
MProbe: Make the code probing meaningless
Yonggang Li

The School of Computer Science and
Technology, the China University of

Mining and Technology
liyg@cumt.edu.cn

Ye-Ching Chung
The School of Data Science,

CUHK(SZ)
ychung@cuhk.edu.cn

Jinbiao Xing
The School of Computer Science and
Technology, the China University of

Mining and Technology
jbxing@mail.ustc.edu.cn

Yu Bao
The School of Computer Science and
Technology, the China University of

Mining and Technology
baoyu@cumt.edu.cn

Guoyuan Lin
The School of Computer Science and
Technology, the China University of

Mining and Technology
lingy@cumt.edu.cn

ABSTRACT
Modern security methods use address space layout randomization
(ASLR) to defend against code reuse attacks (CRAs). However, code
probing can still obtain the content and address of the code through
code probing. Code probing invalidates the widely used ASLR meth-
ods, causing researchers to lose confidence in them. On the contrary,
we believe the ASLR is still effective, if it has anti-probing capabil-
ity. To enhance the anti-probing capability of ASLR and defense
CRAs, this paper proposes an anti-probing method MProbe. First,
it detects the code probing activities of attackers, including address
probing and content probing. Next, the execution permission of the
probed code will be de-enabled in the original address space. At the
same time, the equivalent code block in a random address space
will replace the probed code. Finally, new security strategies are
used to prevent the probed code blocks from being used as gadgets.
Experiments and analysis show that MProbe has a good defense
effect against CRAs based on code probing, and only introduces
less than 3% performance overhead to the operating system (OS).

CCS CONCEPTS
• Security and privacy→ Systems security; Operating systems
security; Virtualization and security.

KEYWORDS
Integrity, System architectures, Security and Protection

ACM Reference Format:
Yonggang Li, Ye-Ching Chung, Jinbiao Xing, Yu Bao, and Guoyuan Lin. 2022.
MProbe: Make the code probing meaningless. In Annual Computer Security
Applications Conference (ACSAC ’22), December 05–09, 2022, Austin, TX, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3564625.3567967

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’22, December 05–09, 2022, Austin, TX, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9759-9/22/12. . . $15.00
https://doi.org/10.1145/3564625.3567967

1 INTRODUCTION
CRAs[1,2] bring challenges to the OS security. They do not rely on
the injected code, causing the DEP to fail[3]. The difference between
CRA variants and legal code is gradually shrinking. Therefore, the
signature-based methods[4] are losing their effects. Although the
security methods based on the control flow feature[5] can identify
CRAs, they not only face the state explosion of control flow paths,
but also introduce huge performance overhead. The boundary de-
tection methods[6] cannot provide precise boundaries for indirect
control transfer (ICT) instructions whose control data is dynamic,
which reduces their protection effects.

ASLR[7] makes it possible to have a security method considering
both execution efficiency and defense effects. It randomizesmemory
layout, so that attackers cannot obtain the address of the gadgets[8].
ASLR only hides the address of the code or control data, and does
not intervene in the execution of execution entities. So, it has high
execution efficiency. In ASLR environment, attackers cannot build
gadget chains due to lack of the knowledge of code content and
code addresses.

Unfortunately, the probing attack[9] can still get code content
and code addresses. Although the periodic or real-time ASLR[10]
has a certain degree of anti-probing ability, it makes ASLR lose
performance advantage. Facing the challenge of probing attacks,
ASLR seems to have gradually lost its defense effect. However, we
believe ASLR is still an excellent security method, if it has anti-
probing capability. Around this point of view, this paper proposes
an anti-probing method MProbe.

The goal of a probing activity is to get the code content or code
addresses required by CRAs. Then, the probed code blocks con-
forming specific forms (such as pop rax; jmp *rax) will be connected
together to form a gadget chain. In real attack scenarios, both the
probing activities and the control flow along the gadget chain have
abnormal behavior characteristics. These characteristics are key to
detecting and defensing CRAs.

There are two probing targets for CRAs, code address and code
content. Among the currently known probing technologies, side
channel[37] and data-leak[38] can directly get the code address.
Arbitrary read[39] and arbitrary jump[16] can obtain the specific
code forms. Additionally, arbitrary write and process cloning[15]
can be used as aids to probe code content and memory layout.

