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Abstract—Driven by the trends of BigData and Cloud com-
puting, there is a growing demand for processing and analyzing
data that are generated and stored across geo-distributed data
centers. However, due to the limited network bandwidth between
data centers and the growing data volume spread across different
locations, it has become increasingly inefficient to aggregate
data and to perform computations at a single data center. An
approach that has been commonly used by data-intensive cluster
computation systems, like Hadoop, is to distribute computations
based on data locality so that data can be processed locally
to reduce the network overhead and improve performance. But
limited work has been done to adapt and evaluate such technique
for geo-distributed data centers. In this paper, we proposed
DRASH (Data-Replication Aware Scheduler), a job scheduling
algorithm that enforces data locality to prevent data transfer, and
exploits data replications to improve overall system performance.
Our evaluation using simulations with realistic workload traces
shows that DRASH can outperform other existing approaches by
16% to 60% in average job completion time, and achieve greater
improvements under higher data replication factors.

Keywords—Job scheduling, Geo-distributed system, Data repli-
cation, Data center, Data analytic jobs

I. INTRODUCTION

Over the past several decades, grid community has been
building infrastructures and platforms across geo-distributed
data centers to facilitate inter-organizational collaboration.
Since the emergence of cloud computing, cloud providers
like Amazon [1], Microsoft [2] and Google [3] also start
aggressively expanding their service platforms by building
and connecting their own data centers worldwide. Today,
people even rely on multi-cloud systems to address vendor
lock-in and security problems [?]. Thus, computing systems
based on geographically distributed data centers has become
increasingly popular and accessible. In particular, the recent
advent of Big data has contributed to reaching a data deluge
where information generated and collected is overwhelmingly
exceeding the capacity of institutions to manage and make use
of it within a single data center. Therefore, geo-distributed data
centers have become the essential platform to support large-
scale data analytic applications.

In response to the growing demand for data processing,
massive parallel processing frameworks like MapReduce [4],
Hadoop [5], Spark [6], and Dryad [7], have been developed
and efficiently used in large clusters for data processing.
Applications based on these models split a job into many
independent tasks, each of them independently processing a
subset of data, and the data are distributed on the servers in
a cluster. Because moving data consumes a large amount of
network bandwidth, jobs are scheduled based on data locality,

which means that tasks are dispatched to the server hosting
the data to be processed in order to minimize the network
overhead. However, as shown by the recent studies [8], these
frameworks are not suitable to be ran and deployed across
geo-distributed data centers directly because the heterogeneous
Wide Area Networks across data centers can cause prohibited
overhead to the communication and control mechanisms that
were designed for fault-tolerance within a cluster.

On the other hand, although many scheduling algorithms
have been proposed [9], [10], [11], [12], limited work has
been done to adapt and evaluate locality aware scheduler for
geo-distributed data centers. Recently, C.C. Hung et. al [13]
proposed a state-of-art data locality aware scheduling tech-
nique called SWAG. However, this work did not consider
data replications which has become a common technique
to improve system performance, availability, and reliability,
especially for geo-distributed systems. Therefore, in this paper,
we introduce a job scheduling technique that can further
exploits the existing data replications on each local data center
to minimize the average completion time of jobs. To achieve
our goal, the algorithm must make two decisions: (1) where
to place the tasks? (2) in which order to execute the jobs
in a data center? The scheduling problem in this context
is a multi-variant optimization problem. Due to the number
of parameters (the number of data centers in the system,
the number of jobs, tasks and number of replica per data),
the solution space grows exponentially making the problem
more complex. Therefore, we proposed a low complexity
heuristic Data-Replication-Aware Scheduler, called DRASH.
Our contributions are summarized as below:

• We developed a Data-Replication-aware Scheduler
(DRASH) that facilitates the integration of exist-
ing data replica in the scheduling decision on geo-
distributed environments.

• We evaluated a number of real workload traces and
various data placement models to investigate the per-
formance factors in the job scheduling problem on
geo-distributed data centers.

• We demonstrated the robustness of our solution in
a heterogeneous environment settings with different
processing capability in each data center to show the
applicability of DRASH.

