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Abstract—As the huge growth of mobile traffic amount,
conventional Radio Access Networks (RANs) suffer from high
capital and operating expenditures, especially when new cellular
standards are deployed. Software, and cloud RANs have been
proposed, but the stringent latency requirements e.g., 1 ms
transmission time interval, dictated by cellular networks is
difficult to satisfy. We first present a real software RAN testbed
based on an opensource LTE implementation. We also investigate
the issue of quality assurance when deploying such software
RANs in cloud. In particular, running software RANs in cloud
leads to high latency, which may violate the latency requirements.
We empirically study the problem of minimizing computational
and networking latencies in lightweight container cloud. Our
experiment results show the feasibility of running software RANs
in real-time container cloud. More specifically, a feasible solution
to host software RANs in cloud is to adopt lightweight containers
with real-time kernels and fast packet processing networking.

Index Terms—Containers, RAN, Latency, Testbed

I. INTRODUCTION

The global mobile traffic amount is expected to increase

from 52 million terabytes in 2015 to 173 million terabytes in

2018 [1]. Such a huge growth imposes two major challenges

on the existing Radio Access Networks (RANs). Next genera-

tion RANs have to: (i) offer higher bandwidth and (ii) consume

less energy. The development of next generation RANs, as

we witnessed, is an evolutionary process, which takes many

iterations before mature. However, traditional RAN implemen-

tations and deployments are hardware-dependent, which lack

for elasticity and incur high Capital Expenditure (CAPEX)

and Operation Expenditure (OPEX). One way to overcome the

limitations due to traditional, hardware, RANs is to implement

software RANs, which relieve telecom service providers from

repeatedly upgrading their equipment. It is well recognized

that the software RAN is the enabler of next generation cellular

networks [2].

While software RANs are more elastic, they are also more

computationally intensive because most computations are done

on general purpose processors. To be cost-effective, it has

been purposed to deploy software RANs in cloud, in order

to leverage its abundant and elastic resources. We refer to

software RANs in cloud as cloud RANs throughout this paper.

Realizing cloud RANs is no easy task, because of stringent

latency requirements of cellular networks. For example, the

LTE standards dictate a 1 ms transmission time interval [3]. To

fulfill such a latency requirement, we have to carefully divide

a cloud RAN into several software modules, and deploy indi-

vidual modules at heterogeneous cloud servers. For example,

delay sensitive processes are better put at edge cloud for lower

latency, while computational heavy process are better put at

data center for more horsepower. That is, quality assurance

provided by cloud is crucial to the success of cloud RANs. In

particular, both computational and networking latencies need

to be guaranteed before the cloud RANs become a reality.

In this paper, we study the problem of minimizing com-

putational and networking latencies among several virtualized

servers, so as to provide quality assurance in latency. Com-

putation and server virtualization can be done via full-fledged

Virtual Machines (VMs) or lightweight containers. While VMs

offer better protections, they also incur higher overhead and

may not be suitable to cloud RANs. Therefore, we adopt

containers and strive to minimize the latency by leveraging: (i)

real-time Linux kernel, which is key for fine-grained switching

among real-time applications (ii) Data Plane Development

Kit (DPDK), which is a framework for fast packet processing

in data plane applications [4]. More precisely, we build real

testbeds to quantify the performance of several real-time Linux

kernels and DPDK networking. Our extensive measurement

results reveal that hosting cloud RANs in real-time containers

cloud satisfies the latency requirements from next generation

RANs. Furthermore, we also set up a complete software RAN

using off-the-shelf hardware and opensource software. Our

end-to-end experiments show promising performance results.

Decomposing the software RAN into multiple modules and

deploying them in several containers of our real-time container

cloud is our on-going task.

II. RELATED WORK AND BACKGROUND

A. Cloud RANs in the Literature

As the cellular network technology evolves from

GPRS/EDGE, UMTS/HSPA, to LTE/LTE-A [5], base

stations sustain far more traffic than before. Studies propose

small cells [6] as a solution to rapid growing traffic coming

from the huge numbers of mobile devices. However, small

cells face various challenges on OPEX/CAPEX, interferences,

and mobility managements [7]. Higher OPEX/CAPEX

prevents telecoms from deploying small cells in larger scale.
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Cloud RANs aim for the balance between performance and

expense. Gudipati et al. [8] proposed SoftRAN, a logical,

software-defined centralized control plane for radio access net-

works. However, it does not performed centralized baseband

processing in cloud. FluidNet [9], [10] is a cloud RAN pro-

totype with a BaseBand Unit (BBU) pool partially supported

by DSP processors. It determines configurations that maxi-

mize the traffic sustainability under real-time requirements,

while optimizing the computing resource usage of BBU pool.

