

Distributed Metaserver Mechanism and Recovery
Mechanism Support in Quantcast File System

Su-Shien Ho1, Chun-Feng Wu1, Jiazheng Zhou1,

Wenguang Chen2, Ching-Hsien Hsu3, Hung-Chang Hsiao4, Yeh-Ching Chung1

1Department of Computer Science, National Tsing Hua University, Taiwan

2Department of Computer Science and Technology, Tsinghua University, Beijing, China
3Department of Computer Science and Information Engineering, Chung Hua University, Taiwan

4Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan

{sushien, cfwu, jzhou}@sslab.cs.nthu.edu.tw,
cwg@tsinghua.edu.cn, chh@chu.edu.tw, hchsiao@csie.ncku.edu.tw, ychung@cs.nthu.edu.tw

Abstract—With the need of data storage increases
tremendously nowadays, distributed file system becomes the
most important data storage system in cloud computing. In
distributed file system development, there are many
researchers work hard to refine the architecture to provide
scalability and reliability. In our work, we propose a
distributed metaserver system including metaserver scale-out,
metadata replication, metaserver recovery, and metaserver
management recovery mechanisms. In our experiments, the
proposed system can increase the capacity of metadata and
increase the reliability by fault tolerance mechanism. The
overhead of read/write data is very little in the proposed
system as well.

Keywords-Distributed File System; Metadata; Metaserver;
Fault Tolerance; QFS

1. INTRODUCTION

Big data is the most popular area in cloud computing.
Many distributed file systems serve for big data to store the
large-scale data, including HDFS[24], GFS[12], and
QFS[17]. There is a metaserver in these distributed file sys-
tems, but this single node server limits the system
scalability and metadata reliability. As the scale of storage
cluster becomes much larger today, we need to improve the
reliability of metadata management. We construct a
lightweight and high-level metaserver management in QFS.
The concept of this paper can also be applied to those
distributed file systems with a single metaserver.

 We propose a distributed metaserver system based on
QFS and accomplish the following contributions:
• High-level metaserver management.
• Building a scalable metaserver cluster.
• Recovering failed metaservers.
• Recovering failed metaserver management.

 The rest of the paper is organized as follows. In
Section 2, we show some preliminaries and related work.
Section 3 introduces the Quantcast File System. The
proposed distributed metaserver system is presented in
Section 4. The experiments and analysis are shown in
Section 5. Section 6 concludes our work and shows future
work.

2. RELATED WORK

 The distributed file system (DFS) is one of the most
important components in cloud computing today. Google
File System (GFS)[12] and Hadoop Distributed File System
(HDFS)[2] are the most famous and the greatest DFSs. The
block-based storage and object-based storage[16] become
more and more popular. (TABLE 1)

TABLE 1. DFSs with or without metadata management nodes.

Architecture System
DFS with metadata
management nodes

GFS [12] (file level)
HDFS [2] (file level)
QFS [17] (block level)
KFS [5] (block level)
Ceph DFS [26] (object level)
MooseFS [9] (object level)
Lustre FS [23] (object level)

DFS without metadata
management nodes

Amazon S3[1] (object level)
Facebook Cassandra[15] (object level)
OpenStack Swift[10] (object level)

2.1. Hadoop Distributed File System (HDFS) and Ceph
Distributed File System

 The big data analysis with MapReduce is the popular
in cloud computing nowadays. Because MapReduce frame-
work is popular, its storage system HDFS gets a lot of

2015 IEEE 39th Annual International Computers, Software & Applications Conference

0730-3157/15 $31.00 © 2015 IEEE

DOI 10.1109/COMPSAC.2015.109

758

attentions and many research works want to improve the
storage system performance, reliability, and scalability.

 The Ceph DFS is the most representative
object-based storage system today. The Ceph is a high
scalability and high performance file system[26]. Ceph
consists of metaserver cluster and object storage cluster.

2.2. Metadata Indexing Methods

 Dynamic sub-tree partitioning[28] indexing method is
used in Ceph DFS for multiple metaservers. Dynamic
sub-tree partitioning can distribute the metadata to several
metaservers with load balancing.

2.3. Related Research Work

 There are more and more research works focusing on
metadata accessing time, metadata balancing in metaserver
cluster, and metadata reliability since the object-based
storage system is the mainstream storage system today.
Many companies and researchers attempt to improve the
single metaserver to multiple metaservers to increase
scalability and reliability in the storage system. They are
shown in literatures [3], [6], [7], [8], [11], [14], [19], [22],
and [27].

