
Proceedings of the 2017 IEEE International Conference on Applied System Innovation
IEEE-ICASI 2017 - Meen, Prior & Lam (Eds)

ISBN 978-1-5090-4897-7 - 1725

File Placement Mechanisms for Improving Write Throughputs of
Cloud Storage Services Based on Ceph and HDFS

Chun-Feng Wu1, Tse-Chuan Hsu2, Hongji Yang2, and Yeh-Ching Chung3

1 Department of Computer Science and Information Engineering, National Taiwan University, Taiwan
Email: tom.cfwu@gmail.com

2 Centre for Creative Computing, Bath Spa University, England
Email: davidhsu@hcu.edu.tw, h.yang@bathspa.ac.uk

3 Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
Email: yehching.chung@gmail.com

Abstract

Cloud storage services are pervasive nowadays.  Many 
cloud storage services use distributed file systems as their 
backend storage systems. Some research results on file-size 
distribution of file systems show that file systems contain lots 
of small files. Therefore, this paper proposed a hybrid 
distributed file system based on Ceph and HDFS that can 
deliver satisfactory write throughputs for a cloud storage 
system with 80-90% small files and 10-20% large files. The 
experimental results show that the file allocation mechanism 
without RAM disk caching can improve the write throughputs 
of Ceph and HDFS by approximately 10% to 50%.  While the 
one with RAM disk caching can have up to 200% write 
throughputs improvement.

Key words: Hybrid Distributed File System, Cloud Storage, 
Ceph, HDFS

1. Introduction

Cloud storage services, such as Dropbox, Google Drive, 
iCloud, etc., are pervasive nowadays.  Many cloud storage 
services use distributed file systems as their backend storage 
systems [1][11][12]. Some research results on file-size 
distribution of file systems show that file systems contain lots 
of small files, such as document files, image files, music files, 
etc., which sizes in general are less than 10MB.  But most 
capacity of the cloud storage system is occupied by few large 
files, such as operating system image files (Ubuntu for 
example), video files (movies for example), etc., which sizes in 
general are greater than 1GB. In addition, the distribution of 
file sizes obeys Heavy-Tailed Distribution according to past 
research results.  As a result, we could assume that 80-90% files 
in a cloud storage system are small files while 10-20% are large 
files. In another word, file systems contain lots of small files, 
but most capacity is occupied by few large files [14].

Different distributed file systems may have different design 
goals.  For example, some of them are designed to have good 
performance for small file operations, such as Ceph, while 
some of them are designed for large file operations, such as 
Hadoop distributed file system. With the divergence of 
applications, a distributed file system may provide good 
performance for some applications but fails for some other 
applications, that is, there has no universal distributed file 
system that can produce good performance for all applications.

In [7], the research results indicate that Ceph and HDFS are 
more suitable for write operation with small files and large files, 
respectively.  In order to deliver satisfactory write throughputs 
for a cloud storage system with 80-90% small files and 10-20%
large files, in this paper, we proposed a hybrid distributed file 
system based on Ceph and HDFS. According to the
characteristics of Ceph and HDFS, we proposed two file 
placement mechanisms based on memory resources.  One is to 
store files with limited memory resource.  In this mechanism, a 
K-Nearest Neighbors algorithm (KNN) [11] is used to decide 
where to store a file (Ceph or HDFS) based on the input file 
size.  The other is to store files with sufficient memory resource. 
In this mechanism, we use Ramdisk with caching and parallel 
programming technique to improve write throughputs in the 
proposed hybrid distributed file system.

We have implemented the proposed hybrid distributed file 
system for SSBox, a Dropbox like cloud storage service.  The 
experimental results show that the file placement mechanism 
without RAM disk caching can improve the write throughputs 
of Ceph and HDFS by approximately 10% to 50%.  While the 
one with RAM disk caching can have up to 200% write 
throughputs improvement.

The rest of the paper is organized as follows. Section 2 
discusses the background and related work. Section 3 presents 
hybrid mechanisms. The experiments designed are described in 
Section 4. After that we show evaluation results and discuss the 
improvement in Section 5. 