Sora [11] and BigStation [12] demonstrate the feasibility of

real-time processing of wireless networks, such as WiFi, on

commodity servers. CloudIQ [13] is the first work to run LTE

BBU on commodity servers with full-stack LTE software im-

plementation. It partitions base station instances into modules,

and schedules base station instances to meet their real-time

requirements with real-world workloads. PRAN [14] presents

a high-level architecture that puts L1/L2 processing of BBU

pool onto commodity servers. It enables flexible data paths and

efficient resource pooling. The aforementioned studies do not

capitalize the elasticity and scalability of cloud, nor quantify

the performance of cloud RAN on real infrastructure cloud,

such as Kubernetes and Openstack.

B. Container-Based Virtualization

Container-based virtualization becomes more and more pop-

ular because of its low system overhead and short launch

time compared to VMs. It is relatively lightweight since it

includes only necessary system libraries and binaries instead

of entire kernel. Container has demonstrated its strength on

computing [15], storage [16], and network emulation [17].

Linux Container (LXC) is the most well known one among

various container implementations. It provides an execution

environment with isolated system resources and its own file

system. Namespace is used for resource isolation, while

cgroup is used for process control. Recent research [15],

[18] conducts in-depth performance evaluation on Linpack,

memory, disk I/O, and networking. LXC demonstrates much

lower system overhead than other virtualization techniques.

Docker is a container-based platform which provides high-

level APIs that allows user to build, ship and run applications

in containers easily. Docker was released first based on LXC

technique, then using its own libcontainer library for Linux

kernel’s virtualization since version 0.9. Compare to plain

LXC, Docker accommodates high-level tools such as layered

file system (AUFS) and image registry for developers. For

application deployment, Docker provides a image registry for

users to push their own instances. We can deploy our applica-

tions, pack the instances as a service and push to the repository.

With Docker, we can build a simple virtualized environment,

pull and launch instances on-demand readily. With the rapid

growth of Docker, Google initiates Kubernetes to manage the

containerized applications in a clustered environment.

Kubernetes provides basic mechanisms to facilitate service

deployment and maintenance based on Docker containers. In

Kubernetes system, master servers manage the workloads in

the whole system, store configuration data of all instances, and

track resource utilization on each node. Minion servers will

run actual workloads, and are also responsible for network

configurations among containers. Kubernetes has four units:

Pod, Replication Controller, Service, and Label.

• Pod: Pod is the basic unit in Kubernetes environment. It

may contain one or more containers which are tightly

coupled. Containers in the same pod use the same

network namespace, which facilitates data sharing and

communication among each other.

• Replication Controller: Replication controller is respon-

sible over maintaining a desired number of copies. It

ensures that a specified number of replicas exist for

service recovery, and provides scaling and rolling updates

among replicas.

• Service: A service is an abstraction of real application

service that defines a set of backend containers and the

interface to access. Users can simply access from specific

IP and port, and the requests and redirect to appropriate

backends.

• Label: A label is a tag given by Kubernetes when

an instance is created. This tag helps administrators to

classify, organize, and monitor instances as a group.

III. CONSIDERED CLOUD RADIO ACCESS NETWORKS

A. Overview

We first deploy an opensource LTE implementation, Ope-

nAirInterface (OAI) [19] on general purpose processors, which

runs on Intel Linux. OAI is a developing project maintained

by EURECOM and consists of full stacks of LTE and 3GPP

standards. OAI implements the LTE architecture into two

major modules: (i) Evolved Node B (ENB) as the base station

and (ii) Evolved Packet Core (EPC), which is composed of

Serving Gateway (S-GW) and Packet Data Network Gateway

(P-GW) for data signal processing, Mobility Management

Entity (MME) for control signal processing, and Home Sub-

scriber Server (HSS) as the database. OAI needs an RF front

end to receive or transmit the LTE signals. Both Universal
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Fig. 1. Software RAN: (a) end-to-end architecture and (b) network topology.
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Software Radio Peripheral (USRP) B210 USB board and Ex-

pressMIMO2 PCI board made by EURECOM are compatible

to OAI.