3. QUANTCAST FILE SYSTEM

 Quantcast file system (QFS) [17] is developed in the
frame of the Kosmos File System (KFS) [5] which is an
open-source distributed file system implemented in C++.
KFS has three parts: client library (a set of commands),
metaserver, and chunk server. Figure 1 shows Quantcast
file system architecture. QFS improves read/write
performance by parallel reading/writing from chunk
servers.

Figure 1. The Quantcast file system architecture.

3.1 Metaserver

 The QFS metaserver keeps all directory and file

structure of the file system, i.e. metadata. The metaserver
monitors redundancy block and recreates missing data. In
QFS, a file will be encoded into six chunk data and three
redundancy parity blocks and distributed to nine chunk
servers. They are encoded with Reed-Solomon code,
annotated as Reed-Solomon 6+3. We can lose 3 chunks of
data at most.

3.2 Chunk Server

 Each chunk server stores chunks as files on the local
file system and each chunk file is named as
[file-id].[chunk-id].version. The chunk servers’ primary
work is accepting connections from clients and doing some
recovery work guided from metaserver.

3.3 Client

 The client contains many read/write operation
commands. Client can use this set of commands to deal
with basic read and write, and Reed-Solomon encoded read
and write. There are many works ([4], [13], [18], [20], [21],
[25]) about Reed-Solomon code. Figure 2 shows an
example of RS(6,3). Figure 3 shows the encoding method
in QFS client.

Figure 2. An example of RS(6,3).

Figure 3. QFS client encodes data into Reed-Solomon 6+3 code.

4. DISTRIBUTED METASERVER MECHANISM AND�
RECOVERY MECHANISM

 We want to build a distributed metaserver system
with high reliability and scalability by adding fault
tolerance mechanism.

759

4.1 Overview

Figure 4. The architecture of distributed metaserver system in QFS.

This system consists of three main components: client,
Metadata Block Manager (MBM), and server cluster (see
Figure 4). Client interacts with MBM to get the block
location, and then client will get the block name and server
addresses.

4.2 System Architecture and Components Implementation

Figure 5 shows the details of every component. We will
discuss them as follows.

Figure 5. The architecture of distributed metaserver system in QFS.

 The metadata block (M-Block) is a file which
contains numerous metadata records. Each metadata record
contains some information about file or directory attributes,
including name, mode, user, group, creation time, metadata
id, and etc.

 Metadata Block Manager (MBM) is a lightweight
service. It only keeps a small M-Block mapping table,
creating mapping from M-Block name to server addresses.
MBM is the most important component in the metaserver
cluster. The role of MBM is a scheduler. The mechanism
of MBM is shown in Figure 6. MBM assigns M-Block to
three servers with 3 replicas setting.

Figure 6. MBM uses Round Robin scheduling to build the mapping table.

4.2.1 Metadata Replication Mechanism

 To introduce our metadata replication mechanism, we
refer to the data replication mechanism in Hadoop
distributed file system (HDFS) [24] and Ceph distributed
file system [26]. We get a pair of M-Block mapping to
several metaserver addresses before writing metadata to
metaserver. We will check status of all metaservers before
starting to write. After checking the status is good, client
will send metadata to multiple metaservers and each
metaserver will write the metadata into M-Block.

4.2.2 Fault Tolerance Mechanism

 Our system supports N-replica mechanism, so we can
construct an n+(N-1) metadata system. That is, the system
can support at most (N-1) servers’ failure. During this
period, the system works but it is not in a good condition.

4.2.3 Metaserver Recovery Mechanism

 We have to recover metaservers before all
metaservers fail. If all metaservers fail, we cannot get
metadata from this DFS, and this system is crashed.

Figure 7. The metaserver recovery mechanism.

 Figure 7 shows that the metadata recovery
mechanism. We will show how to recover one metaserver
by the following steps. Suppose Server2 is broken.
Step 1. New metaserver Server5 wishes to replace the

760

failed metaserver Server2. Server5 sends recovery
request to MBM.

Step 2. MBM will look up all M-Blocks owned by failed
metaserver Server2. In Figure 7, MBM will find
M1, M2 and M4 originally locate in Server2.

Step 3. MBM will look up the record of M-Block M1, M2,
M4 found in step2. MBM will find the metaservers
Server1, Server3 and Server4 for the replica of M1,
M2, and M4, respectively.

Step 4. MBM will send <M-Block name, location> pairs to
new metaserver Server5. The content of message is
<M1, Server1>, <M2, Server3>, <M4, Server4>.

