
Community-Based M2M Framework using Smart/HetNet Gateways

for Internet of Things

Yi-Lan Lin Wu-Chun Chung Cheng-Hsin Hsu Yeh-Ching Chung

Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan

Email: {len08225, wcchung}@sslab.cs.nthu.edu.tw, {chsu, ychung}@cs.nthu.edu.tw

Abstract—In order to manage the Internet of things in a flexible
and efficient way, this paper proposes a novel M2M framework
using smart/HetNet gateways. Our approach is not only
compatible to the M2M standard, but also enables the
community-based coordination among gateways and devices.
With smart and HetNet gateways, various types of requirements
and applications can be fulfilled and handled at a local region.
Accordingly, unnecessary network usage is avoided so as to
reduce the traffic loads in mobile networks. We also implement
a prototype to sustain an application scenario of IoT. In our
prototype, the lamp is automatically switched on when a human
face is detected. The demonstration shows that our system is
practical and supports the subscription and notification in a
community. Finally, experimental results reveal that some basic
procedures can benefit from the shorter time and less uplink
traffic if devices involved in an application are within the same
region.

Keywords. Machine to machine communications; internet of
things; iot gateway; community-based; cloud computing

I. INTRODUCTION

As smart devices become a popular topic, more attentions

are paid on making Internet of Things (IoT) or wearable

devices be intelligent. Some smart devices can directly

connect to the Internet and some legacy devices need to

interact with an IoT gateway, e.g., a smart phone or a smart

hub, for the Internet access. More applications might further

require communications among IoT devices or between IoT

devices and an IoT gateway. The device communications

could be either wired or wireless connections. The wired

connections could be over Ethernet, power line, and etc. and

the wireless connections include Wi-Fi, Bluetooth, ZigBee,

and etc. Due to the heterogeneity of connection technologies,

how to efficiently leverage IoT devices is an important issue.

On the other hand, Machine to Machine (M2M) [1]

applications are also getting more attentions for developing

next generation mobile networks. A large amount of network

communications coming from a huge growth of IoT devices

will turn the mobile system into a bottleneck, e.g., resulting

in high response time for IoT access. One solution is to

upgrade the channel capacity or propose efficient scheduling

and allocation algorithms for wireless communications to

support massive network traffics. An alternative way is to

fundamentally design a network stack for the coordination of

large-scale IoT devices. For example, the core management

is deployed on the cloud data center behind the mobile

network while the M2M gateways are deployed on the edge

to bridge the IoT devices. In such an environment, how these

devices can communicate with each other and self-organize

without human interactions are much important. Accordingly,

providing a flexible framework is necessary to efficiently

manage the IoT devices.

The European Telecommunications Standards Institute

(ETSI) organization released some standards (i.e.,

smartM2M, oneM2M) [2] to define a set of message

protocols for device registration to the gateway and also for

information query or data acquirement from the gateways or

the devices. OM2M [3] is an open source project and an

ETSI-compliant M2M service platform. To support large

amount of communications, OM2M exploits Publish and

Subscribe (Pub/Sub), which is a loose-coupled scheme for

data exchanges. Devices can subscribe data on the Service

Capability Layer (SCL) rather than directly request the

information from the target devices. When the new data is

published from the target devices to the M2M gateway, M2M

gateway notifies all devices which subscribed the

information before. To avoid processing a large amount of

requests, the Pub/Sub scheme provides an event-based

interaction among all gateways and devices. IoT devices only

need to publish data to M2M gateways or wait for the

notification they have subscribed. Accordingly, M2M

gateways play a major role to M2M applications.

To tackle aforementioned issues, this paper presents a

comprehensive design from two aspects. Firstly, to elastically

coordinate IoT devices for different types of applications, we

proposes a novel framework based on OM2M and cloud

computing. Secondly, to leverage various applications and

heterogeneous wireless communications, we introduce two

types of M2M gateways for our proposed framework. The

main idea is to organize IoT devices into a region and group

a set of regions into a community, instead of directly

connecting all SCL to the Internet.

