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Abstract—With the need of data storage increases 
tremendously nowadays, distributed file system becomes the 
most important data storage system in cloud computing. In 
distributed file system development, there are many 
researchers work hard to refine the architecture to provide 
scalability and reliability. In our work, we propose a 
distributed metaserver system including metaserver scale-out, 
metadata replication, metaserver recovery, and metaserver 
management recovery mechanisms. In our experiments, the 
proposed system can increase the capacity of metadata and 
increase the reliability by fault tolerance mechanism. The 
overhead of read/write data is very little in the proposed 
system as well. 
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1. INTRODUCTION 

Big data is the most popular area in cloud computing. 
Many distributed file systems serve for big data to store the 
large-scale data, including HDFS[24], GFS[12], and 
QFS[17]. There is a metaserver in these distributed file sys-
tems, but this single node server limits the system 
scalability and metadata reliability. As the scale of storage 
cluster becomes much larger today, we need to improve the 
reliability of metadata management. We construct a 
lightweight and high-level metaserver management in QFS. 
The concept of this paper can also be applied to those 
distributed file systems with a single metaserver. 

 We propose a distributed metaserver system based on 
QFS and accomplish the following contributions: 
• High-level metaserver management. 
• Building a scalable metaserver cluster. 
• Recovering failed metaservers. 
• Recovering failed metaserver management. 

 The rest of the paper is organized as follows. In 
Section 2, we show some preliminaries and related work. 
Section 3 introduces the Quantcast File System. The 
proposed distributed metaserver system is presented in 
Section 4. The experiments and analysis are shown in 
Section 5. Section 6 concludes our work and shows future 
work. 

2. RELATED WORK 

 The distributed file system (DFS) is one of the most 
important components in cloud computing today. Google 
File System (GFS)[12] and Hadoop Distributed File System 
(HDFS)[2] are the most famous and the greatest DFSs. The 
block-based storage and object-based storage[16] become 
more and more popular. (TABLE 1) 

TABLE 1. DFSs with or without metadata management nodes. 

Architecture System 
DFS with metadata 
management nodes  

GFS [12] (file level) 
HDFS [2] (file level) 
QFS [17] (block level) 
KFS [5] (block level) 
Ceph DFS [26] (object level) 
MooseFS [9] (object level) 
Lustre FS [23] (object level) 

DFS without metadata 
management nodes 

Amazon S3[1] (object level) 
Facebook Cassandra[15] (object level) 
OpenStack Swift[10] (object level) 

 

2.1. Hadoop Distributed File System (HDFS) and Ceph 
Distributed File System 

 The big data analysis with MapReduce is the popular 
in cloud computing nowadays. Because MapReduce frame-
work is popular, its storage system HDFS gets a lot of 
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attentions and many research works want to improve the 
storage system performance, reliability, and scalability. 

 The Ceph DFS is the most representative 
object-based storage system today. The Ceph is a high 
scalability and high performance file system[26]. Ceph 
consists of metaserver cluster and object storage cluster. 

2.2. Metadata Indexing Methods 

 Dynamic sub-tree partitioning[28] indexing method is 
used in Ceph DFS for multiple metaservers. Dynamic 
sub-tree partitioning can distribute the metadata to several 
metaservers with load balancing. 

2.3. Related Research Work 

 There are more and more research works focusing on 
metadata accessing time, metadata balancing in metaserver 
cluster, and metadata reliability since the object-based 
storage system is the mainstream storage system today. 
Many companies and researchers attempt to improve the 
single metaserver to multiple metaservers to increase 
scalability and reliability in the storage system. They are 
shown in literatures [3], [6], [7], [8], [11], [14], [19], [22], 
and [27].

3. QUANTCAST FILE SYSTEM 

 Quantcast file system (QFS) [17] is developed in the 
frame of the Kosmos File System (KFS) [5] which is an 
open-source distributed file system implemented in C++. 
KFS has three parts: client library (a set of commands), 
metaserver, and chunk server. Figure 1 shows Quantcast 
file system architecture. QFS improves read/write 
performance by parallel reading/writing from chunk 
servers. 

 

Figure 1. The Quantcast file system architecture. 

3.1 Metaserver 

 The QFS metaserver keeps all directory and file 

structure of the file system, i.e. metadata. The metaserver 
monitors redundancy block and recreates missing data. In 
QFS, a file will be encoded into six chunk data and three 
redundancy parity blocks and distributed to nine chunk 
servers. They are encoded with Reed-Solomon code, 
annotated as Reed-Solomon 6+3. We can lose 3 chunks of 
data at most.

