
A Dynamic Module Deployment Framework
for M2M Platforms

Bing-Liang Chen, Shih-Chun Huang, Yu-Cing Luo, Yeh-Ching Chung and Jerry Chou
Department of Computer Science, National Tsing Hua University, Taiwan

Email: {cbl920809,sjhuang,ycluo}@sslab.nthu.edu.tw

{ychung, jchou}@cs.nthu.edu.tw

Abstract—IoT applications are built on top of M2M platforms
which facilitate the communication infrastructure among devices
and to the clouds. Because of increasing M2M communication
traffic and limited edge network bandwidth, it has become a
crucial problem of M2M platform to prevent network congestion
and service delay. A general approach is to deploy IoT service
modules in M2M platform, so that data can be pre-processed
and reduced before transmitting over the networks. Moreover,
the service modules often need to be deployed dynamically
at various locations of M2M platform to accommodate the
mobility of devices moving across access networks, and the on-
demand service requirement from users. However, existing M2M
platforms have limited support to deployment dynamically and
automatically. Therefore, the objective of our work is to build
a dynamic module deployment framework in M2M platform
to manage and optimize module deployment automatically ac-
cording to user service requirements. We achieved the goal by
implementing a solution that integrates a OSGi-based Application
Framework(Kura), with a M2M platform(OM2M). By exploiting
the resource reuse method in OSGi specification, we were able
to reduce the module deployment time by 50% ∼ 52%. Finally, a
computation efficient and near-optimal algorithm was proposed
to optimize the the module placement decision in our framework.

Keywords—Internet-of-Things, Machine-to-Machine, Module
Deployment, Placement Optimization

I. INTRODUCTION

Internet of Things (IoT) is a fast emerging technology.
The number of IoT devices deployed in 2016 is 30% more
compared to 2015, and the number is expected to increase to
20.8 billion in 2020 [1]. These IoT applications, such as smart
cities and smart homes, are mostly built on a network systems
connecting devices with cloud services, so that intelligent
decision and action can be made by using the powerful servers
in the cloud to analyze the big data collected from devices.
However, due to the growing number of heterogeneous devices
and limited network bandwidth at the edge or local networks,
the huge amount of incoming data steams generated by IoT
devices can easily lead to severe network congestion and
surging servers loads. Hence, minimizing network traffic of
IoT applications is a critical research issue.

In recent years, many efforts have been made from network
architecture to programming model for the coordination of IoT
applications. Such as, the Web of Things (WoT) [2] approach
is a programming model that allows real-world objects to
be part of World Wide Web. In other words, accessing to
the real-world object is like accessing to the website. Using
the RESTful APIs and link directed to any object on the

Internet, we can access the service on the object. This way
simplifies the data exchange between a large number of objects
and service consolidation in each object. The WoT approach
starts with the application layer of the network architecture
to hide the underlying network complexity. When developers
create a new application, they only need to consider how
to compose a number of web services as so-called mash-
up. In telecommunication, Machine to Machine (M2M) [3]
is an upcoming application in the next-generation communi-
cation. Hence, M2M platforms are proposed and developed
to address the challenge of communication problems across
heterogeneous IoT devices. Although WoT [4] provides an
programming model for developing IoT applications and M2M
platform supplies a network framework for communicating IoT
devices, they have not paid much attention on the issue of
managing the IoT network traffic.

Traditionally, we rely on upgrading the capacity of network
and server to handle the growing network traffic from IoT de-
vices. But due to the bursty traffic behavior of IoT applications,
optimizing for system peak load could significantly lower
the average resource utilization. Hence, recently, dynamic
service deployment [5] has drawn increasing interests from
the research community as a more promising solution. The
idea is to dynamically deploy service module in the M2M
platform by user requests. These modules are deployed close
to the edge of networks and shared among users, so that the
overall robustness of the application is improved, and network
traffic loading is reduced. Many challenges remain for this
recently proposed idea. First, because of the limited resource
of the devices, and diverse service functionality, a software
architecture is needed to manage these service module, and
coordinate them across devices. Second, module deployment
occurs at runtime in an on-demand manner, so the deployment
time has to be short, and critical to service quality. Finally,
because modules can be shared among users, and users can be
scattered around the network, it is not trivial where to deploy
the requested modules under resource and service quality
constraints.