To implement a prototype system, we adopt Raspberry Pi,

a single-board computer, to develop the gateway and the

device. A heterogeneous network gateway (HetNet GW) is

designed to connect devices with different types of

connection technologies including Wi-Fi, Bluetooth, and

Ethernet connections. We also adopt the minicomputer as a

Smart GW to coordinate multiple HetNet GWs and connect

to the Internet via mobile networks (e.g., 4G LTE). We

further implement the redirecting mechanism based on

2015 IEEE International Conference on Data Science and Data Intensive Systems

978-1-5090-0214-6/15 $31.00 © 2015 IEEE

DOI 10.1109/DSDIS.2015.19

688

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 06:10:16 UTC from IEEE Xplore. Restrictions apply.

OM2M for gateways to enable the registration with each

other so that the messages can be exchanged from a region to

another one. Some primitive procedures are also enhanced for

devices to interact with the SCL, including registration,

discovery, subscribe, and notification.

Our proposed framework adopts the Smart GW as a

region master to manage devices within the same region and

reduce the uplink traffic to mobile networks. On the other

hand, the Smart GW supplies higher computing capability

and larger storage space that ordinary IoT devices may not

have. Our system is able to run locality-based computational

work and store more data, e.g., streaming and processing

video files. The experiments present the performance of basic

procedures and the benefits to a concrete IoT application. The

experiment results show that we can avoid unnecessary

uplink traffics by offloading computing tasks of applications

from cloud to the local gateways.
The rest of this paper is organized as follows. Section II

reviews the related works while Section III presents the
framework design and implementations. Section IV describes
message flows and application scenarios based on our
prototype. Experimental results are presented in Section V,
and finally, conclusion remarks and future works are
summarized in Section VI.

II. RELATED WORK

M2M communications have been widely employed to data
communications without or with limited human interventions
among various devices [4]. These devices includes computers,
embedded processors, smart sensors or actuators, and mobile
devices, etc. Future M2M ecosystems will be complex and
applied into many industries, including telecom and
electronics [5]. The evolution of network architectures enables
the mass deployment of M2M services, but the salient features
of M2M traffic that may not be efficiently supported by
current standards. Besides, M2M solutions fulfill very specific
requirements that existing technologies are unable to
complementary support. So, industry standards are required
for M2M markets to sustain an explosive number of devices.

To solve a highly vertical fragmentation of current M2M
markets and the lack of M2M standards, the ETSI released a
set of specifications for a common M2M service platform [6].
The standard defines a functional architecture with a set of
service capabilities for the M2M deployment on top of
connectivity layers deployed in different domains. Each
physical equipment of this architecture is represented as an
instance of a SCL and a corresponding entity in the SCL is
reachable by each device, gateways, and the network. The
abstract model of each domain is a collection of Device SCL
(DSCL), Gateway SCL (GSCL), and Network SCL (NSCL)
[7]. Moreover, the resources of IoT applications are modeled
as a hierarchical tree under each SCL instance which is
responsible for corresponding device domain, gateway
domain, and network domain.

OM2M is an ETSI-compliant M2M service platform
which supplies the software to enable the function of SCL.
OM2M provides RESTful APIs to enhance interoperations
with SCL. A modular architecture is proposed running on top

of an OSGi [8] layer, making it highly extensible via plugins.
OM2M also enables the bindings of multiple communication
protocols, the reuse of existing management mechanisms for
remote devices, and the interworking with legacy devices.

To make the M2M system work, we need a M2M gateway
connecting to IoT devices. This paper does not focus on
improving the network performance of M2M gateway
because there are no standard protocols for network
communications among IoT devices. Actually, physical layer
protocols may be interfered with each other and many works
tried to overcome this issue. In [9], the authors proposes a
heterogeneous IoT gateway based on dynamic priority
scheduling algorithm to address the problem of data
concurrency and improve the real-time performance. The
proposed gateway realizes data conversion and transformation
of RS485, Bluetooth, CAN, ZigBee, and GSM. The work in
[10] proposes a novel service to allow real time interaction
between mobile clients and smart/legacy things (sensors and
actuators) via a wireless gateway. Furthermore, the M2M
gateway in some scenarios acts as a data aggregator. Data
aggregation is categorized into filtering, statistical calculation,
and concatenation [11].