The rest of the paper is organized as follows: We describe
our problem Section II, and propose our scheduling algorithm
in Section III. The experimental results are presented in
Section IV followed by a discussion on the related works in
Section V. Finally, Section VI concludes the paper.
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Fig. 1: System architecture

II. PROBLEM DESCRIPTION

A. System Model

Fig. 1 depicts the system model of a typical geo-distributed
system consisted of multiple data centers. All jobs are submit-
ted in a centralized global scheduler to be dispatched among
the data centers for processing. The global scheduler main-
tains a FIFO queue Q for all submitted jobs. Data intensive
applications for instance, often produce and store data locally
(e.g., E-commerce websites and social media). However, these
data may be replicated on other data centers. We follow the
same model and assume that the initial data location as well
as the replication policy are given. In this paper, we consider
data analytic jobs that can be divided into multiple independent
sub-jobs/tasks. A local task queue q is maintained by each data
center for the tasks scheduled to that particular data center.
Due to the expensive data transfer delay in geo-distributed
systems, a task can only be scheduled on a data center which
already has its required data. Meanwhile, the completion of a
job is governed by the latest completion among all its tasks.
Once tasks are dispatched to data centers, they remain in the
local task queues until they are executed. A local scheduler in
each data center reports the progress of the local queue to the
global scheduler for the assigned tasks. The model described
above is relevant to common cloud platforms. For example,
Amazon Web Service (AWS) [1] provides data centers in
multiple geographic regions where data centers are grouped by
zone. Each zone provides users with a local storage system and
compute nodes accessible from any other location. Moreover,
the very similar system model is used by previous studies [14],
[13].

B. Problem Definition

We consider a system consisted of N geo-distributed data
centers denoted by S = {DC1, DC2, · · · , DCi, · · · , DCN}.
The arriving jobs in the system is represented by a set of
jobs, J = {J1, J2, · · · , JK}, and a set of tasks T = {tji |1 ≤
j ≤ K, 1 ≤ i ≤ M}, where tji means the ith task of job
Jj , and M is the maximum number of tasks per job. For the
simplicity of discussion, we assume each task takes one unit of
processing time for the rest of paper. But in our experiments,
we generalize our algorithm, and consider workloads with
varied execution time per task. Each task is associated with a
required data, so we denote dji as the data required by task tji .
The data is replicated in the system, and we use Li

j,k = {0, 1}

TABLE I: An example of a geo-distributed system which
consists of 3 data centers, and stores the data for 3 jobs. Data
is replicated in two places, so each task can be scheduled to
either of those two locations.

Job DC1 DC2 DC3

Initial J1 d1
1 d1

2, d
1
3, · · · , d1

5 d1
6, d

1
7, · · · , d1

10

data J2 d2
1, d

2
2, · · · , d2

6 d2
7, d

2
8, d

2
9 d2

10

location J3 d3
1 d3

2, d
3
3, · · · , d3

7 d3
8

Replica J1 d1
7, d

1
8 d1

9, d
1
10 d1

1, d
1
2, · · · , d1

6

data J2 d2
10 d2

1, d
2
2, d2

3, d
2
4, · · · , d2

9

location J3 d3
4, d

3
5, d

3
6 d3

7, d
3
8 d3

1, d
3
2, d

3
3

to denote whether the data for tji is replicated on data center k.
To prevent the expensive data transfer cost, a task can only be
scheduled to a data center with its requested data. Therefore,
our goal is to find a scheduling decision of tasks, so that the
average completion time of jobs is minimized.

As an example shown in Table I, it represents a geo-
distributed system consists of 3 data centers, and stores the
data for 3 jobs. Because the data is replicated in two places,
each task can be scheduled to either of those two locations. Say
we consider a scheduling algorithm that simply places tasks to
their initial data location, and execute jobs in the FCFS order:
{J1, J2, J3}. The completion time of J1 on DC1, · · · , DC3

is 1, 5, 4, respectively. So the completion time of J1 is 5.
J2 is executed after J1, so its completion time is 8 (=max(7,
8, 5)). Finally, we can get the completion of j3 is 14. Hence
the average completion time is 9. However, if we consider the
same job scheduling order, but use the replica data locations,
then the completion time of jobs becomes 6, 13, and 16 instead,
and the average completion time increases significantly to 11.6.