In this paper, we firstly propose a novel M2M platform
based on OM2M/Kura that can dynamically push service
module (i.e., program) to the device nodes in the M2M
platform. The low-end node (e.g. edge node and middle
node) is applied to support remote deployment, and the high-
end node (e.g. infrastructure node) is equipped with more
computing capability and storage space to management all IoT
applications in the M2M platform. As a result, the complicated
application can be processed locally rather than push all data

2017 IEEE 7th International Symposium on Cloud and Service Computing

978-0-7695-6328-2/17 $31.00 © 2017 IEEE

DOI 10.1109/SC2.2017.37

194

2017 IEEE 7th International Symposium on Cloud and Service Computing

978-1-5386-5862-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SC2.2017.37

194

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:36:36 UTC from IEEE Xplore. Restrictions apply.

to the server for processing for reducing the network traffic
and the load of data centers.

Then, we further introduce a resource reuse method which
uses the OSGi specifications [6] to reuse the M2M resource
in our M2M platform implementation. M2M resource is a set
of resource data model defined by OM2M platform. Using
the resource reuse method can pre-loading the M2M resource
that commonly used by all the service module. Therefore,
the startup time of our dynamic module deployment can be
significantly reduced by 75%.

Finally, we propose a module placement algorithm to con-
trol the deployment decision of our implemented framework.
The goal of our placement problem is to maximized the
number of satisfied requests subjects to the service quality
requirement (i.e., network distance between users and service
module) from users and resource capacity constraints on de-
vices. We formulate the dynamic module placement problem as
an ILP optimization problem, and propose a heuristic module
placement algorithm, called MPA. By comparing to the optimal
solution from using an ILP solver(CPLEX), we prove MPA is
a computational efficient and near-optimal algorithm.

The remainder of this paper is organized as follows.
In Section 2, we describe the standards for M2M and the
Internet of Things, including ESTI SmartM2M and oneM2M,
and discuss related works about deployment platform. The
architecture and implementation of our dynamic module de-
ployment M2M platform is detailed in Section 3. The dynamic
module placement problem formulation and algorithms are
given in the Section 4. Section 5 is the evaluation results of
our proposed M2M platform and algorithm. Finally, Section 6
is the conclusion of our work.

II. RELATED WORKS

To solve the high vertical fragmentation of current M2M
markets and the lack of the standards, the ETSI initially
released a set of specifications named the ETSI SmartM2M
standards for a common M2M service platform [7]. In July
2012, a global M2M standard organization named oneM2M
was formed and employed a simple horizontal platform ar-
chitecture that fits within a three-layer model comprising
applications, services and networks. The oneM2M standards
is the same as the ETSI SmartM2M with initial focus on
the Service Layer which resides between the Application
Layer and the Network Layer. The Common Services Entity
(CSE) represents an instantiation of a set of c̈ommon service
functionsöf the M2M environments as shown in Fig. 1. The
services provided by the Common Services Layer in the M2M
system are referred to as Common Services Functions (CSFs),
such as the Application and Service Layer Management, the
Communication Management and Delivery Handling, the Data
Management & Repository, and so on. The CSFs provide ser-
vices to the Application Entities (AEs) via the Mca reference
and to other CSEs via the Mcc reference point, and interact
with the Underlying Network Service Entities (NSEs) via the
Mcn reference point [8].

Several studies [9], [10], [11] present the design and
implementation of platforms which can offload tasks from end
devices to edge servers. In [9], Cloudlet placed a powerful
machine near to users for reducing service latency. Users

Fig. 1. Common Services Entity(CSE)

can push virtual machine images to the machine to perform
their tasks. Unlike our work, Cloudlet does not consider the
limited capacity on devices. ParaDrop [10] is a fog device
implemented on end-user gateways. ParaDrop is a service
deployment framework for utilizing residual capacity on net-
work gateways, but it does not consider the dynamic module
deployment problem. [11] proposed a module placement algo-
rithm similar to us, but it didn’t discuss the mechanism and
implementation of dynamic module deployment.

III. MODULE DEPLOYMENT MECHANISM

This section describes the design and implementation of
our dynamic module deployment framework. First, we briefly
describe the existing M2M framework architecture, and explain
how we extended it to support the functionality of dynamic
module deployment. Then, we use a step-by-step workflow to
detail the implementation of our dynamic module deployment
mechanism. Finally, we minimize the module deployment time
of our framework by implementing a resource reuse method
through the OSGi specification.