Different from prior works, this paper focuses on
proposing a community-based coordination framework which
is compatible to M2M architecture. Two kinds of gateways
are also proposed to support different types of applications.
The HetNet GW is able to leverage heterogeneous wireless
communications while the Smart GW is equipped with more
computing capability and storage space to consolidate other
gateways and devices into a region. These gateways are all
controllable and manageable from remote side. Moreover, the
complicated application can be processed locally rather than
push all data to the server for processing.

III. DESIGN AND IMPLEMENTATIONS

This section describes the design of a community-based
coordination framework and how to integrate two types of our
M2M gateways into the proposed framework.

A. Community-Based M2M Framework

Fig. 1. Illustration of community-based framework

689

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 06:10:16 UTC from IEEE Xplore. Restrictions apply.

To prevent massive traffics transmitted from devices and
gateways to the cloud servers, we design a two-tier framework
to avoid unnecessary communication messages to the mobile
network. Fig. 1 illustrates our framework. A community
consists of multiple regions in which each region is composed
of one Smart GW, a set of HetNet GWs are connected to the
Smart GW, and a set of devices are connected to the HetNet
GW. The division of community and region is pre-defined in
this work. A region could be a place or a house. For a building,
a region could be a lobby or a floor. In this case, the devices
at different regions may need to communicate with each other.
For example, a Camera device in the lobby region will notify
the alarm in the office region. As a result, a community means
an application running on cloud servers may need to
consolidate IoT devices from different regions.

OM2M originally supplies NSCL for the network domain
and GSCL for the gateway domain. The difference between
these two SCLs is the relationship of registration, i.e., GSCL
registers to NSCL. A set of GSCLs will be nodes of the
resource tree of a NSCL. The application can use RESTful
APIs to find resources from one NSCL to multiple GSCLs.
OM2M provides a configuration file to specify the role of a
NSCL or a GSCL with its corresponding NSCL. Messages
among SCLs need a redirecting function for the forwarding.
The latest released OM2M only supports to redirect a request
either from NSCL to GSCL or from GSCL to its sibling GSCL.
In our framework, a region is composed of one Smart GW and
a set of HetNet GWs. We have to modify the redirecting
function to meet our scenario.

Our novel framework is aligned with the hierarchy of
NSCL and GSCL and try to extend the SCL in gateway
domain. Fig. 2 illustrates an overview of our M2M framework.
We define the SCL running on the edge of a region as Region
SCL (RSCL). NSCL acts as a global service entrance on cloud.
GSCL is running on HetNet GW and registers to RSCL
running on Smart GW. Device in the same region is able to
register to any HetNet GW within the wireless coverage.
GSCL can communicate with RSCL via wireless networks
within a region and RSCL communicates with NSCL via LTE
networks within a community. Some applications such as
smart home or smart classroom can be deployed on our Smart
GW and not all data needs to be sent back to cloud servers.

An overview of our prototype components for a single
region is shown in Fig. 3. In the network domain, the NSCL
is hosting on a virtual machine (VM) in a cloud. The VM is
associated with a public IP and acts as the entrance of M2M
service. In the gateway domain, all Smart GWs are connected
to NSCL over the mobile network. The IP address for Smart
GW is allocated by the telecom system, which is usually not a
public address on the Internet. Therefore, we exploit the
tunnel technique for NSCL to connect the RSCL. The
application server on cloud can query the information through
NSCL and redirect the request to the gateway domain and
finally retrieve the result from the device domain. For the
device domain, we develop our semantic API for single-board
devices to interact with SCL. When the application on the
board actives, the service discovers all devices involved in this
application. Devices may be located under the same gateway
or in different gateways. M2M communications in the former
cast can use the local IP address for notification messages. For
the latter case, communications need GSCL or RSCL to
further redirect the requests.

B. Smart/HetNet GW
This paper introduces two types of M2M gateways for a

two-tier architecture. The HetNet GW is running with GSCL
and acts as an ordinary M2M gateway, but not directly
connecting to the Internet. In our framework, the HetNet GW
is developed to leverage heterogeneous wireless
communications and extend the service scale of a region for
device management. We adopt the ARM-based single-board
computer with embedded Linux OS to implement our HetNet
GW. Both Wi-Fi and Bluetooth dongles are plugged to the
HetNet GW. The HOSTAPD is compiled to act as an access
point and the PAND is installed to act as Bluetooth NAP. The
OpenvSwitch is further applied to bridge the WLAN interface
and BNEP interface. We setup the DNSMASQ as the DNS
and DHCP server. After Wi-Fi and Bluetooth are bound to the
same bridge, we can assign IP addresses to these wireless
interfaces in Linux. For the implementation of the device,
WPA Supplicant is associated to Wi-Fi access point and
PAND is paired to Bluetooth NAP on HetNet GW.