2. Background and Related Work

Distributions of files based on file sizes in computer system 
and in World Wide Web obey Heavy-Tailed Distribution 
[15][16]. Some research results in analyzing storage system 
show that there are around 90% or even more higher ratios of 
small files in storage systems [17][18]. Moreover, to elevate 
write throughputs in cloud storage, making good use of 
Heavy-Tailed Distribution is crucial.

Ceph [2] is a reliable and scalable distributed file system 
which provides some advantages such as avoiding single point 
of failures, using replicas to achieve fault tolerance, POSIX 
compliant, etc. The architecture of Ceph shows that all 
interfaces in Ceph are built on RADOS [5]. In this paper, we
focus on the file level interface and three components, monitors 
(MON), object storage devices (OSD) and metadata servers 
(MDS). MON is used to issue heartbeats messages to ensure all 
components are healthy. OSD is used to store files and replicas 

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:42:06 UTC from IEEE Xplore.  Restrictions apply. 



Proceedings of the 2017 IEEE International Conference on Applied System Innovation
IEEE-ICASI 2017 - Meen, Prior & Lam (Eds)

ISBN 978-1-5090-4897-71726 -

by using CRUSH algorithm [4]. MDS is used to store metadata 
of files and replicas. 

HDFS [3], derived from Google File System (GFS) [13], is a 
distributed file system that aims to tackle large data sets reliably 
and to stream large data sets at high bandwidth to clients. There 
are two important components in HDFS, NameNode and 
DataNode.  The NameNode maintains namespace tree and the 
locations for each file blocks on DataNodes.  The DataNodes 
are used to store physical files in HDFS. 

    SSBox [9], designed and implemented by SSLAB, 
National Tsing-Hua University, is a Dropbox-like system and 
provides services from SaaS to PaaS. SSBox is mainly 
composed by Nginx, Memcached, PostgreSQL, Server-core 
and Ceph.  The system architecture is shown in Fig 1. In Fig. 1,   
incoming queries will be redirected to Server-core by Nginx, an 
inverse proxy service. Server-core responses to manage APIs 
and communicates with PostgreSQL. When managing APIs 
such as download files, Server-core may need to get files from 
Ceph. Memcached is an in-memory database which could 
improve the performance in download scenario. 

 

 
Fig 1. SSBox Architecture 

 
 

3. The File Placement Mechanism 

A. Without RAM disk caching 
    Algorithm 1 shows the file placement mechanism without 
RAM disk caching mechanism.  In Algorithm 1, parameter 𝛂𝛂 
represents a critical point in which the write performance of 
Ceph is better than that of HDFS for a given file with size  𝛂𝛂.  
Parameter 𝛃𝛃 represents a critical point in which the write 
performance of HDFS is better than that of Ceph for a given file 
with size > 𝛃𝛃.  For a given file with size in between 𝛂𝛂 and 𝛃𝛃, the 
write performance of Ceph and HDFS depends on the current 
status of Ceph and HDFS.   

To determine the values of 𝛂𝛂 and 𝛃𝛃, we conduct a file size 
prediction test with different file sizes on Ceph and HDFS on 
SSBox.  The detailed specifications of SSBox will be given in 
Section 4.  Fig. 2 shows the predicting results. From Fig 2, we 
can see that the write performance of Ceph is better than that of 
HDFS when the file size is less than or equal to 500MB (the 
value of 𝛂𝛂).  When the file size is greater than 800MB (the 
value of 𝛃𝛃), the write performance of HDFS is better than that 
of Ceph.  Therefore, the values of 𝛂𝛂 and 𝛃𝛃 are set to 500MB 
and 800MB in Algorithm 1, respectively.  Note that for 
different systems, the values of 𝛂𝛂 and 𝛃𝛃 may be different. 

With the values of 𝛂𝛂 and 𝛃𝛃, Algorithm 1 stores files to Ceph 
when the file size is smaller than or equal to 500MB and stores 

files to HDFS when the file size is greater than 800MB.  For 
files with sizes in between 𝛂𝛂 and 𝛃𝛃, Algorithm 1 uses KNN 
algorithm to decide where to store them.  KNN is a supervised 
machine learning algorithm. In this paper, in the classification 
phase, an unlabeled vector is classified by the most frequent 
label among the K (a user-defined constant), and training 
samples which are measured by Euclidean distances. 