A. Platform Architecture

Our work is based the OM2M platform [12], which is
an oneM2M-compliant open-source M2M service platform. It
supplies the software to enable the Common Service Entity
(CSE). OM2M provides RESTful APIs to enhance inter-
operations with the CSEs. A modular architecture is proposed
running on the top of an OSGi layer [13], making it highly
extensible via plugins. Each plugin is a Common Services
Function (CSF) that offers specific functionalities. A CSF can
be remotely installed, started, stopped, updated, and uninstalled
via the OSGi Equinox runtime. However, the operations for
managing these CSE plugins have to be done manually on the
running nodes.

To facilatate remote software package management, we
also use Kura in our framework implementation. Kura is a
Java/OSGi-based smart application container [14] that enables
remote management of IoT gateways. It also uses the OSGi
specification to allow for remote management of the IoT appli-
cations installed in Kura including their deployment, upgrade
and configuration management. Moreover, Kura provides a
wide range of services for simplifying the process of writing
the IoT application such as Data Services, Cloud Services, I/O
Services and etc. The services provided by Kura as shown in
Fig. 2.

195195

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:36:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Services provided by Kura platform

Fig. 3. The proposed M2M platform architecture

Fig. 3 shows the overall picture of our OM2M platform.
Infrastructure node acts as the cloud platform or datacenter
for IoT. Edge node is at the edge of telecom network, and
it registers to the infrastructure node to manage the nodes
which are under its resource tree. Applications, such as smart
home, can be deployed on our edge node and not all data from
the IoT applications needs to be sent to the cloud servers.
Middle node refers to gateway or router, it registers to the
edge node and manages the underneath heterogeneous devices.
Application service nodes are the end-users who need IoT
service to process or collect their data. We designed two
different functional components to perform the deployment
task. One is deployment component, which runs on every nodes
in M2M platform to complete the task of module deployment.
The other is deployment controller, which is at the top of
M2M platform and makes the remote deployment decisions.
The details of these components are given next.

1) Deployment Component: Deployment component is in
charge of performing the deployment task on a node. We
implemented this component based on the Remote Manage-
ment Service in Kura, which enables remote IoT applica-
tions management including deployment management, upgrade
management and remote access. In order to adapt this manage-
ment service into our M2M platform, we modify the Remote
Management Service into a Common Service Function (CSF)
plugin package in the OM2M platform following the OSGi
specification as showed in Fig. 4. Hence, the deployment
component can be automatically started after the OM2M plat-

Fig. 4. The OM2M building blocks

Fig. 5. The steps of module deployment flow in deployment controller

form is launched. Then the deployment controller can remotely
interact with the Remote Management Service of deployment
component to perform dynamic module deployment.

2) Deployment Controller: Deployment controller is at the
top of the M2M framework. Its core function is to make
placement decisions according to the current system states, and
user service requests, and then interact with the deployment
component to perform remote module deployment. Deploy-
ment controller is composed of a local deployment component,
a Module Placement Algorithm (MPA), and an information
collector as shown in Fig. 5. The information collector collects
all the resource usage information, and service module requests
in the system. After the controller receives service requests,
it calls the Module Placement Algorithm to find a module
placement plans that can satisfy the most number of service
requests while minimizing the network traffic. Then, a set of
deployment tasks are created to realize the placement plan.
Each deployment task contains the require information for
deployment components to perform a module deployment task
on a remote node.

B. Module Deployment Flow in M2M Platform

This section introduces the details of module deployment
flow between deployment controller and deployment compo-
nent as showed in Fig. 6. First, the deployment component
in deployment controller creates a deployment task based on
the module ID and target node ID decided by the Module
Placement Algorithm (MPA). Then, the deployment compo-
nent sends a request using the RESTful API to find the target
node location (In this paper, the node’s location information
refers to the ip address which is registered to the M2M plat-
form) through M2M platform. After a node in M2M platform
receives this request, it checks whether its ID is the same as
the ID in the request. If the ID is the same, the node responses
this request with its location information. Otherwise, the node
forwards this request to the nodes under its resource tree. This
searching process repeats until the target node responses to
the controller with its location information. After receiving

196196

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:36:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. The module deployment flow in M2M platform

the response from the target node, the deployment component
in the deployment controller setups a end-to-end connection
tunnel to the deployment component on the target node.
Finally, module package and remote management command
are sent to the target node for deployment.