On the other hand, the Smart GW is running with RSCL
to coordinate a set of HetNet GWs within a region and bridge

Fig. 2. Novel M2M framework with proposed Region SCL

Fig. 3. Overview of prototype components for a single region

690

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 06:10:16 UTC from IEEE Xplore. Restrictions apply.

the internal networking to the Internet via 4G LTE. The
application running within a region is able to access RSCL on
Smart GW rather than accessing the NSCL on cloud. We
implement our Smart GW based on a minicomputer with
commodity Intel Linux. Both Wi-Fi and 4G dongles are
plugged to Smart GW, in which the 4G dongle is equipped
with a configurable SIM card for LTE network connection.
Since Smart GW has an advanced CPU and storage capability
than HetNet GW, some complicated works or applications can
be locally processing on Smart GW, e.g., face detection
program and data aggregation.

With the design of Smart GW and HetNet GW, our
prototype not only supports offloading computation from
cloud to the local region, but also limits the forwarding
messages within a region. As a result, the traffic load can be
eliminated so as to save the bandwidth consumption for
mobile networks.

IV. MESSAGE FLOWS AND OPERATIONS

This section describes message flows for basic procedures
within a region or within a community. Then, we introduce
how to apply these operations into application scenarios.

A. Basic Flows and Operations
The basic flows include publish, subscribe and notify

operations. When devices at the same region or in different
regions, the flow operations of publish, subscribe, and
notification are different. Different SCL domains handle the
message flow in different ways, which will affect the uplink
traffic to the mobile network.

1) Within a Regison
In some applications such as smart home, appliances in a

house are set up and deployed within a region. If all devices
are in the same region, the application can locate device
resources from the RSCL. For the message forwarding, the
device can directly use local IP address to connect other
devices within the same GSCL; otherwise, GSCL redirects the
message to other GSCL through RSCL.

We depict the basic flows for normal publish, subscribe,
and notification operations within a region in Fig. 4. Fig. 5
presents the corresponding flowchart. Initially, the step 0, we
need to check devices are within a region or not by requesting
NSCL or preconfiguring in the application. After the actuator
retrieves the location of desired devices, a discovery

Fig. 4. Basic flows within a region

Fig. 5. Flowchart for basic flows within a region

Fig. 6. Basic flows within a community

Fig. 7. Flowchart for basic flows within a community

691

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 06:10:16 UTC from IEEE Xplore. Restrictions apply.

procedure is triggered to the RSCL. In step 1, the subscriber
locates the publisher and issue the subscription to GSCLs in
step 2. In step 3, the publisher posts new data to its GSCL
periodically. Then, GSCL looks up the location of subscriber
and sends the notification message. In step 4, if both publisher
and subscriber are under the same HetNet GW, GSCL can
easily send packets via local IP address. If the publisher and
subscriber are located in different HetNet GWs, the
notification message is forwarded by RSCL. In this case, we
need to create a target ID for the subscriber, and then RSCL
will redirect the message.

2) Within a Community
In some applications such as surveillance system, the

camera and alarm devices may be distributed across multiple
regions. When devices are located in multiple regions, the
message has to be redirected by NSCL. That is, NSCL and
RSCL will notify the devices according to the target ID.

Fig. 6 depicts basic flows when messages are redirecting
within a community and Fig. 7 presents the corresponding
flowchart. At first, in step 1, the subscriber issues the
discovery message to NSCL and NSCL forwards the message
to each region in order to locate the desired publisher. Then,
the subscriber collects the device index of regions and
subscribe the desired devices by filtering target IDs in step 2.

After the publisher posts new date to its GSCL in step 3, the
notification message is forwarded by SCL, and redirected by
NSCL to another region in step 4. Since the communication
between NSCL and RSCL is 4G LTE, the forwarding time
across multiple regions will be affected by the network
condition.