As shown from the example, minimizing the average
completion time needs to make two scheduling decisions:
(1) Where to place the tasks of each submitted job? (2) In
which order to execute the submitted jobs? Minimizing average
completion time is known to be a NP-complete problem even
when data is not replicated, and task placement has been
fixed [15], [13]. Therefore, we propose a heuristic algorithm
to make the two decisions in Section III.

C. Examples

Here, we use the previous example in Table I to illustrate
our scheduling problem by comparing the results from differ-
ent algorithms. The first two algorithms, SRPT and SWAG, are
not aware of data replication. So we assume they only place
tasks at their initial data location, and minimize completion
time by swapping job execution order. Then we show the
completion time can be significantly improved if the task
placement decision is also considered, and the scheduling
algorithm needs to be re-designed to achieve better results.

1) SRPT: The Shortest Remaining Processing Time al-
gorithm decides the execution order of jobs based on their
remaining processing time, which is determined by the maxi-
mum number of tasks among all the data centers. Thus, based
on the initial data locations, the processing time are 5 for J1, 6
for J2, and 6 for J3 in the example. The execution order is to
sort the jobs by their remaining processing in ascending order,
and use the total execution time as the tiebreaker. Hence, in
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(a) SRPT (b) SWAG using initial data location (c) SWAG using replica data location

(d) Data Replication-aware (DRASH)

Job DC1 DC2 DC3

J1 t17, t
1
8 t12, t

1
4, t

1
9, t

1
10 t11, t

1
3, t

1
5, t

1
6

J2 t21, t
2
2, t

2
4, t

2
6, t

2
10 t27, t

2
8 t23, t

2
5, t

2
9

J3 t31, t
3
4, t

3
6 t32, t

3
5, t

3
7 t33, t

3
8

(e) Tasks placement by DRASH. Tasks that use replica data are marked in bold font.

Fig. 2: Scheduling results comparison between different scheduling algorithms and task placement decisions based on the system
setting shown in Table I.

our example, the execution order of SRPT is: {J1, J3, J2}, and
its average completion time is 10 as shown in Fig. 2a.

2) SWAG [13]: It is a workload-aware greedy scheduling
technique that prioritizes jobs execution among data centers.
SWAG schedules jobs iteratively. To capture the workload,
SWAG keeps track of the queue length of each data center.
The queue length is initialized to 0 at the beginning, but it
will be updated after the tasks of a job is scheduled to its data
center. In each iteration, SWAG picks the job that will result
in the lowest maximum queue length among all data centers.
Again, SWAG is not aware of data replication, so we show its
scheduling result under the initial data location in Fig. 2b. As
shown in the figure, J1 is selected first, because it has earliest
completion time at SWAG5, while the others will finish at
6 instead. Then the queue lengths are increased to {1, 5, 4}
to reflect the workload caused by J1. Next, J2 is selected,
because the maximum queue length will be 8. In contrast, if
J3 is selected before J2, its maximum queue length will be 11
on DC2. Therefore, J3 should be executed at the end, and the
average completion time from this scheduling algorithm is 9.

To understand how data replication can affect schedul-
ing results, and why we need to design a replication-aware
scheduling algorithm, Fig. 2c shows the scheduling results
from SWAG if the tasks are scheduled on the replica locations
instead. As shown, the average completion time will increases
from 9 to 9.3. Since data replication is normally controlled by
its data collection sources, and for fault tolerant purpose, we
cannot assume the initial or primary data location will favor
one particular scheduling algorithm and produce reasonable
scheduling performance. Especially, in practice, the initial data
placement distribution is more likely to be skewed and caused
unbalanced workload and longer average job completion time.

3) DRASH: To addressed unbalanced workload and take
advantage of the data replication, we introduce a data
replication-aware schedule, DRASH. The algorithm is detailed
in Section III, and here we first show its scheduling results in
Fig. 2d. As shown from the figure, DRASH can significantly
reduce the average completion time to 6.3, which is more than
30% less than any of previous results we showed. Comparing
to the others, it is easy to see that DRASH can achieve better
results because not only the load is balanced among data
centers, but also the load among tasks is balanced for a job.
More importantly, the reason DRASH can achieve more evenly
balanced load because we are able to migrate the load among
data centers by taking advantage of the replica data without
transferring the data. As shown by the task placement decision
of DRASH in Fig. 2e, some of tasks are scheduled to the data
center with initial data locations, but others are scheduled to the
replica locations. Therefore, clearly a much better scheduling
decision can be found if the replica data is also considered.
But the scheduling algorithm must intelligently decide the task
placement and job ordering at the same time, and it is a NP-
complete problem.