C. Resource Reuse Method

After completing our proto-type system implementation,
we made an effort to profile the system performance and
further optimize the performance of our implementation.

Fig. 7 depicts the step-by-step code path of the module
startup process in our framework. After detailed profiling the
time spent in each step on both edge node and middle node,
we found that most of the module deployment time was spent
on loading a OSGi resource, called XmlMapper function. As
shown in Fig. 8, the deployment module startup time is around
775.2 milliseconds and 2654.2 milliseconds in edge node and
middle node, respectively. But more than 75% of the time was
caused by the load time of XmlMapper function.

XmlMapper is a function used to covert M2M resource
XML representation to M2M resource Java Object and vice
verse. It has to be loaded by almost every Comon Service
Functions. Therefore, we decided to implement a resource
reuse method in our framework to make XmlMapper become
a common OSGi resource. So it can be loaded when the
OM2M node is initialized, and shared by all the dynamic
deployed modules. As shown by our real testbed evaluation,
the implemented resource reuse method can significantly re-
duce the startup time by 75%, and the total deployment time
by 50%. Also, this method can reduce the network transfer
package size of deployment software, and the memory usage
on the deployment nodes. Therefore, this technique is critical
to the performance and resource usage in our framework
implementation.

IV. MODULE PLACEMENT PROBLEM AND SOLUTION

After explaining the mechanism and implementation of our
M2M system framework, we describe our module placement
problem and algorithm in this section. Module placement
problem is critical to the performance of our dynamic module
deployment framework, because the placement decision can
determine the service quality seen by the users, and the re-
source consumption of service module on the deployed nodes.
Hence, this section first define and formulate the placement
problem addressed in this paper, and then propose an efficient

Fig. 7. The flow of deployment module startup

Fig. 8. The overhead analysis of deployment module startup time

and near-optimal heuristic placement algorithm to make timely
decision at runtime.

A. Problem Formulation

A M2M system like the the one shown in Fig. 3 can be
denoted as a graph with N nodes (i.e., either edge or middle
nodes) and E edges connected between nodes. The computing
capacity on each node can be varied, so we use Cn to denote
the capacity of a node n ∈ N .

The placement problem formulated in this paper is to
decide the deployment location of a set of modules M in order
to satisfy a set of service requests R arriving at a given time
interval. Each request r ∈ R asks for some service module
mr ∈ M . A request is satisfied if and only if its requested
module is successfully deployed in the M2M system at a
feasible location.

To reflect the placement constraints in real systems, a mod-
ule m ∈ M can only be placed on a node n if the following
three requirements are matched. We briefly describe these
constraints, and their associated variables (1) The capacity
constraint, that is a module can only be placed on a node with
sufficient residual capacity. In other words, there can only be
limited number of module deployed on each node. Hence we
introduce Um to be the resource usage of module m, and αn

to be the resource capacity already used on node n. (2) The
feasibility constraint, that is a module can only be placed on
certain nodes that are specified by the user request. Hence
we introduce Nr to represent the set of feasible nodes for
request r. (3) Finally is the service quality constraint, which
is measured by the network distance between the users and
service deployed node. The network distance is likely to cause
higher request response time delay. Therefore, we introduce

197197

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:36:36 UTC from IEEE Xplore. Restrictions apply.

Lm to denote the maximum network distance that can be
tolerant for the user request of module m, and we use dr,n to
denote the network distance (i.e., number of hops or latency
delay) between from request r’s user location to a node n.