The features of OAI implementations are listed as follows:

• Implementation of L1/L2, Radio Link Control (RLC),

Packet Data Convergence Protocol (PDCP) and Radio

Resource Control (RRC).

• Protocol stacks from the physical layer to the networking

layer.

• FDD and TDD modes supports.

• Built-in emulator and simulator.

• IoT supports, such as: Contention-based Channel Access

(CBA) for M2M communications.

B. Testbed

Fig. 1(a) shows the architecture of our testbed. The OAI is

deployed on the commodity PCs. A laptop computer equipped

with an LTE dongle acts as the User Equipment (UE). We

separate the OAI into ENB, EPC, and HSS components

and deploy these components on different physical machines.

Each physical machine comes with Intel i7-4790 CPU and

4 GB RAM. The kernel is 3.18.11 with real-time patch.

We turn off the power saving mode and maximize the CPU

frequency for further performance improvement. As shown in

Fig. 1(b), the ENB, EPC and HSS components are connected

via Ethernet and the RF front end is USRP B210. The UE is a

Hauwei E3372 LTE dongle with a configurable SIM card for

connecting to the LTE software modem.

Once UE sets up RRC connection with ENB, the au-

thentication procedure is handled by MME and HSS. If the

information of UE is well configured in the HSS, UE can

attach to MME via the ENB unit. Then, the Evolved Packet

System (EPS) bearer for the UE and data flow are established.

In this setup, we have verified the connection of OAI and

the authentication procedure on MME. After the success of

authentication, the data transmission is established and the UE

has access to the Internet via our testbed.

C. Limitations

Our testbed exploits a software RAN to set up a LTE

base station and deploy a core network on the PCs with

general purpose processors. We measure the CPU usage and

the network latency on our testbed to quantify its performance.

Preliminary results show that the CPU usage is 52% and the

throughput is 0.8 Mbps on average when we run the real LTE

soft modem to download a 100 MB file from a remote file

server (25 resource blocks for downlink). When we change

the OS to the real-time kernel, the CPU usage increases for

15%. Moreover, the ping latency to our network gateway is 32

ms on average which needs further improvement for the next

generation RANs. We optimize the latency in the next section

to cope with the limitations.

IV. LATENCY OPTIMIZATION

We build a real-time cloud using Docker for containers,

Kubernetes for containerized application management, and In-

tel’s Data Plane Development Kit (DPDK) for low networking

latency. We then optimize the container cloud in two aspects:

computation and networking below.

A. Computations: Docker with Real-time Kernel

RANs require robust real-time processing capability, which

are mostly handled by dedicated Digital Signal Processing

(DSP) processors. Cloud RANs, however, rely on general

purpose processors supported by real-time kernels. There are

two types of real-time kernels: hard real-time kernel and soft

real-time kernel. Hard real-time kernel guarantees that the

requested critical tasks completed in time even under the worst

system loads. The real-time guarantee comes from bounding

all the delays in the system for the tasks. Soft real-time kernel

gives a critical task higher priority than other tasks until it

is completed. It reduces average latency but it may not be

completed on time. We select two real-time kernels for our

cloud RAN environment: preempt rt kernel (preemptive real-

time kernel for Linux) as a hard real-time kernel and low-

latency kernel as soft real-time kernel.

Our preempt rt kernel is built by applying Ingo Mol-

nar’s real-time preemption patch and tuning real-time kernel

attributes related with lower latency. It makes the locking

primitives in kernel preemptible with rtmutexes so that higher

priority tasks can be preempted in the user space itself rather

than waiting for the kernel space. It should be noted that

the preempt rt kernel is tuned with many real-time kernel

attributes to provide low latency in the system. On the other

hand, we apply the low-latency kernel, which is available on

the Ubuntu repository. It achieves low latency in a different

way compared to the preempt rt kernel.

We use a SuperMicro server for the entire experiments.

The server has 128GB RAM and 24 CPUs. Each CPU is

an Intel Xeon CPU E5-2620 v3 with frequency 2.4 GHz.