III. DRASH SCHEDULING ALGORITHM

As explained earlier in the example scenario, the problem is
more complex on geo-distributed system and requires efficient
tasks placement to benefit from the replica. Although signifi-
cant improvement can be observed from existing algorithms,
there is still a room for improvement as we presented in
Fig. 2d. However, in order to avoid the high computation
complexity discussed in problem definition section, our method
combines the tasks placement and the job ordering in series of
decisions which can be computed in linear time. Our approach
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to solve the problem is based of the following rationales:

Rationale 1: It is known the shortest job first scheduling
algorithm can achieve the minimum average completion time
when the problem has only a single server. Thus in our problem
with multiple data centers, we also prefer to schedule the job
with the minimum execution time first.

Rationale 2: The tasks from a job needs to be balanced
among data centers. This is because the minimum completion
time of a job is bounded by its maximum number of tasks
on data centers. Therefore, balancing the tasks from a job
can shorten its minimum execution time especially if the task
distribution is skewed because of the initial data placement
distribution. Also, balancing the load of job can help us balance
the load between data center more easily for our third rationale.

Rational 3: The total load among data centers needs to be
balanced as well. This is because the worst case job completion
time is bounded by the maximum load among data centers, and
the highly loaded data center can easily become the bottleneck
for minimizing the completion time for every jobs. However,
the load of a data center depends on the scheduling decision
between jobs. Therefore, the scheduling algorithm must be
aware of the current loading after each scheduling decision,
and place a task to the data center that has the request data
and with the minimum load.

Our algorithm is shown in Algo. 1, and it consists of two
steps explained as follows.

Step1. Sort the jobs according their minimum execution
time(rationale 1). The minimum execution time of a job is
defined as the minimum completion time of a job when it runs
alone without any other workload in the system. To minimize
job completion time, we iteratively placing the tasks of a job
to a data center by choosing the one with the lowest current
load (rationale 2). Noted the we use qi to record the set of
tasks that have been scheduled on data center DCi. The queues
Q = {q1, · · · , qN} are reset after each job assignment in line9
because we only consider one job at a time in Step1.

Step2. According to the above job order, we then start
iteratively placing the tasks of a job by minimizing the
maximum load among data centers (rationale 3). Again we
iteratively place the tasks of a job to a data center by choosing
the one with the lowest current load. But different from Step1,
here we keep the load qi after each job assignment to reflect
the accumulated load on data centers.

To illustrate our scheduling algorithm, we now revisit the
results presented in Fig. 2d. For Step1, we take job J1 as an
example and explain its task placement results step-by-step as
follows. First, task t11 can be scheduled either on DC1 or DC3

according to the given data placements in Table I. We pick
DC1 for t11 because currently both data centers have no load,
and we use data center ID as a tiebreaker in this example. Then
task t12 is scheduled on DC2 for the same reason. Next, task
t13 is scheduled on DC3, because it can only be scheduled
on DC2 or DC3, and the current load on DC3 is 0 while
the load on DC2 is 1. After we schedule the rest of tasks
for J1, we will find t11, t

1
4, t

1
6 on DC1, t12, t

1
7, t

1
8 on DC2, and

t13, t
1
5, t

1
9, t

1
10 on DC3. Therefore, the minimum execution e1

for J1 is 4. Similarly, we can get the minimum execution time
J2 and J3 are 4 and 3, respectively. Again, we use job ID as

Algorithm 1 DRASH

1: procedure DRASH(S, J, T,L)
2: Input:
3: S: data centers; J : jobs; T : tasks; L: data placements
4: Output:
5: Q = {q1, · · · , qN}: schedule queue of data centers
6: //Step1: Sort jobs by their minimum execution time
7: ei ← 0, ∀Jj ∈ J
8: for Jj ∈ J do
9: qd ← 0, ∀qd ∈ Q