The goal of our placement problem is to maximize the
number of satisfied requests under the three constraints men-
tioned above. Let xn,m ∈ {0, 1} be the boolean variable for our
placement decision. If xn,m = 1, then module m is placed on
node n. Otherwise, module m is not placed on node n. Then,
our problem can be formulated by the following equations.

max
∑

r∈R

yr (1)

st : yr = min(
∑

n∈Nr

xn,mr
, 1), ∀r ∈ R (2)

∑

m∈M

xn,m × Um + αn ≤ Cn, ∀n ∈ N, ∀m ∈ M (3)

xn,mr
× dr,n ≤ Lm, ∀n ∈ N, ∀r ∈ R (4)∑

n∈Nr

xn,mr
≤ 1, ∀r ∈ R (5)

xn,m ∈ {0, 1}, ∀n ∈ N, ∀m ∈ M (6)

The objective function in Eq. (1) maximizes the number
of satisfied requests yr. Eq. (2) set yr to 1 if the module
of request r is placed on one of the nodes. Otherwise, yr
is set to 0. Eq. (3) guards the capacity constrains of every
node n ∈ N . Eq. (4) guards the service quality constrain of
each request r ∈ R. Eq. (5) guards the feasibility constraint,
so that a module mr of the request r can only be deployed
on a node n, where n ∈ Nr. Eq. (6) represents our placement
decision. The resulting formulation can be solved by existing
ILP solvers, such as CPLEX [15], GLPK [16], or CBC [17].
Doing so, however, may be computationally intensive, as the
problem is a variation of the NP-hard knapsack problem.
Hence, we developed a heuristic algorithm as presented in the
next subsection.

B. Module Placement Algorithm (MPA)

The design principles of our proposed Module Place-
ment Algorithm (MPA) are described as follows. The MPA
algorithm needs to make two decisions: (i) which request
should be considered first and (ii) which node should be used
for deployment first. More specifically, the MPA algorithm
considers the request with shorter network distance (i.e., less
latency delay). If the network distance of the requests are
the same, the MPA algorithm chooses the request which
consumes less resource capacity. After sorting the requests, the
MPA algorithm iteratively selects the node for deploying the
modules. Firstly, The MPA algorithm selects the node which
is the closest to the end user who sends this request. If the
distance between the feasible nodes and the end user who
sends this request are the same, the MPA algorithm selects
the feasible node which has the most capacity. It stops once
all the requests are fulfilled or all resources are used. Fig. 9
shows the pseudocode of the MPA algorithm.

Line 1 decides the order of requests. The for-loop starts
from line 2 iterates through all sorted requests and the for-loop

Fig. 9. The pseudocode of the MPA algorithm

starts from line 3 iterates through all nodes in M2M platform.
Based on the given requests, line 4 checks the violation of
the constraint in Eq. (4) and line 5 decides the set of feasible
nodes. And line 8 decides the order of feasible nodes based
on Lm and αn. The for-loop starts from line 9 iterates through
all sorted feasible nodes. Line 10 checks the violation of the
constraint in Eq. (3) and line 7 assigns the value to the decision
variable . In terms of complexity, the MPA algorithm results
in polynomial time, which is proved in Lemma 1

Lemma 1(Time Complexity). The MPA algorithm termi-
nates in polynomial time

Proof. In terms of complexity, creating the sorted units
list in line 1 has a complexity of O(|R| log |R|). The for-
loop in line 37̃ goes through nodes n ∈ N , which leads
to a complexity O(|N |). Creating the sorted units list in line
8 has a complexity of O(|N | log |N |). The for-loop in lines
91̃5 goes through feasible nodes n ∈ Nr , which leads to
a complexity of O(|N |). Since the for-loop in lines 21̃6 has
O(|R|) iterations, the overall time complexity of the MPA al-
gorithm is max {O(|R| log |R|), O(|R|(2|N |+ |N | log |N |))}.
Therefore, MPA algorithm has a polynomial time complexity.

V. EXPERIMENTS

In this section, we use a real testbed to evaluate the
benefit of resource reuse method, and then use a simulation to
evaluate the complexity and optimality of Module Placement
Algorithm (MPA).

A. Resource reuse method evaluation

1) Real testbed environment: Here, we describe the real
testbed environment for evaluating our proposed dynamic
module deployment framework, and the resource reuse method
described in Section III. As illustrated in Fig. 2, our experimen-
tal environment has one infrastructure node, two edge nodes
and four middle nodes. The infrastructure node was running
on a regular PC machine. The two edge nodes were running on
Intel Mini Computers, and the four middle nodes were running
on Raspberry Pi. The network between infrastructure node
and edge node is Ethernet network, and the network between
infrastructure node and middle node is wireless network.
The Intel Mini Computer enables the Wi-Fi connection from

198198

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:36:36 UTC from IEEE Xplore. Restrictions apply.