214

https://doi.org/10.1145/3564625.3567967
https://doi.org/10.1145/3564625.3567967
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564625.3567967&domain=pdf&date_stamp=2022-12-05

ACSAC ’22, December 05–09, 2022, Austin, TX, USA YongGang Li et al.

Due to ASLR, code probing has become a prerequisite to im-
plement CRAs. For the memory space with fine-grained ASLR, it
is impossible to get all gadgets through a single probing in the
random space. For example, BROP[16] needs to repeatedly modify
the return addresses according to the crash information to find
available gadgets. The primary task of MProbe is to perceive the
probing behavior of attackers and get the probed code.

No matter what probing it is, there are differences between
malicious code probing and normal memory access. MProbe can
perceive the attacker’s probing activities through these differences.

The probed code may be used as a gadget by the attacker. In a
real attack scenario, the gadget may be a node in the entire gadget
chain, which is used to connect its adjacent nodes; it may also be
a dispatcher gadget[40] , which is used to transfer control flow to
each node. The second task of MProbe is to prevent the probed
code from being used as a gadget or a dispatcher gadget.

ICT instructions are key points to connect gadgets. Both the
operand of the ICT instruction, such as call *rsi, and the return
address of the instruction ret is an absolute address. Therefore,
whether it is a gadget or a dispatcher gadget, it will be called in the
original address space. So, MProbe can prevent them from being
maliciously used by striping the execution permission of the probed
code in the original address space.

In fact, the probed code may still be called legally by the pro-
cess. However, it cannot be called in the original space due to the
inexecutable permission, even if the call is legal. The third task of
MProbe is to ensure the probed code can be called legally.

Since the probed code cannot be called in the original address
space, MProbe designs a new address space for it. When the legal
control flow is transferred to the new space, it can flow smoothly.
When the control flow is transferred to the probed code blocks
through ICT instructions or ret, its legitimacy will be judged ac-
cording to a series of security strategies. In summary, MProbe can
defend against CRAs relying on code probing, and its contributions
are as follows:

A. Propose a probing perceptionmechanism. This mechanism is
on the basis of fine-grainedASLR.When an attacker attempts
to reveal memory layout or collects available gadgets, it can
perceive the probing activity.

B. Propose a protection mechanism to prevent the probed code
from being used as gadgets. This mechanism turns off the
execution permissions of the probed code in the original
address space. At the same time, the equivalent code block
in the new address space will replace the probed code to
ensure the probed code can be called legally.

C. Implement the MProbe prototype in Linux. MProbe can de-
tect code probing in real time. It can also defense CRAs
through new security strategies, and only introduces less
than 3% performance overhead to the OS.

2 RELATEDWORKS
Researchers have carried out many researches on CFI protection,
mainly including anti-probing and control flow path protection. In
this section, we describe the two methods separately.

2.1 Anti-probing methods
ASLR changes the memory layout of the target to be protected.
CCFIR[11] is a coarse-grained randomization method for binary ex-
ecutable, and it can be bypassed if there exists memory leakage[12].
Marlin[13] is a fine-grained ASLR method. It decomposes the binary
file of the application into multiple parts with functions as code
blocks, and then confuses all parts. The randomization granularity
of ILR[14] is smaller, and it can randomize every instruction in the
program. The ultimate purpose of ASLR is to make the gadget ad-
dress obtained through static analysis unable to be used by attackers
during the execution of the entity. However, the attacks, such as
Clone-ROP[15] can obtain the address information by cloning the
address space of the parent process. In addition, attackers also use
methods such as arbitrary jump[16], arbitrary read[39], and crash-
less counterparts[18] to probe code information. These methods
can also bypass ASLR.