10: for tji ∈ Jj do
11: target ← mind|qd|, ∀DCd ∈ S and Li

j,d = 1

12: qtarget = qtarget ∪ tji
13: qmax ← maxd|qd|, ∀qd ∈ Q)
14: ej ← |qmax|
15: Sort Ji ∈ J by ei in ascending order
16: //Step2: Place tasks on the data center with minimum load
17: qd ← 0, ∀qd ∈ Q
18: for Jj ∈ J do
19: for tji ∈ Jj do
20: target ← mind|qd|, ∀DCd ∈ S and Li

j,d = 1

21: qtarget = qtarget ∪ tji
22: return Q

a tiebreaker in this example, so the final job order resulting
from Step1 will be {J3, J1, J2}.

Then in Step2, we start scheduling the tasks from jobs
according to the job order above. The final task placement
results are shown in Table 2e. Noted that the task placement
decision of each job from Step2 is different from Step1,
because now the initial queue length will depend on the
previous job scheduling results. For instance, task J1

1 is now
scheduled on DC3 instead of on DC1, because the load from
J3 makes DC3 to be less loaded than DC1 when scheduling
J1
1 . At the end, we did find our algorithm can evenly balanced

the load among data centers, and therefore achieved a much
lower average completion than other approaches.

IV. PERFORMANCE EVALUATION AND ANALYSIS

We built a prototype for DRASH to leverage the batch
job scheduling service on a geo-distributed environment. We
evaluate our scheduler with simulations. In this section, we de-
scribe its performance conducted under extensive evaluations
on realistic production traces from Facebook workloads [16],
[17] and a synthetic workload derived from a random gen-
erator. With these traces, we examined a wide range of
environment parameter settings including the replication factor,
the distribution of various size of data, the data distribution
and the system utilization. We compared the results with the
state-of-art SWAG strategy and a classical Shortest Remaining
Processing Time based algorithm. Each of these algorithms
is applied on a tasks placement based on the initial data
location labelled as Init.SWAG and Init.RSPT; and a random
placement labelled as Rand.SWAG and Rand.RSPT. Our key
metric is the average completion time. Through the series of
experiments, we demonstrate that DRASH can take advantage
of the replicated data to significantly reduce the completion
time.

305

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:49:55 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: General system setting

Heterogeneous distributed system

data center # of Nodes # of cores per node

DC1 13 24

DC2 7 12

DC3 7 8

DC4 12 8

DC5 31 32

DC6 31 32

DC7 10 16

DC8 8 12

TABLE III: Settings of Job Traces

Trace Type Avg. Job
Size

Small jobs
(1 − 150)

Medium jobs
(151 − 600)

Large jobs
(>601)

FB-2009 76.86 87.30% 8.55% 4.15%

FB-2010 157.12 48.12% 4.71% 47.18%

Synthetic 662.06 6.93 % 23.15 % 69.92%

A. Setup

System: The default system setting is composed of 8 data
centers, each with a different number of nodes and cores
per node as described in Table II. The capacity of a data
center equals to the #nodes × #cores per node. Unless
specified, the classical 3-replica policy is adopted by default
and replicated data are randomly placed in the data centers.

Workloads Traces: We used two traces from Facebook
workloads: one ( FB-2010) with the data input path and the
other (FB-2009) without that information. In total, there are
about 24000 jobs in each trace. These realistic traces have
been used in previous works [13], [18]. The arrival rates are
respectively 3.54s and 3.4s for FB-2009 and FB-2010. The
summary can be found in the Table III. Along with these traces,
we randomly generate traces from a random generator to assess
the performance under various tests settings and to show that
DRASH can fit different workloads. By default, we randomly
generated 1000 jobs following a uniform distribution. The
initial data location follows also a uniform distribution by
default and a Zipf distribution α = [0.001, 30] which indicated
the skewness of data location on the data centers. Note that
the larger α value means a higher skewness.

