
Byzantine Fault Tolerant Optimization in Federated Cloud Computing

Hojjat Baghban1, Mahdis Moradi2, Ching-Hsien Hsu3*, Jerry Chou1, Yeh-Ching Chung1

1Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
2Department of Computer Science, Islamic Azad University, Marvdasht , Iran

3Department of Computer Science and Information engineering, Chung Hua University, Hsinchu, Taiwan
* The corresponding author

Abstract— Cloud computing is a forthcoming revolution in
information technology industry because of its performance,
accessibility and, low cost. It is appropriate to maximize the
capacity or step up capabilities vigorously without investing in
new infrastructure, nurturing new personnel or licensing new
software. The federated cloud, which is the combination of more
than one cloud, is the next logical step after hybrid cloud and
there are many indicators that are showing more requirements
for such a model. Security is the challenging issue in all cloud
infrastructures such as single cloud and federated cloud. And, it
is significant in distributed systems which have highly fault
tolerant. One of the algorithms for this issue is Byzantine Fault
Tolerant. This paper introduces a new method, that optimizes
the Byzantine Fault Tolerant and decrease the latency, and
detecting the number of faults.

Keywords— Multi cloud, security, fault tolerant, byzantine fault
tolerant

I. INTRODUCTION
 Cloud primarily refers to the saving of user’s data to storage
system that is maintained by a third party. In other words,
instead of storing information on user computer’s hard disk or
other storage devices, client saves it to a remote database where
the internet provides the connection between the user's
computer and the remote database.

Many companies migrate from single cloud to federated cloud,
because federated cloud is a combination of more than one
cloud (private, community or public) or it is a group of clouds
that are not necessarily sharing the same infrastructure,
architecture standards, geographical location or security setting.
In cloud computing the security issues are very important and
many researchers focus on this challenge.

In cloud computing or in federated cloud, any faults in software
or hardware are known as Byzantine faults that usually related
to inappropriate behavior and intrusion tolerance [5].
In addition, it includes arbitrary and crash faults. Much
research is dedicated to byzantine fault tolerance (BFT).

BFT requires a high level of failure independence. If byzantine
failure occurs to the particular node in the cloud, it is
reasonable to have a different operating system, different
implementation and different hardware ensure such failure
does not spread to other nodes in the same cloud.

BFT algorithm typically requires 3f+1 servers to tolerate 'f '
byzantine servers [1], which involve considerable costs in
hardware, software and administration. Byzantine fault tolerant
protocol is complicated and hard to implement. Today's

software industry is reluctant to adopt these protocols because
of the high overhead of message exchange in an agreement
phase and high resource consumption necessary to tolerate
faults (as 3f+1 replicas are required to tolerate f faults)

Byzantine fault tolerant system use state machine replication to
tolerate a wide range of faults. It means we need two phases:
agreement and execution that will explain in the following
sections [7].

II. RELATED WORK
 Recent activities in federated cloud can be summarized as
follow.

 In 2011, Bessani, et al. introduced "Depsky", which is a
virtual storage cloud system comprising of a combination of
different clouds to build a cloud of cloud. The service provider
can work with the mixture of Byzantine protocol, encryption
and erasure code [3].

Also, the RACS (Redundant Array of Cloud Storage) is a
protocol for inter-cloud storage in the year of 2010. This
technique is similar to RAID and normally used by disks and
file systems and replication offers better fault tolerant. But it
has an availability problem that cannot address the storage
areas and cannot update them [4]. Chachin presented a design
for inter-cloud storage which is called ICStored in 2010.
ICStored is the client centric distributed protocol which can
handle the data integrity. But, it has poor performance in case
of data intrusion and service availability [4].

HAIL technique (High Availability and Integrity Layer), which
was introduced in 2009, is a distributed encryption system that
lets the servers to store data like a retrieval system. It is worth
saying that this model cannot guarantee the integrity [3].

The byzantine in distributed system has a history. This model
was introduced by Pease, Shostock and Lamport in 1980 [5],
for the first time. In 1983 the distributed system was divided
into synchronous and asynchronous, in Ben-or introduced the t-
resilient system for asynchronous system that can tolerate the
t<n/2 faulty process that is fail-stop fault and tolerate t<n/5
faulty process that is Byzantine faults [9].