B. Application Flows and Operations
Originally, the data is uploaded to sever and computed by

the application server. The application server then notifies the
result to subscribers. In our framework, the application can be
executed on Smart GW. This subsection describes the
advanced flows with an application running on the gateway
side.

1) Within a Region
When the desired devices and an application are located in

the same region, all requests are forwarding by RSCL and
GSCL within a region. In Fig. 8 and Fig. 9, we show the flows
of publish, subscribe, and notify with the application on Smart
GW. In step 1, appliances create and subscribe a container on
GSCL to save data on the HetNet GW. When the sensor
uploads data to Smart GW in step 2, the application will
process the data in step 3 and discover all subscribers within
the region in step 4. After filtering the container ID of

Fig. 8. Application flow on Smart GW within a region

Fig. 9. Flowchart for application on Smart GW within a region

Fig. 10. Application flow on Smart GW within a community

Fig. 11. Flowchart for application on Smart GW within a

community

692

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 06:10:16 UTC from IEEE Xplore. Restrictions apply.

subscribers they ever issued the request, the application posts
the result to corresponding containers on GSCL in step 5.
Finally, GSCLs send the notification to appliances in step 6.

2) Within a Community
If the sensor and the appliance are located in different

regions, the messages will be redirected by NSCL. In Fig. 10
and Fig. 11, we show the advanced flows when an application
runs on Smart GW and the desired devices are located in
different regions. In step 1, the appliance creates and
subscribes a container on GSCL to save data on the HetNet
GW. When the sensor uploads data to its Smart GW in step 2,
the application preprocess the data in step 3 and discover the
subscribers within the community in step 4. After filtering the
container ID of all subscribers, the application posts the
computing result to each subscribed container in step 5. Once
GSCL receives the data on the container, GSCL sends the
notification to appliance in step 6. This scenario shows that
the devices may be deployed in multiple regions and the
discovery procedure is necessary to look up all regions within
the community. Thus, the uplink/downlink between RSCLs
and NSCL will increase traffic loads to mobile networks.

V. EXPERIMENTS AND RESULTS

This section presents a series of performance evaluations
for the proposed community-based M2M framework. In
experiments, we consider a community composed of two
regions. The time of basic procedures are calculated for the
request within a region and for the request within a community,
including discovery time, subscription time, and notification
time. Furthermore, we evaluate the realistic performance
when applying our approach into a real scenario.

A. Testbed
Our prototype is set up from the network domain to the

gateway and device domains. The cloud platform is built
based on OpenStack [12]. A VM is launched on cloud to run
the NSCL. The VM is equipped with single core CPU, 2 GB
RAM, and 20 GB disk space. The operating system of the VM
is Ubuntu 14.04. A public IP is associated with the NSCL VM
for connecting M2M services over the Internet. The Smart
GW is equipped with quad core Intel Core i3 CPU, 4 GB
RAM, and 1 TB hard disk. The operating system is Ubuntu

15.04. The Smart GW connects to commercial LTE network
operated by Taiwan Chunghwa Telecom with a HUAWEI
E3276 4G dongle and also provides 802.11n Wi-Fi for
communicating with HetNet GWs. The HetNet GW is
developed based on a Raspberry Pi Model B+ and installed
with the Raspbian operating system. The HetNet GW is
equipped with 700 MHz single-core ARM1176JZF-S CPU,
512 MB RAM, and 16 GB SD card. Both 802.11n Wi-Fi and
Bluetooth NAP are also supplied for heterogeneous wireless
connections. The device is also a Raspberry Pi Model B+ and
connects to HetNet GW via either Wi-Fi or Bluetooth. All the
specs of each component are listed in Table 1.

Our testbed is composed of one NSCL, two RSCLs, and
eight GSCLs. Two RSCLs running on different Smart GWs
register to the NSCL VM on cloud and a half of GSCLs
running on different HetNet GWs register to one RSCL.
Network connections between NSCL and RSCL is 4G LTE
while that between RSCL and GSCL or between GSCL and
devices are wireless communications. More specifically, the
Smart GW enables the Wi-Fi connection for HetNet GWs and
the HetNet GW enables Wi-Fi or Bluetooth connections for
devices. RSCL and GSCL have their local IP networks for the
access in the same region.

B. Experimental Results
This subsection presents experimental results about the

performance of basic procedures and the performance after
applying a scenario.