B. The Overall Performance Analysis

Here we compared the overall performance between
SWAG, SRPT and DRASH and present the result in Fig 3.
The results are normalized to our algorithm. Clearly, DRASH
outperforms the two other methods by a large margin. On
FB-2009 traces presented on Fig. 3a, where the traces contain
more mall jobs than the other traces, DRASH is 2.3× faster
than SWAG init., and 2.4× faster as compared to RSPT. On
the results shown in Fig 3b, DRASH performs even better
on FB-2010 traces with (3.34 − 1)/3.34 = 70% in general.
In fact, FB-2010 traces consist of large jobs and therefore
greater opportunity for DRASH. In contrast, for not data-
aware schedulers, a larger job size results in longer individual
job completion time. This observation is confirmed by the
results of the synthetic traces which consists of 69.9% of larger
jobs. We also verified this behavior with uniform distributed
tasks. Although DRASH still performs best, the margin is
considerably reduced to almost 16%, while SWAG and SRPT

showed no progress. These results indicate that DRASH takes
more advantage of the replica.

C. System Utilization

We measured and reported the performance of the algo-
rithms on Fig. 4 at different system utilization. To this end,
we increase the job inter-arrival rate such that at any given
time instant, we can reach a certain system utilization. The
x-axis represents the system utilization computed as a ratio
of workload divided by the system capacity. The results in
the Fig. 4a show that as the system utilization increases, the
variance of the average completion time produced by DRASH
remains small. However, for SWAG and SRPT as the utiliza-
tion increase the resulting completion time increases almost
linearly. That is because, when we increase the load it becomes
more difficult to achieve the scheduling decisions. A higher
system utilization favors our algorithm because as the load
increase the entire system requires a better tasks placement.
Unfortunately, in higher utilization SWAG and SRPT generates
more imbalanced load between data centers during the tasks
placement. More importantly, at a small system utilization our
algorithm already performs good; at a heavy load it performs
even better due to the placement decision using the replica.

D. Data Characteristic Analysis

In practice, data are produced or collected by different
techniques with their own objective functions. Therefore, it
is not always possible to accurately predict or set the initial
data location. To capture various initial data location and to
assess the performance of the algorithms under different initial
conditions, this section evaluates the initial data characteristic.
We used different initial data skewness and present the result
in Fig. 5. The skewness factor θ = [ 1

1000 , 0.1] results in a
uniform distribution, while any value higher than 1 results in
a skewed distribution ( at θ = 30, almost all the data are
initially produced in one data center). Both Rand.SWAG and
Rand.SRPT algorithms perform well on skewed distribution
when exploiting the data replication. However, as seen in
Fig. 5a and Fig. 5b, there is a longer completion time (3 ∼ 4×
longer) when initial data become more and more skewed. In
contrast, DRASH performs better for highly skewed initial
data. This stability demonstrates that DRASH can adapt to
different workload setting. Ultimately, the skewness benefits
more our algorithm because there is a higher chance to balance
the load on the other data centers hosting the replicas. The
experiments on the synthetic workload presented in Fig. 5c
further show that DRASH converges to a stable value as the
skewness factor increases. Thus, regardless the initial data
location or the job characteristics, our algorithm still performs
with a larger margin.

E. Data Replication Analysis

In these experiments, we are interested in the impact of the
number of replica on our algorithms. In Fig. 6, we conducted
the experiments on different replication factors and present
the results of two versions: in Fig. 6a the jobs are uniformly
distributed and in Fig. 6b a skewed version is presented. The
x-axis represents the percentage of replication on the total
number of data centers in the system. As expected, when the
number of replica is increased, the average completion time
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Fig. 3: Performances of Average execution time with different workloads normalized to DRASH

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

30% 45% 50% 60% 70%

N
or

m
al

iz
ed

 A
vg

. c
om

pl
et

io
n 

tim
e

System utilization

Init.SWAG
Rand.SWAG
Init.RSPT
Rand.RSPT
DRASH

(a) Performance of Facebook 2009 Trace

0

1

2

3

4

5

6

30% 45% 50% 60% 70%

N
or

m
al

iz
ed

 A
vg

. c
om

pl
et

io
n

System utilization

Init.SWAG Rand.SWAG
Init.RSPT Rand.RSPT
DRASH

(b) Performance of Facebook 2010 Trace

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

30% 45% 50% 60% 70%

N
or

m
al

iz
ed

 A
vg

. c
om

pl
et

io
n 

tim
e

System utilization

Init.SWAG
Rand.SWAG
Init.RSPT
Rand.RSPT
DRASH

(c) Performance of exponential synthetic Trace

Fig. 4: Performances of Average execution time ( normalized to DRASH 30%) with different resource utilization
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Fig. 5: Analysis on data skewness (normalized to DRASH 0.001)