In 1985 in Bracha and Toueg introduced the weak model that
many of scheduler is probabilistic [9]. Also, the Byzantine
based algorithm such as PBFT, BFT2F, ZYZZYVA,
cheapBFT were introduced in [5]. BFT2F look for 'f ' faulty
areas and the main goal is limited the faulty system but the

2016 IEEE International Conference on Computer and Information Technology

978-1-5090-4314-9/16 $25.00 © 2016 IEEE

DOI 10.1109/CIT.2016.114

658

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:44:44 UTC from IEEE Xplore. Restrictions apply.

problem is still situated where the client should send two
messages and if the system fell down between send the first
and second message, this algorithm can't tolerate it. The
ZYZZYVA is the optimistic model of BFT, which the main
goal is reducing the cost and simplicity in designing and
decrease the cost, computation overhead and latency. Then,
the CheapBFT, which uses the resources very efficiently, was
introduced [5]. Table 1 shows the summary of the mentioned
algorithms [1].

TABLE I. COMPARISONSOF ALGORITHMS

Cost Latency Throughput

3f+1
4
5)18(2 ++ fPBFT

3f+1
 3

b
f32+ZYZZYVA

 53TTCB

 5)42(2 ++ fA2M-

PBFT-EA

 4b

f)3(2 +
+MINBFT

Another replication based model was introduced in [6]. This
model can have more availability in terms of cloud databases.
Most of the replication protocols are designed for Crash-Stop
model and the number of them was designed for Byzantine
faults. But it has deficiency problem. Because, each server can
execute the part of the transaction and, the server should run
sequentially [6].

III. PROPOSED METHHOD
The most important goal of this research is to maintain the

three vital security impact such as, Availability, Integrity and
Confidentiality. Replication is widely used to improve the
availability, reliability of services by mirroring the data from a
server on multiple machines. If the primary servers crashed, the
data is not lost. Because, it is available on the other machine.
The question is how many copies should be existed as a backup
The answer depends on how many faults the service can be
tolerated. In general, two types of faults are addressed in
replicated service: Omission faults and Commission faults [10].
Omission faults occur when a node does not send a message
which would have been sent by a correctly operation node.
Omission faults are common. But commission faults occurred
when a node sends a message which would not have been sent
by a correctly operating node. These kind of faults are difficult
to resolve [10].

Byzantine faults are arbitrary faults that occurred in a
system and make the system either unreliable or unresponsive
to any client requests. In same system, there are two phases:
agreement and execution. [7] High overhead existed on
agreement phase and a lot of work has been done to improve

the performance of execution phase and little work has been
done to improve the agreement phase. Agreement phase
sometimes known as consensus. In terms of fault tolerance
system, we need State Machine Replication (SMR) [7, 8].
Every modern service uses SMR to tolerate faults. But, the
SMR is non-deterministic. It is worth saying that in this paper
all the states and sequence of requests are assumed to be
deterministic. In agreement phase, we need two conditions as
follow,

- All non-faulty replicas agree on the same value.

- If the sender is non-faulty then all the non-faulty replicas
use its proposed value as agreed value.

A. Conditions which affect the proposed method

- The number of replicas or servers: In a normal form of
byzantine algorithm, it demands 3f+1, in terms of
tolerating the 'f ' faults. Decreasing the copies of replicas
can be affected by price and intrusion power.

- Trusted service simplicity: In additional of decreasing the
replicas it should be trusted that the services work truly.

- Number of communication steps: this part of the
algorithm is very important because, it can affect latency
in terms of sending and receiving messages. In this
algorithm, two kinds of replicas are introduced, primary
and back up, that the primary nodes send the messages
which received from the sender to the backup nodes. The
amount of latency can measured from a number of
communications.

- Benefits and Drawback: the main problem of byzantine
is duplicity. So, the faulty system, maybe send the
messages to two systems on two different servers.

- Contribution: use the combination of last algorithms that
work with each other truly and with high trust.

B. The proposed algorithm operations

- A sender sends the request (job) to the primary nodes for
recall the service functions.

- The Primary replicas send the job to the 'f' backup nodes.

- The backup replicas execute the job and send the replies
to sender.