TABLE I. SPEC OF NODES IN M2M PLATFORM

Inf.node Edge node Middle node App service node

CPU 2 core 4 core 1 core 1 core

Ram 4 GB 4 GB 512 MB 512 MB

Disk 128 GB 1 TB 16 GB 16 GB

Fig. 10. The breakdown of module deployment time on edge node and
middle node when resource reuse method is not applied

Raspberry Pi and the Raspberry Pi enables Wi-Fi or Bluetooth
connection from devices. Finally, to generate service requests,
we deployed a set of application service nodes connected to
the middle node via either Wi-Fi or Bluetooth. All the spec of
nodes is listed in Table I.

2) Results: The basic procedures of module deployment
are composed of (i) Setup connection from the edge or
middle node to the deployment controller on the infrastructure;
(ii)Remote install module by transferring the module package
from the module controller to the edge or middle node;
(iii)Module startup on the edge or middle nodes as shown in
Fig. 7. Fig. 10 shows the breakdown of module deployment
time on edge node and middle node when resource reuse
method is not applied. The edge nodes have more computing
power than the middle nodes, so the time is shorter on the
edge nodes than the middle node. But for both types of nodes,
we can observe that majority of the time, close to 70%, is
spent on module startup. As explained in Section III-C, this is
mainly because of the time consuming operation for loading
the XmlMapper function. On the other hand, the remote
installation time is only about 23%, and the setup connection
time is less than 10%.

After applying our resource reuse method to prevent
XmlMapper function from being loaded repeatedly at runtime,
we were able to reduce the module package size, and module
startup time as shown in Fig. 11. Similar reduction results were
observed for both edge and middle nodes. The module package
size was reduced by 14.3%, which contributes to roughly
8% reduction in remote connection time, and less network
bandwidth consumption. More importantly, the resource reuse
method significantly reduce the module startup time by almost
75%, and reduce the total deployment time by more than 50%.

B. Module Placement Algorithm (MPA) Evaluation

1) Simulation setup: We use simulation to evaluate the
performance of the Module Placement Algorithm (MPA).
In the simulation, we designed three kinds of requests R
which corresponds three kind of modules M . Each module

Fig. 11. The reduction of deployment time and package size after resource
reuse method is applied

TABLE II. SPEC OF MODULES

Module 1 Module 2 Module 3

Usage(Um) 3 2 1

Latency(Lm) 1 2 3

M has its own usage Um and latency Lm. All the specs of
modules are listed in Table II. The resource capacity, Cn, of
infrastructure nodes, edge nodes, and middle nodes were 6,
4, 2, respectively. By default, we consider the system has
50 nodes, either edge or middle nodes, and varied numbers
of requests, |R| = {10, 15, 20}, are randomly generated for
requesting one of three kinds of modules.

2) Results: The goal of MPA algorithm is to maximize
the number of satisfied requests under the limited resource
capacity of nodes, and the maximum latency requirement of
service module. First, we show the MPA algorithm can achieve
near optimal results by comparing to the results from solving
the problem formulation in Section IV-A using the CPLEX
LP solver. As shown in Fig. 12, although the MPA algorithm
has fewer number of satisfied requests than the CPLEX solver.
But the differences are less than 11% under varied number of
requests.

In Fig. 13, we further show the MPA algorithm has poly-
nomial computation time regarding to the number of requests
and nodes in the system. In Fig. 13(a), we fixed the number
of requests to 15, and varied the number of nodes from 10 to
100. In Fig. 13(b), we fixed the number of nodes to 50, and
varied the number of requests from 10 to 20.Since MPA is a
heuristic algorithm, in both evaluation cases, the computation
time grows sub-linear to the number of nodes and requests in
the system. Therefore, we can conclude from our evaluations
that MPA is an fast efficient algorithm that can achieve near
optimal solution, and can be applied as an online algorithm in
our dynamic module deployment framework.