3.2 Chunk Server 

 Each chunk server stores chunks as files on the local 
file system and each chunk file is named as 
[file-id].[chunk-id].version. The chunk servers’ primary 
work is accepting connections from clients and doing some 
recovery work guided from metaserver. 

3.3 Client 

 The client contains many read/write operation 
commands. Client can use this set of commands to deal 
with basic read and write, and Reed-Solomon encoded read 
and write. There are many works ([4], [13], [18], [20], [21], 
[25]) about Reed-Solomon code. Figure 2 shows an 
example of RS(6,3). Figure 3 shows the encoding method 
in QFS client.

 

Figure 2. An example of RS(6,3). 

 
Figure 3. QFS client encodes data into Reed-Solomon 6+3 code. 

4. DISTRIBUTED METASERVER MECHANISM AND�
RECOVERY MECHANISM 

 We want to build a distributed metaserver system 
with high reliability and scalability by adding fault 
tolerance mechanism. 
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4.1 Overview 

 
Figure 4. The architecture of distributed metaserver system in QFS. 

This system consists of three main components: client, 
Metadata Block Manager (MBM), and server cluster (see 
Figure 4). Client interacts with MBM to get the block 
location, and then client will get the block name and server 
addresses. 

4.2 System Architecture and Components Implementation 

Figure 5 shows the details of every component. We will 
discuss them as follows.

 
Figure 5. The architecture of distributed metaserver system in QFS. 

 The metadata block (M-Block) is a file which 
contains numerous metadata records. Each metadata record 
contains some information about file or directory attributes, 
including name, mode, user, group, creation time, metadata 
id, and etc. 

 Metadata Block Manager (MBM) is a lightweight 
service. It only keeps a small M-Block mapping table, 
creating mapping from M-Block name to server addresses. 
MBM is the most important component in the metaserver 
cluster. The role of MBM is a scheduler.  The mechanism 
of MBM is shown in Figure 6. MBM assigns M-Block to 
three servers with 3 replicas setting. 

 

 

Figure 6. MBM uses Round Robin scheduling to build the mapping table. 

4.2.1 Metadata Replication Mechanism 

 To introduce our metadata replication mechanism, we 
refer to the data replication mechanism in Hadoop 
distributed file system (HDFS) [24] and Ceph distributed 
file system [26]. We get a pair of M-Block mapping to 
several metaserver addresses before writing metadata to 
metaserver. We will check status of all metaservers before 
starting to write. After checking the status is good, client 
will send metadata to multiple metaservers and each 
metaserver will write the metadata into M-Block. 

4.2.2 Fault Tolerance Mechanism 

 Our system supports N-replica mechanism, so we can 
construct an n+(N-1) metadata system. That is, the system 
can support at most (N-1) servers’ failure. During this 
period, the system works but it is not in a good condition. 

4.2.3 Metaserver Recovery Mechanism 

 We have to recover metaservers before all 
metaservers fail. If all metaservers fail, we cannot get 
metadata from this DFS, and this system is crashed. 

 

 

Figure 7. The metaserver recovery mechanism. 

 Figure 7 shows that the metadata recovery 
mechanism. We will show how to recover one metaserver 
by the following steps. Suppose Server2 is broken. 
Step 1. New metaserver Server5 wishes to replace the 
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failed metaserver Server2. Server5 sends recovery 
request to MBM. 

Step 2. MBM will look up all M-Blocks owned by failed 
metaserver Server2. In Figure 7, MBM will find 
M1, M2 and M4 originally locate in Server2. 

Step 3. MBM will look up the record of M-Block M1, M2, 
M4 found in step2. MBM will find the metaservers 
Server1, Server3 and Server4 for the replica of M1, 
M2, and M4, respectively. 

Step 4. MBM will send <M-Block name, location> pairs to 
new metaserver Server5. The content of message is 
<M1, Server1>, <M2, Server3>, <M4, Server4>. 

Step 5. New metaserver Server5 will get M-Blocks 
according to received message. Server5 will get 
M1 from Server1, M2 from Server3 and M4 from 
Server4. 

4.2.4 Metadata Block Manager Recovery�Mechanism 

 Metadata Block Manager is the most important 
component in our system. If MBM crashes, we can not 
perform any operations. Figure 8 shows the MBM recovery 
mechanism. New MBM should send recovery request to 
each metaserver, and each metaserver will return several 
<M-Block name, location> pairs to new MBM. Then new 
MBM receives return messages from metaservers, and new 
MBM will use these pairs to rebuild M-Block mapping 
table.

