return by an operation.

• Selectivity: A value between 0 and 1 that indicates the
proportion of rows retrieved by one or multiple
predicates.

When we estimate the cardinality of this SELECT
operation, we need to calculate the selectivity of each
predicate denoted as SEL(P) where P is a predicate. We
have equation (1) to calculate number of rows.

#Row = Cardinality * Selectivity (1)

The selectivity of a predicate affects the result row size.
Two methods of calculating selectivity will be described in
Section 4.2 and Section 4.3.

4.2 Number of Distinct Values (NDV)
Impala uses the number of distinct values (NDV) to

estimate the selectivity of a predicate in current version.
The method is proposed by literature [15] and used in
System R [6]. It is based on linear and uniform distribution
assumption that assumes the number of occurrences of any
value in a domain of an attribute is the same. The following
are the selectivity formulas based on above assumption for
two predicates p = x and p < x, p and x denote an attribute
and a constant of an attribute respectively.

We have equation (2) and equation (3) to calculate the
selectivity.

NDV is the number of distinct values of attribute p, and
maxval and minval are the maximum and minimum values
of attribute p.

In many cases, the distribution is neither uniform nor
linear. The above formulas would be inaccurate. Thus, for
numeric data types, we will use histogram to improve the
estimation. For non-numeric data type like string, we will
use above NDV method.

4.3 Histogram
A histogram can describe the distribution of attribute

values. We can build a single-dimensional histogram to
record the value distribution for a single column.

4.3.1 Dimension

Single-dimensional histogram considers the frequency
distribution of an individual attribute, and it is based on the
attribute independence assumption that there is no
correlation among the attributes. Multi-dimensional
histogram considers the joint frequency distribution of
several attributes. Although multi-dimensional histogram
can handle complex join predicate more accurately, the
overhead of building it is exponential to the number of
columns. In most commercial databases, the
single-dimensional histograms are often used.

4.3.2 Equi-width Histogram and Equi-height Histogram

For a traditional equi-width histogram, the internal
length of each bucket is the same but the total frequency of
each bucket is different. In contrast, for the equi-height
histogram, the length of each bucket may be different but
the total frequency of each bucket is the same. When the
data are skewed, the selectivity estimation from equi-width
histogram may be far from real selectivity.

As shown in Figure 4 and Figure 5, we show an
example for the equi-width and equi-height histogram,
respectively. In this example, most of the customers are 23
years old. If we use equi-width histogram to estimate

Int'l Conf. on Advances in Big Data Analytics | ABDA'15 | 29

SEL(age < 22), the error rate of estimation would be larger
than that of using equi-height histogram.

The equi-height histogram is proposed by literature [14].
We leverage Piatetsky-Shapiro and Connell's proposed
method to build equi-height histograms for every numeric
column type and use it to estimate the query result size.

Figure 4: Equi-width Histogram Figure 5: Equi-height Histogram

4.4 Building Equi-height Histogram Using
MapReduce

For processing massive data, we build equi-height
histograms by using MapReduce. Stats Processor loads the
metadata from Metastore and starts up a MapReduce job for
each numeric column.

Figure 6: Building Histogram using MapReduce

As shown in Figure 6, the mapper in MapReduce
program loads tuples from HDFS and extracts the values
from columns. We use the attribute value as output key of
mapper to leverage MapReduce shuffle mechanism. It
guarantees that the reducer can retrieve keys in order.
Therefore, in the reducer, we calculate attribute density
value and endpoint of each bucket. Finally, the output of
reducer will be stored into Metastore. The endpoints of the
histogram in Figure 5 are 8, 23, 23, 23, 27 and 45. The
statistics stored in Metastore would help estimate
selectivity.

5 Memory Consumption Estimation

5.1 Impala Query Execution
To estimate memory usage of Impala, we need to know

how Impala executes our query. In this section, we describe
the architecture of Impala and the memory consumption
estimation from Impala query execution plan.