- The sender waits until receiving the 'f' replies from
replicas, compares the replies and shows the results.

- If the sender doesn’t receive enough replies (less than f
replies) resend the request to all replicas. If the request
processed, the replicas resend the replies easily.

C. Faults Detection and resolving levels
First level: If the primary doesn’t send the job, the
probability that the primary is faulty will be increased.

659

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:44:44 UTC from IEEE Xplore. Restrictions apply.

Second level: If the primary sends the job to the backup
provided that the backup doesn’t execute the job, it is
probable that one or many of backup nodes receive the
faulty message or doesn’t receive any messages.

Third level: If all the backups execute the job and send the
replies to sender and also, if the number of received replies
is correct, the sender compares the replies for finding the
faulty nodes.

Figure 1 illustrates the proposed approach.

Fig. 1. The proposed models and relationships

IV. EVALUATION
The proposed approach is simulated through

CloudSim [13] which is a widespread and extensible
simulation toolkit and application that enables unified
modeling, simulation and experimentation of developing
cloud computing systems.

The node behavior in proposed method concern with the
parameters, Availability (A), Reliability (R), Integrity (I) and
Throughput (T), which are formulated as follow,

 TIRAB ×××= (1)
where

N
aA = (2)

a
bR = (3)

b
cI = (4)

t
cT = (5)

Availability: The grade to which a system or component is
accessible and working when required for use.

Reliability: The reliability of a cloud resource is an amount of
accepted jobs that are completed successfully by the cloud
resources.

Integrity: Security is a key factor that requires special care in
cloud. Data integrity is a general term that comprises accuracy,
privacy and security of data.

Throughput : The measurement of the amount of requests
which can be processed in a given period of time.

a: The number of jobs that accepted via Virtual
Machines (VMs).
N: The number of jobs that allocated to VMs.
b: The number of requests that accepted via service
providers.
c: The number of jobs that accepted via data centers.
t: Total executing time of accepted job.

The table 2 demonstrates an example which is concerned with
mention equations and their results.

TABLE II. RESULTS OF THE MENTION SCENARIO (SECONDS)

 CSP1 CSP2 CSP3 CSP4
Availability

Based
N 20 20 20 20
A 14 12 13 14

Reliability Based A 14 12 13 14
B 10 10 9 12

Integrity Based B 10 10 9 12
C 6 7 8 9

Throughput
Based

C 6 7 8 9
t

(second) 9 9 9 9

V. LATENCY AND COMMUNICATION OVERHEAD
 Another important parameter which are concern with this
research are latency and communication overhead in the multi
cloud. The Overhead is measured through two fundamental
metrics, the Average Number of Clouds (ANC) involved in
service composition and, second, the Average Number of
Service files (ANS) examined [11].

The communication overhead depends on the physical
locations of managers [12]. For example, one data center across
different data centers. We have 'n' data centers D1, D2, …, Dn.
For the data center D1 there are mi VMs running: Vi,1, ... , Vi,mi.
As each VM is accompanied by a cloud provider. We denote
the cloud provider as Ci = Ci,1, …, Ci,mi . The size of one
message from Ci,j is Mi,j . For each cloud provider that located
in data centers: Dcp, cp € [1 , n] .

Total communication overhead is measured as below,

∑ ∑ −
Mi

jp
n

ji MiMj
1 ,1 ,)(((6)

If the message size is a fixed value M then communication
overhead is:

660

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:44:44 UTC from IEEE Xplore. Restrictions apply.

p
n

i MiMM −∑)((
1

 (7)

The number of primary nodes computes via this rule is n=3f+1
that 'n' is the number of nodes and 'f' is the number of faulty
nodes. If the number of nodes is 4 then this algorithm can
detect 1 fault (if it is exists in the system). If the number of
nodes increases to 5 or 6, the algorithm also can detect just 1
fault, but if the nodes increased to 7, it can detect 2 faults.
Figure 2. illustrates this situation. Fault detection in primary
nodes follows the byzantine rules (n=3f+1). But, as it can be
seen in Figure 3. there is an optimized situation in the backup
nodes and can work with this rule which n= 2f+1 and detect the
fault earlier than the previous level. For instance, at first level
(primary nodes) if the number of nodes is 7, this algorithm can
detect 2 faults, but in backup level, if the number of nodes is 7,
it can detect 3 faults. This earlier detection can protect the
system from distributing the faults and avoiding continuing to
another level.