 

Figure 8. The MBM recovery mechanism. 

5. EXPERIMENTS AND ANALYSIS 

5.1. Experimental environment 

 Our experimental environment consists of nine server 
nodes. In these nine nodes, there are one Meta Block 
Manager, seven nodes for metaservers, and nine nodes for 
chunk servers. 

5.2. Metadata Capacity vs. System Capability 

 We use the default 3-replica mechanism in 
metaserver cluster and use four to seven servers to observe 
the variation of metadata capacity. We limit the memory 
size of 200MB to simulate the hardware memory size in the 
node. Figure 9 shows the results of the experiments.  

 

Figure 9. The number of metaservers vs. metadata capacity. 

We use mkdir operation to put metadata to metaservers. 
We can find that the number of metadata records (capacity) 
increase 33% in the 3-replica mechanism when we add one 
more metaserver to the system. With the proposed 
distributed metaserver system, we can increase the 
capability of the original QFS. 

5.3. Client Performance 

 We will test four main commands in our system, and 
compare the performance with the original QFS. We choose 
mkdir, ls, get and put for experiments. 

5.3.1 mkdir Command 

 mkdir only requires communication with the 
metaserver. The size of metadata is fixed for one command, 
so we can accurately calculate the execution times per 
second. 

 In Figure 10, no-replica stands for the original QFS. 
Since client should communicate with MBM, and metadata 
should write to multiple metaservers due to the replication 
mechanism in our system, we can see the performance 
decreases between no-replica and 3-replica. After the 
replication mechanism is used, the overhead of execution 
time is just related to the number of replicas (i.e., write
times), so the result shows the linear performance 
degradation between 3-replica to 6-replica. 
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Figure 10. The performance of mkdir command.

5.3.2 ls Command 

 ls command will get all metadata in a directory. We 
will list a directory with ten thousand records one hundred 
times. Figure 11 shows the result of ls performance. We can 
see that the performance decreases dramatically between 
no-replica and 3-replica, since we add replication 
mechanism (3-replica) into the original QFS (no-replica). 
The rest of result is similar to that of mkdir command. The 
performance of ls command is the worst in our system 
when comparing with that in original QFS. 

 

Figure 11. The performance of ls command. 

5.3.3 put Command 

 In our system, put means write files into the file 
system, and we will test the write throughput. We test four 
groups, including 1MB, 10MB, 100MB, and 500MB. Each 
group is tested with five settings (no-replica, 3-replica, 
4-replica, 5-replica, and 6-replica). 

 Figure 12 shows that the performance of small files is 
the worst. With the number of replicas increases, the 
performance will degrade in each group since we should 
write more metadata to metaservers. Writing metadata 

many times will cause the overhead in our system, the 
proportion of the overhead is getting smaller when the file 
size is getting larger. Therefore, the overhead is not obvious 
with large file size. 

 

Figure 12. The Performance of put Command. 

5.3.4 get Command 

 get command means read files from the file system, 
and we will test the read throughput. We will choose test 
data as shown in section 5.3.3. 

 Figure 13 shows that the performances of get 
command are close among all settings for a given data size, 
and the overhead is not obvious. Because it only needs to 
check if the metadata exists in the metaservers in B+ tree in 
memory, it spends very little time checking it. 

 

Figure 13. The performance of get command. 

5.4. Fault Tolerance Mechanism vs. System Performance 

 In n-replica mechanism system, we allow n-1 nodes 
crash in our system. Figure 14 shows that the performance 
of read files will not be affected when some metaservers 
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crash. We will get metadata from next healthy metaserver 
when we cannot communicate with the current metaserver. 

 

Figure 14. Fault tolerance mechanism vs. system performance with 
500MB files. 

6. CONCLUSIONS AND FUTURE WORK 

 For distributed file system, data and metadata 
reliability becomes more important than before. We 
construct a lightweight and high-level metaserver 
management in QFS. We provide a distributed metaserver 
system with replication and recovery mechanisms. We keep 
the characteristics of parallel reading/writing and erasure 
coding from QFS in our system. The proposed method only 
introduces little overhead of communication with multiple 
metaservers, and we can build a high reliable fault-tolerant 
system. When we read/write files, the throughput is nearly 
not affected by replication mechanism. Our work is the first 
one to improve the scalability and reliability based on QFS. 
The concept of this paper can also be applied to those 
distributed file systems with a single metaserver.

In the future, we will resolve the issue that metadata 
always occupy the memory in metaserver. We want to 
offload the metadata from memory but we will add a 
caching mechanism to enhance the access performance. 
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