1) Time for Discovery

Table 1. Spec of server, gateway, and device

Server Smart

GW
HetNet

GW
Device

CPU 1 core 4 core 1 core 1 core

Ram 2 GB 4 GB 512 MB 512 MB

Disk 20 GB 1 TB 16 GB 16 GB

Network Wired
Wi-Fi,

Bluetooth,
4G LTE

Wi-Fi,
Bluetooth

Wi-Fi or
Bluetooth

Fig. 12. Discovery time within a region and a community

Fig. 13. Uplink traffics for discovery within a community

693

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 06:10:16 UTC from IEEE Xplore. Restrictions apply.

The discovery time for filtering a number of demanded
devices is evaluated as follows. Since each device has its
device ID, we generate 400 items of the device information
distributed among eight GSCLs for the experiments. In Fig.
12, the number of desired devices is requested from 20 to 100.
The discovery procedure will get the whole index of GSCL,
so the number of devices does not affect the discovery time.
However, the discovery time will be different if the discovery
scale involves the same region or cross two regions of a
community. Experimental results show that the discovery
time is around 5 seconds and around 7 seconds when filtering
the same set of devices within a region and within a
community, respectively. Fig. 13 further depicts the uplink
traffic of the discovery procedure within a community. The
sum of total packets and the traffics consuming the LTE
network are around 348 packets and 83 KB traffics.

2) Time for Subscription and Notification
The time of subscription and notification operations are

evaluated respectively in a region and in a community. We
sequentially test five times of each subscription and
notification procedure. The subscription time is calculated by
locating the devices and registering the subscription. The
results shown in Fig. 14 depict that the improved performance
is similar to the discovery time. The subscription time within
a region is around 6 seconds and that time within a community
is around 8 seconds. The performance of notification time is
shown in Fig. 15 in which all the notification procedures

within a region takes around 1 second while that procedures
within a community takes from 1.705 second to 3.175 seconds.
Besides, the time within a region is smooth, but the time
within a community is affected by the LTE network condition.

C. Application Scenario
To prove our approach is feasible, a scenario of smart

home application is introduced and evaluated in this
subsection. The appliance creates and monitors a container on
gateway and the sensor uploads data to application on Smart
GW. We deploy one device with the camera module on
Raspberry Pi to act as an IP cam. The MJPG-streamer [13] is
also adopted to stream the frames and save as a video file on
the Smart GW. On another device, we use the GPIO to
connect an LED to be a lamp. We implement the client
software for turning on/off the lamp once receives the
notification from SCL.

An application is developed on Smart GW to catch the
streaming frames and detect a human face of each frame using
OpenCV library. The LED device registers to a GSCL and
waits for future notification from GSCL. Then, the application
discovers the location of LED device and creates new data on
corresponding GSCL if human faces were detected. When
GSCL receives the new data, GSCL notifies the LED device
to turn on the light.

Based on this scenario, we evaluate the performance of
startup time for the LED device within a region and within a
community. When the device starts up, the LED device firstly

Fig. 14. Subscription time within a region and a community

Fig. 15. Notification time within a region and a community

Fig. 16. Device startup time within a region and a community

Fig. 17. Uplink traffics for device startup within a community

694

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 06:10:16 UTC from IEEE Xplore. Restrictions apply.

discover whether other devices have the same device ID and
remove them. Then, the LED device creates a new container
for storing the data on GSCL and perform the subscription. In
Fig. 16, the startup time of LED device takes around 16.873
seconds within a region and around 18.345 seconds within a
community. The performance of uplink traffics for the
scenario within a community is also presented. In Fig. 17,
when the device startup is processed within a community, the
traffic load of data communications passing through the LTE
network is around 93 KB. We find that the discovery time
affects the application startup and the uplink traffic is saved if
the process is completed within a region.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we introduce a novel community-based
M2M framework. To efficiently manage devices, we further
propose Smart GW and HetNet GW in a region. The Smart
GW supplies more computing capabilities and larger storage
spaces for coordinating IoT devices in a region or cross
multiple regions of a community. Some complicated tasks and
more data can be processed within a region so as to reduce the
uplink traffic. Besides, our prototype can be deployed
anywhere only if the mobile communications (e.g., 4G LTE)
to a base station are available.