 
 

 
 
 

 
Fig 2. Results of file size prediction 

 
 

B. With RAM disk caching 
Algorithm 2 shows the file placement mechanism with RAM 

disk caching mechanism.  In Algorithm 2, the values of 𝛂𝛂 and 𝛃𝛃 
and KNN prediction function in are different from those in 
Algorithm 1.  They need to take the file writing time of Ceph 
and RAM disk into consideration.  Based on observations, the 
system write thoughts may be increased when the file writing 
time of Ceph is smaller than twice of the file writing time of 
RAM Disk. Therefore, 𝛂𝛂 and 𝛃𝛃 is set to 40MB and 120MB in 
Algorithm 2. 

All coming queries may be scheduled sequentially when 
multiple files uploaded to the cloud storage system, SSBox. 
Therefore, if we have sufficient RAM capacity as RAM disk, 
say 100GB on each node in our system, the proposed 
mechanism could cache large files in the RAM Disk.  The files 
cached in RAM disk could be written to Ceph or HDFS by 
using parallel programming technique to speed up the writing 
time.  There are two reasons to cache large files in the RAM 
Disk instead of caching small files. One is that writing large 
files to the RAM Disk is dramatically faster than writing them 
into Ceph or HDFS.  The other is that the time to write small 
files (less than 40MB) to Ceph is faster than that to write them 
into the RAM Disk and then writing them to Ceph or HDFS in 
parallel.  

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:42:06 UTC from IEEE Xplore.  Restrictions apply. 



Proceedings of the 2017 IEEE International Conference on Applied System Innovation
IEEE-ICASI 2017 - Meen, Prior & Lam (Eds)

ISBN 978-1-5090-4897-7 - 1727

 

 
 

4. System Configuration and Experiments Design 
 

To validate the proposed mechanisms, we set up a cluster 
with five nodes.  Each node is a server that is equiped with 20 
Intel CPU cores and a QDR InfiniBand (40Gbps) card. The file 
system used is Btrfs. Whole system is set up with Ubuntu 
14.04.4 and Linux kernel version is 4.4. The version of Ceph in 
the experiments is Infernails 9.2 and the version of HDFS is 
2.4.1. 

To equalize disk resources between Ceph, HDFS and the 
proposed hybrid system, all disks are shared by Ceph and 
HDFS.  In this setting, we could avoid hybrid system to take 
any benefits from the system setting. There are 10 HDDs in our 
system.  Each HDD is divided into 2 equal-size partitions, one 
for Ceph and the other for HDFS.  For the Ceph used in the 
experiments, it contains 3 MONS, 10 OSDs and 1 MDS.  Block 
sizes in Ceph are set to the default size, 4MB.  Hadoop is 
installed on the same 5 nodes where Ceph has installed.  Block 
sizes in HDFS are set to default size, 64MB.  Each file will have 
three replicas no matter whether it is in Ceph or in HDFS.  

For experiments, we create ten file sets and run the 
experiments on two environments, local and SSBox.  The local 
and SSBox environments are used to test the proposed 
mechanisms without/with cloud storage services, respectively.  
Two data groups are used for the evaluations.  Each data group 
contains five file sets and each file set has 500 files.  The main 
difference of the two data groups is the ratio of small and large 
files.  Table 2 shows the composition of two data groups. 

The SSBox cloud storage service will be deployed in one of 
the 5 nodes.  In SSBox, data is written to HDFS with the HDFS 
API that is Python package for Hadoop and is written to Ceph 
with POSIX write APIs.  Data will be renamed with the hash of 
its contents and the location will be recorded in PostgreSQL 
database.  The execution flow of uploading files into SSBox is 
shown in Fig. 3. 

In the local environment, files read or write are processed 
sequentially inside a local cluster by using file operation APIs 
provided in Ceph, HDFS, hybrid mechanism without RAM 
disk caching (HLR), and hybrid mechanism with RAM disk 
caching (HSR).  In the SSBox environment, a client side in 
different clusters connected together with an Ethernet will 
sequentially uploads files from 6 file sets, file set 1, file set 2 

and file set 3 in the first and the second data group shown in 
Table 2, to SSBox with RESTful APIs.  