Fig. 2. Average fault for primary nodes

Fig. 3. Average fault for backup nodes

VI. CONCLUSION
 It is clear that although the use of cloud computing has
increased rapidly, most of the organizations eager to use

federated cloud instead of single cloud and cloud security is a
major concept in a cloud computing environment.
This paper focused on the issue related to security and fault
tolerance. The evaluation shows the simulated model, which
maintains the availability, reliability and integrity, detects the
faults on different nodes in an earlier level to avoid expanding
the faulty nodes on all of the system. It is worth saying that
reliability, integrity and faults detection on different nodes are
considered in an earlier level to avoid expanding the faulty
nodes on the system.

ACKNOWLEDGEMENT
This paper is supported in part by Ministry of Science and
Technology, R.O.C., under grant no. MOST-105-2218-E-007-
011

REFERENCES
[1] Giuliana Santos Veronese , Miguel Correia , Alysson Neves Bessani, Lau
Cheuk Lung and Paulo Verissimo , "Efficient Byzantine Fault Tolerance " ,
IEEE Transaction on Computer , 2013.

[2] Rodrigo Nogueira, Filipe Araujo and Raul Barbosa, " CloudBFT: Elastic
Byzantine Fault Tolerance ", IEEE 20th pacific Rim International Symposium
on Dependable Computing, 2014.

[3] Swapnila S Mirajkar and Santoshkumar Biradir, "Secret Sharing Based
Approach to Enhance Security In Cloud Computing", International Journal of
Advanced Research In Computer Science and Software Engineering, 2014.

[4] Swapnila S Mirajkar and Santoshkumar Biradir," Using Secret Sharing
Algorithm for Improving Security in Cloud Computing", 2014.

[5]Vasileios Papadopoulos, "A Study of Byzantine Fault-Tolerant Algorithm".

[6] Fernando Pedone, Nicolas Schiper, Jose Enrique and Armendariz- Inigo,
"Byzantine Fault-Tolerant Deferred Update Replication", Latine –American
Symposium on Dependable Computing, 2011.

[7] Mohammed A.Alzain and Ben Soh and Eric Pardede, "A Byzantine Fault
Tolerance Model for a Multi-Cloud Computing ", IEEE 16th International
Conference on Computational Science and Engineering, 2013.

[8] Aldelir Fernando Luiz, Lau Cheuk Lung and Luciana de Oliveira Rech,
"On the Practicality to Implement Byzantine Fault Tolerant Services Based on
Tuple Space", IEEE 28th International Conference on Advanced Information
Networking and Applications, 2014.

[9] Gabriel Bracha,"Asynchronous Byzantine Agreement Protocol",
Information and Computational, 1987.

[10] Kim Potter Kihlstrom, Louise E.Moster and P.M.Melliar-Smith,
"Byzantine Fault Detectors for Solving Consensus", British Computer Society,
2008.

[11] Jun Wen Luand Yongsheng Hao,"Toward Efficient Service Composition
in Multi-Cloud Environment ", International Conference on Computational
Science and Computational Intelligent.

 [12] Khalid Alhamazani , Rajiv Ranjan, Prem Prakash Jayaraman, Karan
Mitra , Chang Liu, Fethi Rabhi, Dimitrios Georgakopoulos and Lizhe Wang,
"Cross–Layer Multi–Cloud Real-Time Application QOS Monitoring and
Benchmarking As-a-Service Framework "

[13] Rodrigo N.Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A.F.De
Rose and Rajkumar Buyya , "Cloudsim: A Toolkit for Modeling and
Simulation of Cloud Resource Management and Application Provisioning
Teckniques", Software :Practice and Experience, 2011.

[14] Li Lin, Tingting Liu, Jian Hu and Jian Ni, “PQsel: combining privacy
with quality of service in cloud service selection”, International Journal of Big
Data Intelligence, Vol. 3, No. 3, pp. 202-214, 2016.

661

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:44:44 UTC from IEEE Xplore. Restrictions apply.