Step 5. New metaserver Server5 will get M-Blocks
according to received message. Server5 will get
M1 from Server1, M2 from Server3 and M4 from
Server4.

4.2.4 Metadata Block Manager Recovery�Mechanism

 Metadata Block Manager is the most important
component in our system. If MBM crashes, we can not
perform any operations. Figure 8 shows the MBM recovery
mechanism. New MBM should send recovery request to
each metaserver, and each metaserver will return several
<M-Block name, location> pairs to new MBM. Then new
MBM receives return messages from metaservers, and new
MBM will use these pairs to rebuild M-Block mapping
table.

Figure 8. The MBM recovery mechanism.

5. EXPERIMENTS AND ANALYSIS

5.1. Experimental environment

 Our experimental environment consists of nine server
nodes. In these nine nodes, there are one Meta Block
Manager, seven nodes for metaservers, and nine nodes for
chunk servers.

5.2. Metadata Capacity vs. System Capability

 We use the default 3-replica mechanism in
metaserver cluster and use four to seven servers to observe
the variation of metadata capacity. We limit the memory
size of 200MB to simulate the hardware memory size in the
node. Figure 9 shows the results of the experiments.

Figure 9. The number of metaservers vs. metadata capacity.

We use mkdir operation to put metadata to metaservers.
We can find that the number of metadata records (capacity)
increase 33% in the 3-replica mechanism when we add one
more metaserver to the system. With the proposed
distributed metaserver system, we can increase the
capability of the original QFS.

5.3. Client Performance

 We will test four main commands in our system, and
compare the performance with the original QFS. We choose
mkdir, ls, get and put for experiments.

5.3.1 mkdir Command

 mkdir only requires communication with the
metaserver. The size of metadata is fixed for one command,
so we can accurately calculate the execution times per
second.

 In Figure 10, no-replica stands for the original QFS.
Since client should communicate with MBM, and metadata
should write to multiple metaservers due to the replication
mechanism in our system, we can see the performance
decreases between no-replica and 3-replica. After the
replication mechanism is used, the overhead of execution
time is just related to the number of replicas (i.e., write
times), so the result shows the linear performance
degradation between 3-replica to 6-replica.

761

Figure 10. The performance of mkdir command.

5.3.2 ls Command

 ls command will get all metadata in a directory. We
will list a directory with ten thousand records one hundred
times. Figure 11 shows the result of ls performance. We can
see that the performance decreases dramatically between
no-replica and 3-replica, since we add replication
mechanism (3-replica) into the original QFS (no-replica).
The rest of result is similar to that of mkdir command. The
performance of ls command is the worst in our system
when comparing with that in original QFS.

Figure 11. The performance of ls command.

5.3.3 put Command

 In our system, put means write files into the file
system, and we will test the write throughput. We test four
groups, including 1MB, 10MB, 100MB, and 500MB. Each
group is tested with five settings (no-replica, 3-replica,
4-replica, 5-replica, and 6-replica).

 Figure 12 shows that the performance of small files is
the worst. With the number of replicas increases, the
performance will degrade in each group since we should
write more metadata to metaservers. Writing metadata

many times will cause the overhead in our system, the
proportion of the overhead is getting smaller when the file
size is getting larger. Therefore, the overhead is not obvious
with large file size.

Figure 12. The Performance of put Command.

5.3.4 get Command

 get command means read files from the file system,
and we will test the read throughput. We will choose test
data as shown in section 5.3.3.

 Figure 13 shows that the performances of get
command are close among all settings for a given data size,
and the overhead is not obvious. Because it only needs to
check if the metadata exists in the metaservers in B+ tree in
memory, it spends very little time checking it.

Figure 13. The performance of get command.

5.4. Fault Tolerance Mechanism vs. System Performance

 In n-replica mechanism system, we allow n-1 nodes
crash in our system. Figure 14 shows that the performance
of read files will not be affected when some metaservers

762

crash. We will get metadata from next healthy metaserver
when we cannot communicate with the current metaserver.

Figure 14. Fault tolerance mechanism vs. system performance with
500MB files.

6. CONCLUSIONS AND FUTURE WORK

 For distributed file system, data and metadata
reliability becomes more important than before. We
construct a lightweight and high-level metaserver
management in QFS. We provide a distributed metaserver
system with replication and recovery mechanisms. We keep
the characteristics of parallel reading/writing and erasure
coding from QFS in our system. The proposed method only
introduces little overhead of communication with multiple
metaservers, and we can build a high reliable fault-tolerant
system. When we read/write files, the throughput is nearly
not affected by replication mechanism. Our work is the first
one to improve the scalability and reliability based on QFS.
The concept of this paper can also be applied to those
distributed file systems with a single metaserver.