The experiments present preliminary results of basic
procedures and application operations based in our prototype
system. When devices involved in an application are all
located in a region, the time of basic procedures can be
improved. That is because our approaches reduce the needs of
data transfers over mobile networks. If more regions are
allocated in different locations, the variation of time will
dramatically affect the performance of an application.
Although the scales of regions and community are not large
enough to represent future IoT environments, our proof-of-
concept prototype system sheds some lights on opportunities
of future development on the proposed framework.

In particular, this paper can be extended in several
dimensions for the future works. First, deploying our
prototype systems to more applications and more users will
certainly lead us to many practical research problems. Second,
the larger deployments will result in larger datasets from IoT
devices. These datasets can be used to study cloud-based big
data processing platforms. Last, more self-organized
mechanisms for IoT device managements are critical for
ubiquitous IoT deployments.

ACKNOWLEDGMENTS

This work was partially supported by the Ministry of
Science and Technology of Taiwan and the Industrial
Technology Research Institute under grant numbers MOST
104-2221-E-007-053, MOST 104-3115-E-007-004, and ITRI
104A0058SB.

REFERENCES

[1] T. Taleb, and A. Kunz, "Machine Type Communications

in 3GPP Networks: Potential, Challenges, and

Solutions," IEEE Communications Magazine, vol. 50,

no. 3, 2012, pp. 178-184.

[2] J. Swetina, G. Lu, P. Jacobs, F. Ennesser, and J. S. Song,

"Toward a Standardized Common M2M Service Layer

Platform: Introduction to oneM2M," IEEE Wireless
Communications, vol. 21, no. 3, 2014, pp. 20-26.

[3] OM2M - Open Source Platform for M2M

Communication. http://www.eclipse.org/om2m/.

[4] M. Chen, J. Wan, S. Gonz´alez, X. Liao, and V. C.M.

Leung, "A Survey of Recent Developments in Home

M2M Networks," IEEE Communications Surveys &
Tutorials, vol. 16, no. 1, 2014, pp. 98-114.

[5] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D.

Johnson, "M2M: From Mobile to Embedded Internet,"

IEEE Communications Magazine, vol. 49, no. 4, 2011,

pp. 36-43.

[6] M. B. Alaya, Y. Banouar, T. Monteil, C. Chassot, and K.

Drira, "OM2M: Extensible ETSI-compliant M2M

Service Platform with Self-Configuration Capability,"

Procedia Computer Science, vol. 32, 2014, pp. 1079–

1086.

[7] L. A. Grieco, M. B. Alaya, T. Monteil, and K. Drira,

"Architecting Information Centric ETSI-M2M

Systems," in: IEEE International Conference on
Pervasive Computing and Communications Workshops,

2014, pp. 211-214.

[8] C.-L. Wu, C. -F. Liao, and L. C. Fu, "Service-Oriented

Smart-Home Architecture Based on OSGi and Mobile-

Agent Technology," IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and
Reviews, vol. 37, no. 2, 2007, pp. 193-205.

[9] D. Min, Z. Xiao, B. Sheng, H. Quanyong, and P. Xuwei,

"Design and Implementation of Heterogeneous IOT

Gateway Based on Dynamic Priority Scheduling

Algorithm," Transactions of the Institute of
Measurement and Control, vol. 36, no. 7, 2014, pp. 924-

931.

[10] S. K. Datta, C. Bonnet, and N. Nikaein, "An IoT

Gateway Centric Architecture to Provide Novel M2M

Services," in: IEEE World Forum on Internet of Things,

2014, pp. 514-519.

[11] Y. Nakamura, A. Moriguchi, and T. Yamauchi, "CSDA:

Rule-Based Complex Sensor Data Aggregation System

for M2M Gateway," in: International Conference
Mobile Computing and Ubiquitous Networking, 2015,

pp. 108-113.

[12] OpenStack - Open Source Cloud Computing Software.

https://www.openstack.org .

[13] P. Li and J.-P. Li, "Embedded Intelligent Home Control

System Based on Arm-Linux," in: International
Conference on Wavelet Active Media Technology and
Information Processing, 2012, pp. 429-431.

695

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 06:10:16 UTC from IEEE Xplore. Restrictions apply.