5.1.1 The Architecture of Impala

Figure 7: The Architecture of Impala

Figure 7 shows overview of Impala architecture. Impala
does not rely on MapReduce to achieve short response time
requirement. It directly accesses data on HDFS with a
specialized distributed query engine. There are two
components in Impala: one is StateStore in the cluster, and
the other is Daemon on each HDFS DataNode. StateStore
takes responsibility for monitoring the health of each
Daemon in the cluster. A SQL application connects to one
of Daemons. This Daemon will be the coordinator to
generate the query execution plan and coordinate with other
Daemons. The exec engines in other Daemons stream the
partial results back to the coordinator and the coordinator
will response to the user application.

5.1.2 Operations

Select

A select query extracts and filters some data from a
table. Impala Daemon scans blocks in HDFS locally and
then streams to another node for following operations. Each
scan node holds some memory as a buffer. The size of
buffer is related to number of blocks in HDFS.

Aggregate Function

The aggregate function like SUM or MIN is performed
on separated nodes and then merges the result on an
aggregate node.

Join

In general, join operation consumes most of the memory.
We focus on the join operation to determine which query
can be executed by Impala. Impala uses hash join algorithm
to implement the join operation.

As shown in Figure 8, when joining two sets R and S,
there are two phases to perform the operation. First, query
planner chooses a smaller set R as the input for build phase.

30 Int'l Conf. on Advances in Big Data Analytics | ABDA'15 |

It scans set R and builds the hash table of join attribute.
Second, after the hash table is constructed, it scans the
larger set S and matches set R by looking up the hash table.
The set R must fit into the memory.

Figure 8: Hash Join

5.2 Estimation from Execution Plan
To estimate the memory consumption for a query, we

parse the query execution plan from Impala. Because join
operation consumes most of the memory, we focus on it
when estimating memory consumption. The hash table is a
vector that contains pointers to the table entry data. When
the vector is full, it will increase the size automatically. We
take the hash table size into account. We set
LOAD_FACTOR to 0.75; it means 75% buckets in the hash
table contain an entry at least. Each bucket in the vector is a
pointer which is 8 bytes in the x64 OS. The estimated
memory usage of hash table is calculated in equation (4)
and equation (5).

We assume all entries would be distributed to all nodes
uniformly, so memjoin will be equally divided by the number
of nodes that involved in processing the join.

As we mention above, we get the buffer size consumed
by HDFS scan node from the query execution plan. There
are several plan fragments for a query execution plan. Some
of them can be executed in parallel, so we add the estimated
memory of those plan fragments to calculate the total
estimated memory of a node. The value is used to compare
with the memory limit of Impala to determine whether the
query can be executed by Impala or not.

6 Experiments
In this section, we evaluate the fusion SQL engine

system and compare it with Impala and Hive.

6.1 Experiments Settings
The dataset for our experiments is from AWS [3]. The

dataset is a database for the bookstore, which consists of

three tables: books, customers and transactions. We
generate the dataset as shown in TABLE 1. We build
equi-height histograms for the dataset.

We run our experiments on a cluster of 5 nodes. One of
these nodes functions as the master node, while others
nodes are set up as slaves. Because Impala is only
supported under the CDH released from Cloudera, we use
CDH 5.0.3 as Hadoop environment. The hardware and
software configurations are described in TABLE 2 and
TABLE 3.

TABLE 1: Dataset Information

Table Size #Records

books 8GB 126,227,290

customers 8GB 105,800,433

transactions 16GB 339,799,026

TABLE 2: Hardware Configuration

Device Description

CPU Intel Xeon E5520 @ 2.27GHz x 2 with HT

RAM 24GB

Disk 246GB

Ethernet 1Gbps

TABLE 3: Software Configuration

Name Version

OS Ubuntu 12.04.4 LTS x64

Apache Hadoop 2.3.0

Apache Hive 0.12.0

Cloudera Impala 1.3.1

MySQL 5.5.37

6.2 Selectivity Estimation
There are 3 queries in TABLE 4. Q1 and Q2 are scan

queries with single selection predicate. Q3 is a join query
with a selection predicate. We adjust the constant X to show
the variation in estimations.