We have installed Ubuntu Server 14.04 with a stock kernel

generic-3.13. Both preemptive-rt kernel and low latency kernel

are installed on our server. Some kernel parameters are fine

tuned in preempt rt kernel to achieve lower latency. The

experiments are performed on three different type of kernel:

generic-3.18.11, preempt rt-3.18.11, and low latency-3.18.11.

The latencies are compared among the physical machines,

containers, and VMs with libvirt manager.

Cylictest [20] benchmark is used to evaluate latency per-

formance, such as maximum and average latencies, in our

underlying system. We are interested in the maximum latency

so that we can estimate the performance of the worse case. We

choose First-In-First-Out among several scheduling policies in

the kernel since it gives better latency than others. We have

run 500,000 cycles of Cyclictest benchmark to evaluate our

latency. The experiment is performed on two scenarios: one is

without system load and another is with system load. We use

stress [21] to generate workload by forking worker processes

until the system reaches 100% utilization.

As discussed above about the experimental environment and

the proposed scenarios, the results are the maximum latencies

in microseconds that are compared between three different
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Fig. 2. Cyclictest Benchmark with 500,000 cycles: (a) without and (b) with
system load.

types of system on three types of kernels in Fig. 2. The

observations are as stated below:

• Preempt rt kernel improves latencies on Docker and

physical machines under system loads with 13.9 times

and 7.8 times compared to generic kernel, respectively.

It also achieves the lowest latency than other kernels as

shown in Fig. 2(b).

• Nevertheless, it fails to show its strength on real-time pro-

cessing without system load, so very little improvement

is shown in Fig. 2(a) for this circumstance eventually.

• Among all the systems, the physical machine helps in

achieving the lowest latency which is generally expected

and the docker containers give the second lowest latency.

• The latencies in VMs are more on the higher side.

Comparing it to the other two systems with docker and

physical machines, the latency in virtual machine is really

high.

Furthermore, if we upgrade the hardware configurations of

the experimental environment, there are some key observations

made. Testing it with different environments, docker contain-

ers achieve shorter latency compared to VMs and physical

machines.

There is a high demand of a real-time environment for cloud

RANs and more often there will be high system load for

heavy processing. After comparing and analyzing the latencies,

preemptive rt achieves the lowest latency of 34 microseconds

under heavy system load.

It’s highly demanding to tackle with real-time workloads

in cloud RANs. These workload can be represented by the

workload generated by stress. Therefore, we compare latencies

between docker and physical machines which stands for native

performance with fully occupied system load. The difference

between Docker and physical machines is only 2 μs with

preempt rt kernel in Fig. 2(b). Consequently, we can conclude

that Docker achieves near-native performance of 34 μs latency,

while the latencies in virtual machine are way too high.
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Fig. 3. Architecture of Intel Dataplane Development Kit (DPDK).

B. Networks: Kubernetes with DPDK

Packets are transferred to main memory from Network

Interface Card (NIC), then subsequent processing is handled

by Linux network stack. In general, network performance

is mainly bounded by CPU-cycles, memory allocation, and

number of context switches between user and kernel mode.

Simultaneous hardware accesses on cloud infrastructure in-

crease network latencies. To overcome the limitations of Linux

network stack for faster packet processing, several techniques

are proposed.

First, Netmap [22], an opensource project, successfully

reduces three types of packet processing overhead: per-packet

dynamic memory allocations, redundant system calls, and

multi-memory copies. Moreover, Netmap provides its own

software-based mechanism to protect shared memory from

kernel crash. Second, PF RING project [23] proposes a new

type of network socket for faster packet capture under more

efficient CPU usage. It uses Linux NAPI drivers to poll packets

from NIC to PF RING circular buffer. Userspace applications

can read packets directly form the circular buffer. PF RING

provides useful features such as memory pre-allocation for

packet buffers, parallel direct paths using memory mapping,
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and the integration with PF RING Direct NIC Access mod-

ule [24], which directly maps NIC memories to userspace.
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Fig. 4. Platform architecture: DPDK-enabled Kubernetes based on real-time
kernel.
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Fig. 5. DPDK-enabled OpenVSwitch network architecture in Kubernetes
platform.

Third, Intel Data Plane Development Kit (DPDK) [4], [25]

enables fast packet processing for data plane applications.