 
 

Table 2. Composition of 10 File Sets 

 
 

 
 

Fig 3. The execution flow of SSBox upload API 
 

5. Evaluations 
 
A. Local Environment 

Fig. 4 and Fig. 5 show the write performance of Ceph, HDFS, 
and the proposed hybrid system with file sets in the first and the 
second data groups, respectively.   From Fig.4 and Fig. 5, we 
observe that the file placement mechanism without RAM disk 
caching can improve the write throughputs of Ceph and HDFS 
by approximately 10% to 50%. While the one with RAM disk 
caching can have up to 200% write throughputs improvement.   
From Fig. 4 and Fig. 5, we have the following observations: 

Observation 1: The write throughputs of Ceph and HDFS 
are sensitive to file sizes.  However, the proposed hybrid 
system avoids the fluctuated phenomenon and shows stable 
write throughputs compared with Ceph and HDFS.   

Observation 2: HSR has very high throughputs in the first 
file set of two data groups.  Depending on the design of HSR, 
files managed by Ceph should be finished earlier than twice the 
time that files are written to RAM disk.  Fig. 4 and Fig. 5 show 
that the throughput of HSR is around 900MB for the first file 
set which is approximately half the RAM disk’s writing time. 
This indicates that most files larger than 1MB in the first file 
sets are accessed by Ceph.  Therefore, when the maximum file 
size grows, there may be more files managed by HDFS and the 
overhead of writing files from RAM Disk to HDFS may show. 
  
B. SSBox environment 

In SSBox environment, Fig. 6 shows that the networking 
overheads and hashing overheads may be nearly the same for 
Ceph, HDFS, and the proposed hybrid system.  The reason is 
that all files are managed sequentially and there has no pipeline 
acceleration for networking, hashing and writing steps. 
According to the result, we could infer that the more portions of 
networking overheads and hashing overheads are, the more 

 File set 1 File set 2 File set 3 File set 4 File set 5 

Data 
group1 

50_400M 
450_1M 

50_800M 
450_1M 

50_1500M 
450_1M 

50_2500M 
450_1M 

50_4000M 
450_1M 

Data 
group2 

100_400M 
400_1M 

100_800M 
400_1M 

100_1500M 
400_1M 

100_2500M 
400_1M 

100_4000M 
400_1M 

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:42:06 UTC from IEEE Xplore.  Restrictions apply. 



Proceedings of the 2017 IEEE International Conference on Applied System Innovation
IEEE-ICASI 2017 - Meen, Prior & Lam (Eds)

ISBN 978-1-5090-4897-71728 -

overall overheads are saved. The result shows that the HSR 
could save 12% to 15% overheads for SSBox.  
 

 
Fig 4. Result after Running the First Data Group 

 

 
Fig 5. Result after Running the Second Data Group 

 

 
Fig 6. Results of Experiments on SSBox 

 
6. Conclusions 

 
    As cloud storage becomes widespread nowadays, write 
throughputs may be a bottleneck for cloud servers.  To improve 
write throughputs, this paper proposed two mechanisms to 
hybrid two distributed file systems, Ceph and HDFS, according 
to the amount of memory resources.  These hybrid mechanisms 
mainly composed of three parts, the file size prediction, KNN 
clustering, and RAM disk caching, to enhance the write 
throughputs of proposed hybrid system. The experimental 
results show that the proposed hybrid system can have 20% to 
200% write throughput gain compare with Ceph or HDFS. In 
addition, the proposed hybrid mechanisms could eliminate 
12% to 15% overheads caused by upload operation in SSBox. 
 
References 
 

[1] Jun, S., and Sha-sha, Y. (2011, May). The application of 
cloud storage technology in SMEs. In E-Business and 
E-Government (ICEE), 2011 International Conference on (pp. 
1-5). IEEE.  

[2] Grossman, R. L., Gu, Y., Sabala, M., and Zhang, W. (2009). 
Compute and storage clouds using wide area high 
performance networks. Future Generation Computer Systems, 
25(2), 179-183. 

