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Abstract
The intrinsic irregular data structure of graphs often causes
poor cache utilization thus deteriorates the performance of
graph analytics. Prior works have designed a variety of graph
reordering methods to improve cache efficiency. However,
little insight has been provided into the issue of workload
imbalance for multicore systems. In this work, we identify
that a major factor affecting the performance is the unevenly
distributed computation load amongst cores. To cope with
this problem, we propose cache-aware reordering (Corder), a
lightweight reordering algorithm that facilitates workload
balance as well as cache optimization. Comprehensive perfor-
mance evaluation of Corder is conducted on various graph
applications and datasets. We observe that Corder yields
speedup of up to 2.59× (on average 1.47×) over original
graphs.

CCS Concepts: • Computing methodologies → Shared
memory algorithms; •Computer systems organization
→Multicore architectures.
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1 Introduction
The main reason accounting for the inefficiency of multi-
core graph processing is the irregular pointer-based data
structure of graphs. It frequently incurs random memory
accesses. Also, a distinctive property commonly found in
natural graph datasets is the power-law degree distribution,
in which a tiny fraction of vertices contribute to a major-
ity of edges. These vertices are called as hot vertices, while
the remaining vertices with less connections are named as
cold vertices. Casting the graph on memory, hot vertices are
preferable for caching, because they comprise a large portion
of computation but a minor portion of memory usage. As for
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the cold vertices, they scatter all over the memory and are
accessed randomly, thereby causing high cache misses rate.

To improve cache efficiency, a variety of lightweight graph
reordering algorithms have been proposed [1, 2, 5]. These ap-
proaches, in principle, reorder vertices such that hot vertices
and cold ones are separated into different memory locations.
In such way, hot vertices are allocated in contiguous memory
space and frequently requested by the core. At a result, they
have higher chances to be retained within the cache lines,
which allows better cache utilization. However, the reorder-
ing techniques does not necessarily guarantee performance
boost. In de facto, it often leads to a slowdown if an improper
strategy is deployed [1]. The gathering of hot vertices aggra-
vates the imbalanced distribution of computation load [5],
forcing the main process to wait for the longest thread for
synchronization.
To overcome the limitation, we propose Cache-aware Re-

ordering (Corder), a reordering algorithm based on the char-
acteristics of the multicore system and its belonging cache
hierarchy. Our contributions can be summarized as follows:

• We discover that graph analytics in multicore system
suffers from uneven work distribution.

• Wepresent Corder, a novel reordering algorithm aimed
to improve workload balance and cache utilization.

2 Corder
The algorithm of Corder consists of three essential steps:
(1) The input graph is subdivided into cacheable disjoint
partitions of size equivalent to the Level-2 (L2) cache. (2)
Each partition contains the same ratio of hot/cold vertices
as the original graph. (3) Hot vertices and cold vertices are
segregated into two segments inside a partition. The time
complexity of the algorithm is 𝑂 (𝑉 +𝑉 /𝐶), where 𝑉 is the
number of vertices and 𝐶 is the L2 cache size.
Corder is especially designed according to the charac-

teristics of the multicore system and its belonging cache
hierarchy. The graph is segmented into numerous partitions,
the sizes of which equal L2 cache size. Hence, each partition
can be fitted into the private L2 cache of one core. The de-
sign choice of L2 cache achieves a balance between speed
and storage, as the storage of Level-1 (L1) cache is too small
while the speed of last level cache (LLC) is too low.

Moreover, each partition contains the same number of hot
vertices whose degrees are above the average degree of the
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Figure 1. Execution time of graph applications with various
reordering methods. PageRank is measured by the time per
iteration

graph. Hence, the workloads of partitions are comparable,
which facilitates the workload balance amongst the cores.
Inside a partition, hot vertices and cold ones are segregated
into different memory spaces. The grouping of hot vertices
improves cache performance. Meanwhile, the relative orders
of hot vertices and cold ones are respectively maintained as
original, so that the graph structure is preserved.

3 Evaluation
In our experiments, a dual-processor server is used. Each
processor consists of 10 cores with 1 MB L2 cache per core.
Corder is implemented in C++ on the basis of GPOP [3], a
novel cache-aware graph processing framework designed for
multicore systems. The performance of Corder is evaluated
on large graphs (e.g., pld, wl, tw and mpi) with edges upto
2.1𝐵 using four representative applications: PageRank, Con-
nected Component, Single Source Shortest Path and Breadth
First Search.
Fig. 1 illustrates the execution time of Corder by com-

paring with three lightweight reordering techniques: Hub-
Clustering (HC) [1], Frequency Based Clustering (FBC) [2],
Degree Based Grouping (DBG) [5]. These techniques, in gen-
eral, place hot vertices in contiguousmemory space to reduce
cache misses. In addition, we implement random reordering
(RND) as a supplementary benchmark.

Corder outperforms other lightweight reordering algo-
rithms significantly. It achieves the highest speedup on all
graphs and applications, which is on average 1.47×. The de-
ployment of other reordering algorithms, including HC, FBC
and DBG, often leads to considerable slowdown, the aver-
ages of which are 0.85×, 0.78×, and 0.74× respectively. This
phenomenon contradicts with the statement reported by

[1, 2, 5] that speedup is expected. The contradiction sources
from the "processing paradigm".
The vertex-centric paradigm [4], as implemented under-

neath HC, FBC and DBG, processes the graph at the granu-
larity of vertex per thread. Therefore, the issue of workload
imbalance is relatively trivial. The partition-centric paradigm
adopted in our work by using GPOP, however, treats the
graph at a much coarser granularity. A partition contain-
ing over ten thousand vertices (e.g., 262144 vertices in the
experiment) acts as the basic unit for single thread to pro-
cess. Hence with the use of HC, FBC and DBG, the gathering
of hot vertices heavily exacerbates the imbalance issue and
consequently becomes the primary reason for performance
degradation.

Random reordering is occasionally beneficial. From the
perspective of statistics, random reordering can be inter-
preted as distributing hot vertices evenly across the parti-
tions. Through randomization, all partitions share the same
number of hot vertices and similar workloads. However, the
benefit comes at the cost of poor cache utilization as hot
vertices are decentralized. The overall performance is under-
mined when the loss from cache utilization outweighs the
gain from workload balance.

4 Conclusion
In this work, we identify that theworkload imbalance amongst
cores degrades the performance of graph analytics in multi-
core systems. To address this issue, a cache-aware reorder-
ing (Corder) methods is proposed. Corder facilitates a fair
sharing of computation load in the multicore system by con-
centrating the same number of hot vertices on all cores.
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