In DPDK architecture shown in Fig. 3, several libraries are

provided to carry basic functions of Linux network stack, and

the optimization for memory/buffer allocation and mapping.

DPDK-enabled OpenVSwitch supports network flow manage-

ment and reduces network latency. By adapting DPDK in our

platform, the massive network traffics can be handled through

Environment Abstraction Layer to have fast access to hardware

and memory. However, most of the fast packet processing

frameworks provides very basic network flow management

utility, slightly advanced functionalities, such as IP forwarding,

are not supported. Openflow, the de facto standard of Software

Define Networks (SDN), solves the network flow management

issues with DPDK compatibility. Therefore, we chose DPDK-

enabled OpenVSwitch in our testbed.

DPDK uses igb uio module to bind a NIC, which makes

the NIC invisible to Linux kernel. Therefore, we need NIC for

Internet access and cross-node communication, respectively.

We use another testbed for network latency experiments,

which contains two T-win servers with Intel Xeon L5640

CPU and 24GB RAM. It runs 64-bits Ubuntu 14.04 with

preemptive real-time kernel 3.18. Servers are equipped with

DPDK-compatible NIC and they are connected via Ethernet.

We install Kubernetes 1.0, OpenVSwitch 2.0.2, and DPDK
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Fig. 6. Network performance in containerized environments over different
network architectures: (a) latency and (b) throughput.

1.7 for our testbed, as shown in Fig. 4. As for networking

mechanism, Kubernetes uses flannel, a generic overlay net-

work, which will allocate a subnet for each host, encapsulate

IP fragments in a UDP packet to traverse packet between

hosts. We replaced flannel with DPDK-enabled OpenVSwitch

bridges to attain better performance. The network architecture

is shown in Fig. 5, DPDK is enabled between ovs-br and eth1

for acceleration while IP routing is simply achieved by routing

tables. Kubernetes pods with single container are created to

evaluate the networking performance of our platform.

To quantify the networking performance of our platform,

Fig. 6 plots the performance of latency and throughput. Several

observations can be made in this figure. For docker containers

with plain OpenVSwitch bridge, network latency is about

0.043 ms for single machine and 0.313 ms for containers

on different hosts. With Kubernetes involved using original

flannel for networking, the latency is about 0.048 ms in single

machine, and cross-host communication increased to 0.647 ms

due to multiple-layered NATs. In our platform, DPDK-enabled

OpenVSwitch is adopted in Kubernetes, which achieves the

best performance of 0.044 ms for single-host and 0.157 ms

for cross-host networking. Last, the network throughput is

pretty consistent across all network architectures. In summary,
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DPDK reduces latency by up to 2 times compared to plain

OpenVSwitch architecture and the same throughput as other

architectures. We can conclude that DPDK is indispensable

for building a low network latency cloud platform.
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Fig. 7. Our work-in-progress cloud RAN deployment scenario.

V. CONCLUSION AND FUTURE WORK

To satisfy the strict latency demand of running software

RANs in cloud, we proposed two approaches to reduce the

latency: (i) fine-tuned real-time kernel for processing latency

optimization and (ii) docker with DPDK for networking la-

tency optimization. The experiment results clearly demonstrate

the effectiveness of our approaches to latency optimization.

The resulting real-time container cloud is an enabler of various

real-time Network Function Virtualization (NFV) services,

including cloud RANs illustrated in Fig. 7. We plan to deploy

each software component (of this figure) in a container for

flexible resource provisioning and dynamic relocation. For

a centralized solution [26], we will construct several ENB

services to act as a resource pool managed by Kubernetes. If

network congestion occurs, we can easily deploy more ENB

services in the pool to provide quality assurance, and achieve

high energy efficiency by dynamically allocating the resources.

Furthermore, if an ENB fails, Kubernetes can recover the

service via Replication Controller.

We presented a real-time container cloud for real-time NFV

services. Several enhancements may be applied to our real-

time container cloud for even lower latency. For example,

we plan to implement deadline sensitive processes using

OpenCL to leverage additional GPU horsepower. We also plan

to integrate SDNs with our container cloud to dynamically

allocate the resources of wired networks for end-to-end quality

assurance. Last, splinting soft RAN into multiple components

in distributed containers leads to additional overhead and low

balancing concerns, we will need to be rigorously studied.
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