[3] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D., and 
Maltzahn, C. (2006, November). Ceph: A scalable, 

high-performance distributed file system. In Proceedings of 
the 7th symposium on Operating systems design and 
implementation (pp. 307-320). USENIX Association. 

[4] Weil, S. A., Brandt, S. A., Miller, E. L., and  Maltzahn, C. 
(2006, November). CRUSH: Controlled, scalable, 
decentralized placement of replicated data. In Proceedings of 
the 2006 ACM/IEEE conference on Supercomputing (p. 122). 
ACM.  

[5] Weil, S. A., Leung, A. W., Brandt, S. A., and  Maltzahn, C. 
(2007, November). Rados: a scalable, reliable storage service 
for petabyte-scale storage clusters. In Proceedings of the 2nd 
international workshop on Petascale data storage: held in 
conjunction with Supercomputing '07 (pp. 35-44). ACM. 

[6] Shvachko, K., Kuang, H., Radia, S., and  Chansler, R. (2010, 
May). The hadoop distributed file system. In Mass Storage 
Systems and Technologies (MSST), 2010 IEEE 26th 
Symposium on (pp. 1-10). IEEE. 

[7] Depardon, B., Séguin, C., and Mahec, G. L. (2013). Analysis 
of six distributed file systems Tech. Rep. hal-00789086 
Université de Picardie Jules Verne. 

[8] Donvito, G., Marzulli, G., and Diacono, D. (2014). Testing of 
several distributed file-systems (HDFS, Ceph and GlusterFS) 
for supporting the HEP experiments analysis. In Journal of 
Physics: Conference Series (Vol. 513, No. 4, p. 042014). IOP 
Publishing. 

[9] Hsing-Chang Chou, Che-Rung Lee, and Yeh-Ching Chung. 
(2015) Container-Based Scale-Out Architecture for Cloud 
Storage Service. Master Thesis in National Tsing Hua 
University. 

[10] Cover, T. M., and Hart, P. E. (1967). Nearest neighbor pattern 
classification. Information Theory, IEEE Transactions on, 
13(1), 21-27. 

[11] Zeng, W., Zhao, Y., Ou, K., and Song, W. (2009, November). 
Research on cloud storage architecture and key technologies. 
In Proceedings of the 2nd International Conference on 
Interaction Sciences: Information Technology, Culture and 
Human (pp. 1044-1048). ACM. 

[12] Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., 
McKelvie, S., ... and Haridas, J. (2011, October). Windows 
Azure Storage: a highly available cloud storage service with 
strong consistency. In Proceedings of the Twenty-Third ACM 
Symposium on Operating Systems Principles (pp. 143-157). 
ACM. 

[13] Ghemawat, S., Gobioff, H., and Leung, S. T. (2003, October). 
The Google file system. In ACM SIGOPS operating systems 
review (Vol. 37, No. 5, pp. 29-43). ACM. 

[14] Downey, A. B. (2001). The structural cause of file size 
distributions. In Modeling, Analysis and Simulation of 
Computer and Telecommunication Systems, 2001. 
Proceedings. Ninth International Symposium on (pp. 
361-370). IEEE. 

[15] Barford, P., and Crovella, M. (1998). Generating 
representative web workloads for network and server 
performance evaluation. ACM SIGMETRICS Performance 
Evaluation Review, 26(1), 151-160. 

[16] Crovella, M. E., Taqqu, M. S., and Bestavros, A. (1998). 
Heavy-tailed probability distributions in the World Wide 
Web. A practical guide to heavy tails, 1, 3-26. 

[17] Welch, B., and Noer, G. (2013, May). Optimizing a hybrid 
SSD/HDD HPC storage system based on file size 
distributions. In Mass Storage Systems and Technologies 
(MSST), 2013 IEEE 29th Symposium on (pp. 1-12). IEEE. 

[18] Agrawal, N., Bolosky, W. J., Douceur, J. R., and Lorch, J. R. 
(2007). A five-year study of file-system metadata. ACM 
Transactions on Storage (TOS), 3(3), 9. 

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:42:06 UTC from IEEE Xplore.  Restrictions apply. 