TABLE 4: Queries for Selectivity Estimation

Query

Q1 SELECT count(*) FROM books WHERE price < X

Q2 SELECT count(*) FROM transactions WHERE quantity >= X

Q3 SELECT count(*) FROM transactions JOIN books ON
(transactions.book_id = books.id AND books.price < X)

From the results shown in Figure 9, Figure 10, and

Figure 11, we can find that the estimation values are close
to real case values. We also calculate the mean absolute
percentage errors (MAPE) in TABLE 5. All MAPE values
are under 1.6%.

Int'l Conf. on Advances in Big Data Analytics | ABDA'15 | 31

Figure 9: Selectivity Estimation for Q1

Figure 10: Selectivity Estimation for Q2

Figure 11: Selectivity Estimation for Q3

TABLE 5: MAPE for Selectivity Estimation

Query Mean Absolute Percentage Error

Q1 1.565298873

Q2 0.872011458

Q3 1.568515777

6.3 Memory Estimation
In order to evaluate the memory consumption, we

implement a monitoring program to monitor each Impala
Daemon. When the program starts, it will connect the
Impala StateStore to fetch the list of daemons. After the
query is executed, monitor starts polling every Impala
Daemon per second, and maintains the maximum of
memory usage across all nodes. When the query is
completed, the monitor will report the maximum memory
usage.

To prevent from waiting for a large result set streaming
back, we use a limit clause in the SQL. For example, in
TABLE 6, we use "LIMIT 10" to fetch the first 10 rows of
result.

As illustrated in Figure 12, if the scanning range is small,
the data may not occupy all of the buffers. It makes our
estimation in those cases slightly higher than actual
memory usage. From this experiment result, the MAPE we
get is 5.766993529%.

TABLE 6: Query for Memory Estimation

Query

Q4
SELECT * FROM transactions JOIN books ON
(transactions.book_id = books.id AND books.price < X)
LIMIT 10

Figure 12: Memory Estimation

6.4 Performance Evaluation
We evaluate the performance of fusion SQL engine

system and compare it to that only with Hive or with Impala.
We set the memory limitation of Impala and maximum
heap size of Hive to 8GB. Hive, Impala and the fusion SQL
engine (FSE) will execute all the SQL queries in TABLE 7
for comparison.

Q5 is a normal scanning and aggregation query; Q6 is
similar to Q5 with an additional filter predicate; Q7 is a
sorting and aggregation query; Q8 causes two large tables
join that does not fit in memory. Q9 is a complex query
with sub query, sorting, join, aggregation operations.

In Figure 13, for most of the cases (Q5, Q6, Q7, and
Q9), the query execution time in FSE and Impala is quite
shorter than Hive. However, for the case of Q8, Impala
cannot execute it because of the memory size limitation. It
will fail at 34.437 seconds. In FSE, it chooses the Hive as
the SQL engine to execute the query. Therefore, the
performances of our proposed FSE and Hive are similar.
The overhead of FSE is under 1 second; it is caused by the
simple computation and the communication between Client
and Selector.

The speedup is described in TABLE 8. In aggregation
operations (Q5 and Q6), we get about 2.53x-5.18x better
than Hive, and we get about 3.82x in the join operations
(Q9). It shows that the fusion SQL engine system can
improve the performance in most of the queries. Our fusion
SQL engine can correctly select the best-fit SQL engine
(Hive or Impala) to execute a query for a given dataset.

32 Int'l Conf. on Advances in Big Data Analytics | ABDA'15 |

TABLE 7: Queries for Performance Evaluation

Query

Q5 SELECT COUNT(*) FROM transactions

Q6 SELECT COUNT(*) FROM customers WHERE name =
'Harrison SMITH'

Q7 SELECT category, count(*) cnt FROM books GROUP
BY category ORDER BY cnt DESC LIMIT 10

Q8
SELECT * FROM transactions JOIN books ON
(transactions.book_id = books.id AND books.price < 80)
LIMIT 10