VI. CONCLUSION

In this paper, we implemented a novel M2M platform
which can dynamically deploy modules on a M2M platform.
We further designed a deployment controller which is at top
of the M2M platform to create the deployment task with the
specific node, and also designed a deployment component on
nodes to perform the deployment task. Furthermore, we intro-
duced a resource reuse method using the OSGi specification
to provide IoT service to devices as soon as possible. As

199199

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:36:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. The MPA algorithm has similar results to the optimal (i.e., CPLEX)
algorithm in terms of the number of satisfied requests

(a) The MPA algorithm computation time as the number of nodes
in the system increases

(b) The algorithm computation time as the number of requests
in the system increases

Fig. 13. The MPA algorithm has polynomial computation time complexity

shown by our evaluation on the real testbed, the proposed
method can reduce module package size by 14.3%, the module
startup time by almost 75%, and the total deployment time
by more than 50%. Finally, we studied the module placement
decision by formulating an optimization problem to maximize
number of satisfied requests, and proposing an efficient Module
Placement Algorithm (MPA). Our evaluations show that the
MPA algorithm has polynomial computation time regarding to
the number of requests and nodes in the system, and achieves
near optimal results comparing the CPLEX LP solver.

This paper is a starting point to use M2M platform for
dynamically deploying modules on heterogeneous devices.
However, with the incredible growing speed of the number

of deployment modules in M2M platform, there are still many
open challenges of the proposed platform. For instance, due to
the limitation of OSGi specification, when a large number of
modules are deployed in the same node in M2M framework,
the quality of service provided by the module will be affected.

ACKNOWLEDGEMENT

This study was conducted under the Advanced Commu-
nication Technology Research and Laboratory Development
project of the Institute for Information Industry, which is sub-
sidized by the Ministry of Economic Affairs of the Republic
of China.

REFERENCES

[1] Gartner. Gartner press release. http://www.gartner.com/newsroom/id/
3165317, 2015.

[2] Vlad Stirbu. Towards a restful plug and play experience in the web
of things. In Semantic computing, 2008 IEEE international conference
on, pages 512–517. IEEE, 2008.

[3] Tarik Taleb and Andreas Kunz. Machine type communications in 3gpp
networks: potential, challenges, and solutions. IEEE Communications
Magazine, 50(3), 2012.

[4] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource oriented
architecture for the web of things. In Internet of Things (IOT), 2010,
pages 1–8. IEEE, 2010.

[5] Michael Vogler, Johannes M Schleicher, Christian Inzinger, and
Schahram Dustdar. Diane-dynamic iot application deployment. In
Mobile Services (MS), 2015 IEEE International Conference on, pages
298–305. IEEE, 2015.

[6] OSGi Specifications. https://www.osgi.org/developer/specification.

[7] M Ben Alaya, Yassine Banouar, Thierry Monteil, Christophe Chassot,
and Khalil Drira. Om2m: Extensible etsi-compliant m2m service
platform with self-configuration capability. Procedia Computer Science,
32:1079–1086, 2014.

[8] oneM2M TS-0001. ”functional architecture”. v2.10.0,August,2016.

[9] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel
Davies. The case for vm-based cloudlets in mobile computing. IEEE
pervasive Computing, 8(4), 2009.

[10] Dale Willis, Arkodeb Dasgupta, and Suman Banerjee. Paradrop: a multi-
tenant platform to dynamically install third party services on wireless
gateways. In Proceedings of the 9th ACM workshop on Mobility in the
evolving internet architecture, pages 43–48. ACM, 2014.

[11] Hua-Jun Hong, Pei-Hsuan Tsai, and Cheng-Hsin Hsu. Dynamic module
deployment in a fog computing platform. In Network Operations and
Management Symposium (APNOMS), 2016 18th Asia-Pacific, pages 1–
6. IEEE, 2016.

[12] OM2M. Open source platform for m2m communication. http://www.
eclipse.org/om2m/.

[13] Chao-Lin Wu, Chun-Feng Liao, and Li-Chen Fu. Service-oriented
smart-home architecture based on osgi and mobile-agent technology.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews), 37(2):193–205, 2007.

[14] Kura. Open source java/osgi-based framework for iot gateway. http:
//www.eclipse.org/kura/.

[15] IBM CPLEX optimizer. http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/.

[16] GNU Project. Glpk (gnu linear programming kit). https://www.gnu.
org/software/glpk/.

[17] Cbc (coin-or branch and cut). https://projects.coin-or.org/Cbc.

200200

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 11,2024 at 05:36:36 UTC from IEEE Xplore. Restrictions apply.