In the future, we will resolve the issue that metadata
always occupy the memory in metaserver. We want to
offload the metadata from memory but we will add a
caching mechanism to enhance the access performance.

ACKNOWLEDGEMENT

 The work of this paper is partially supported by
Ministry of Science and Technology under contract MOST
104-2218-E-007-002-.

References

1. Amazon S3. Available from: http://aws.amazon.com/s3/.
2. Apache Hadoop. Available from: http://hadoop.apache.org/.
3. Apache Hadoop 2.1.1-beta. Available from:

http://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-hd

fs/Federation.html.
4. HDFS and Erasure Codes (HDFS-RAID).
5. KFS. Available from: https://code.google.com/p/kosmosfs/.
6. LevelDB - A Fast And Lightweight Key/Value Database Library by

Google.
7. MapR. Available from: http://www.mapr.com.
8. MapR Documentation. Available from:

http://doc.mapr.com/display/MapR/Home.
9. MooseFS.
10. Openstack Swift. Available from:

http://docs.openstack.org/developer/swift/.
11. Panasas Hardware Architecture. Available from:

http://www.panasas.com/products/hardware-architecture.
12. S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google File System,

in ACM SIGOPS Operating Systems Review. 2003. p. 29-43.
13. C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,

and S. Yekhanin, Erasure Coding in Windows Azure Storage, in
USENIX Annual Technical Conference. 2012. p. 15-26.

14. K. Kulkarni, K. Ren, S. Patil, and G. Gibson, Giga+TableFS on
PanFS: Scaling Metadata Performance on Cluster File System.
2013.

15. A. Lakshman and P. Malik, Cassandra - A Decentralized Structured
Storage System, in ACM SIGOPS Operating Systems Review. 2010.
p. 35-40.

16. M. Mesnier, G.R. Ganger, and E. Riedel, Object-Based Storage, in
IEEE. 2003. p. 84-90.

17. M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,
The Quantcast File System. Proceedings of the VLDB Endowment,
2013: p. 1092-1101.

18. D.S. Papailiopoulos, J. Luo, A.G. Dimakis, C. Huang, and J. Li,
Simple Regenerating Codes: Network Coding for Cloud Storage, in
INFOCOM, 2012 Proceedings IEEE. 2012. p. 2801-2805.

19. S.V. Patil, G.A. Gibson, S. Lang, and M. Polte, GIGA+: Scalable
Directories for Shared File Systems, in Proceedings of the 2nd
international workshop on Petascale data storage. 2007. p. 26-29.

20. K.V. Rashmi, N.B. Shah, D. Gu, H. Kuang, D. Borthakur, and K.
Ramchandran, A Solution to the Network Challenges of Data
Recovery in Erasure-coded Distributed Storage Systems: A Study on
the Facebook Warehouse Cluster, in Proceedings of the 5th
USENIX conference on Hot Topics in Storage and File Systems.
2013.

21. I. Reed and G. Solomon, Polynomial Codes Over Certain Finite
Fields, in Journal of SIAM. 1960. p. 300-304.

22. K. Ren and G. Gibson, TABLEFS: Enhancing Metadata Efficiency
in the Local File System., in USENIX Annual Technical Conference.
2013. p. 145-156.

23. P. Schwan, Lustre: Building a File System for 1,000-node, in
Proceedings of the 2003 Linux Symposium. 2003. p. 380-386.

24. K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The Hadoop
Distributed File System, in Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST).
2010, IEEE Computer Society: Washington, DC, USA. p. 1–10.

25. H. Weatherspoon and J.D. Kubiatowicz, Erasure Coding vs.
Replication: A Quantitative Comparison. Peer-to-Peer Systems,
2002: p. 328-337.

26. S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C. Maltzahn,
Ceph: A Scalable, High-Performance Distributed File System, in
Proceedings of the 7th symposium on Operating systems design and
implementation. 2006, USENIX Association: USENIX Association.
p. 307-320.

27. X. Xie, Y. Yang, and Y. Lu, A Zones-Based Metadata Management
Method for Distributed File System, in Trustworthy Computing and
Services. 2014. p. 169-175.

28. G. Zhou, Q. Lan, and J. Chen, A Dynamic Metadata Equipotent
Subtree Partition Policy for Mass Storage System, in Japan-China
Joint Workshop. 2007, IEEE. p. 29-34.

763