Q9

SELECT tmp.book_category, ROUND(tmp.revenue, 2)
AS revenue FROM (SELECT books.category AS
book_category, SUM(books.price * transactions.quantity)
AS revenue FROM books JOIN transactions ON
(transactions.book_id = books.id AND books.price < 80)
GROUP BY books.category) tmp ORDER BY revenue
DESC LIMIT 10

Figure 13: Performance Evaluation

TABLE 8: Speedup of FSE Based on Hive and Impala

FSE vs. Hive FSE vs. Impala

Q5 2.53 0.98

Q6 3.50 0.96

Q7 5.18 0.94

Q8 1.00 N/A

Q9 3.82 0.98

7 Conclusions and Future Work
In this paper, we propose a fusion SQL engine (FSE)

system on Hadoop framework. We can correctly select the
best-fit SQL engine (Impala or Hive) to execute a query for
a given dataset and therefore get the best performance. We
also implement a failover mechanism. In the future, we will
try to support partition table, add sampling based
estimation.

Acknowledgement
The work of this paper is partially supported by

Ministry of Science and Technology under contract MOST
103-2221-E-007 -063 -.

Reference
[1] Apache Hadoop. http://hadoop.apache.org/
[2] Impala. http://impala.io/
[3] Impala Performance Testing and Query Optimization - Amazon

Elastic MapReduce.
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuid
e/impala-optimization.html

[4] Introducing Cost Based Optimizer to Apache Hive. Available:
https://cwiki.apache.org/confluence/download/attachments/27362075/
CBO-2.pdf

[5] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A.
Rasin, "HadoopDB: an architectural hybrid of MapReduce and DBMS
technologies for analytical workloads," Proceedings of the VLDB
Endowment, vol. 2, pp. 922-933, 2009.

[6] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J.
Gray, P. P. Griffiths, et al., "System R: relational approach to database
management," ACM Transactions on Database Systems (TODS), vol.
1, pp. 97-137, 1976.

[7] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on
large clusters," Communications of the ACM, vol. 51, pp. 107-113,
2008.

[8] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson,
"Statistics-driven workload modeling for the cloud," in Data
Engineering Workshops (ICDEW), 2010 IEEE 26th International
Conference on, 2010, pp. 87-92.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google file system,"
in ACM SIGOPS Operating Systems Review, 2003, pp. 29-43.

[10] A. Gruenheid, E. Omiecinski, and L. Mark, "Query optimization using
column statistics in hive," in Proceedings of the 15th Symposium on
International Database Engineering & Applications, 2011, pp.
97-105.

[11] A. Lupher, "Shark: SQL and Analytics with Cost-Based Query
Optimization on Coarse-Grained Distributed Memory," 2014.

[12] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M.
Tolton, et al., "Dremel: interactive analysis of web-scale datasets,"
Proceedings of the VLDB Endowment, vol. 3, pp. 330-339, 2010.

[13] A. Okcan and M. Riedewald, "Processing theta-joins using
MapReduce," in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, 2011, pp. 949-960.

[14] G. Piatetsky-Shapiro and C. Connell, "Accurate estimation of the
number of tuples satisfying a condition," in ACM SIGMOD Record,
1984, pp. 256-276.

[15] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T.
G. Price, "Access path selection in a relational database management
system," in Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, 1979, pp. 23-34.

[16] Y.-J. Shi, X.-F. Meng, F. Wang, and Y.-T. Gan, "HEDC++: An
Extended Histogram Estimator for Data in the Cloud," Journal of
Computer Science and Technology, vol. 28, pp. 973-988, 2013.

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The hadoop
distributed file system," in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, 2010, pp. 1-10.

[18] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, et al.,
"Hive-a petabyte scale data warehouse using hadoop," in Data
Engineering (ICDE), 2010 IEEE 26th International Conference on,
2010, pp. 996-1005.

[19] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I.
Stoica, "Shark: SQL and rich analytics at scale," in Proceedings of the
2013 international conference on Management of data, 2013, pp.
13-24.

[20] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
"Spark: cluster computing with working sets," in Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, 2010, pp.
10-10.

Int'l Conf. on Advances in Big Data Analytics | ABDA'15 | 33