is considerably reduced for both cases. On average before
50% of data replication, DRASH is 1.3× faster; above 50%
it goes up to 2.7× faster than SWAG and RSPT, for each
data replicated on one additional data center. With skewed
jobs, both of SWAG and RSPT performance is significantly
improved as well. Data is often expected to be skewed, random
placements result in a better schedule than the initial placement
for SWAG and RSTP, however DRASH still outperforms both
algorithms significantly. All these results demonstrate that if
the scheduling technique includes data locality and harness the
replicated data, average completion time can be significantly
be reduced, and that is main purpose of DRASH.

V. RELATED WORKS

The related work can be viewed from three perspectives.
Scheduling on Geo-Distributed Systems: Branches of studies
on geo-distributed datacenters include data grid[9], [10], [19],
[20]. Some of the scheduling techniques on geo-distributed
systems have considered data locality in their approach. One
of the closest studies to our work was recently conducted by

Hung et al [13]. They proposed a system where tasks are
dispatched to the data centers hosting the data. However, they
did not consider data replication. L. R. Anikode et. al in [9]
designed an integrated algorithm for both the placement of
the replica and the tasks. It considers both remote and local
access to data. They proved theoretically that the performance
of applications can significantly improve when considering the
different data hosted by different data centers. However, they
use data migration for locality and therefore differ from our
work. In our work, data and replicas are already given and
we avoid data migration during scheduling since it incurs a
high network penalty [21], [10]. In order to improve the
scheduling performance C. L. Abad et. al [11] proposed an
adaptive replication model. Similar to [9], they do not consider
fixed data location.
Data-intensive Scheduling: MapReduce [4], Hadoop [5],
Spark [6] and Dryad [7] are common platforms for large-scale
data-intensive processing. However, the current implementa-
tion of these models still requires addition efforts in adapting
them to fit multiple dispersed data centers [22]. Therefore,
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Fig. 6: Performance gain over increasing replication replication
factor ( normalized to DRASH 25%)

they are not applicable to geo-distributed systems because their
application jobs require frequent communication and transfer
of intermediate data among clusters. This will result inevitably
in a huge network bottleneck [23]. Therefore, applying a
MapReduce architecture directly to a geo-distributed data-
intensive model will be counterproductive.
Makespan minimization Scheduling: There are also previous
works on improving the makespan (i.e., completion time) that
may be thought as alternatives solution for scheduling on a
geo-distributed system. A representative class of them have
been used in our example scenario [24]. The objective of these
scheduling techniques is to minimize the overall completion
time or schedule length of the parallel program. Y.-K. Kwok
and I. Ahmad [25] proposed a dynamic scheduling technique
for assigning tasks to different processors so as to minimize
the makespan. Another class of algorithms [26] dynamically
selects tasks during the scheduling tasks. However like most
multicore scheduling algorithms, these techniques only con-
sider compute intense problem and therefore are oblivious to
data locality.
To some extent, there are few efforts on adapting the use
of existing and fixed data replicas to the geo-distributed
environment which is common in today’s cloud environment.
In contrast to existing work, we focus on finding the tasks
placement that take advantage of the replica to minimize the
completion time.

VI. CONCLUSION

In this work, we have proposed a novel data replication-
aware scheduling algorithm which can leverage the existing
replicas to minimize the average completion time of job
submitted to a geo-distributed system. As it has become a

de-facto approach for cloud applications to replicate their
data across data centers to prevent data loss and guarantee
service availability, there is a need of adapting the scheduling
techniques to these geo-distributed data centers. Our method
consists of prioritizing the data centers based on the data
hosted. Then we attempt to balance the load of each individual
job so as to minimize the makespan. Finally, we used an
approach similar to a water-filling algorithm to place the
tasks. Our evaluations using realistic workload traces show
that DRASH can outperform other existing geo-distributed
job scheduling approaches by 16% to 60% in average job
completion time, and achieve greater performance when more
replications are available.
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