To solve the problem of ASLR being bypassed, researchers hide
or encrypt the control data. BarRA[20] destroys the original return
address and allocates a new one after detecting the return address
leakage. However, it is only valid for the return address and invalid
for other control data, such as function pointers. To prevent more
control data from being probed, memory hiding[21, 22] are widely
used. CPI[23] and ASLR-Guard[24] hide the information related to
function pointers. Isomeron[25] and Oxymoron[26] hide the run-
time lookup tables related to code randomization. Unfortunately,
these methods can be easily bypassed in the face of memory leak.
For example, AOCR[17] and CROP[19] can still get available gadgets
in a hidden space.

2.2 Control flow path protection
The hijacked control flow inevitably changes the original control
flow paths. Researchers use the path restriction[27,28,29,30,31] to pre-
vent control flow from jumping out of the specified range. 𝜇CFI[27]
is a fine-grained CFI method. It identifies sensitive instructions and
checks the program to record the necessary execution context. It
monitors the program in different processes, and interprets sensi-
tive instructions in the recorded execution context. However, this
method is invalid for the loaded library code (without source code).
𝜋CFI[29] is also a fine-grained method. It can dynamically generate
control flow graphs, avoiding the problem of state explosion. How-
ever, it will derive a high-risk attack surface because of opening
the write permission of code, and pose a huge threat to system
security. Moreover, 𝜋CFI also requires source code, which limits its
protection scope.

There also exist many coarse-grained CFI methods including
KCoFI[32], binCFI[33], and O-CFI[34], etc. Their control flow graphs
are easier to build, even without access to source code. But on the
down side, the coarse-grained control flow graphs are too permis-
sive so that it is still possible to mount attacks in general.

3 THE OVERALL DESIGN OF MPROBE
3.1 Assumptions and threat models
First, we assume the fine-grained ASLR with basic code block con-
taining only one exit is in use, and attackers cannot infer all gad-
gets’ locations from a leaked code address. In practice, fine-grained

215

MProbe: Make the code probing meaningless ACSAC ’22, December 05–09, 2022, Austin, TX, USA

randomization has been matured, and their targets cover pages,
functions, basic blocks and instructions. Second, we assume attack-
ers can probe memory repeatedly. For some probing technologies,
they will trigger exceptions when probing the code space. For ex-
ample, the arbitrary jump[16] may be transferred to unmapped
areas, which causes segment faults. However, the OS allows appli-
cations to handle exceptions by themselves to avoid process crash.
So, attackers can repeatedly probe memory without worrying about
probing activities being suspended. Third, we assume attackers can
hijack the control flow by modifying return addresses or function
pointers through vulnerabilities.

The threat model used in this paper includes 4 attack vectors:
Vector 1: Arbitrary Read[39]. Attackers can exploit vulnerabil-

ities (such as HeartBleed) read the memory in the code segment.
Arbitrary read can be attacked in two ways. One is to start from
the data area and gradually move closer to the code segment until
the code is read. The other is to use relative addresses in the code
segment to read more code pages recursively.

Vector 2: Arbitrary Jump[16]. Attackers can redirect the con-
trol flow to any position of the memory by tampering with the
control data, and find the available gadgets by analyzing the crash
information caused by the redirected flowing flow.

Vector 3: Side-channel Probing[37]. Attackers can get the 12th
to 47th bits of the code address by analyzing the hit information of
the translation lookaside buffer (TLB).

Vector 4: Data-Leak[38]. Attackers can exploit DOP[38] to read
the relative offset in PLT (Procedure Linkage Table), and then they
can get the random address of GOT (Global Offset Table), where
stores the address of library functions.

In addition to these 4 attack vectors, attackers can also use the
allocation oracles[48], process cloning[15] and arbitrary write[41]
(such as stack overflow) as auxiliary means for code probing, which
can help attackers reduce the difficulty of probing.

3.2 Overall architecture of MProbe
The main idea of MProbe is to make the probed code lose its execu-
tion permission in the original address space. As a result, although
attackers can obtain the code information, they cannot execute it
ICT instructions and ret. To achieve this goal, MProbe faces three
challenges: perceive the code probing activities, prevent the probed
code snippets from being used as gadgets, and ensure the probed
code to be called legally.

The overall architecture of MProbe is shown as Figure 1. MProbe
is composed of 4 components: probe-wall, permission manager,
security engine and CF transfer. The probe-wall can detect the
probing activities. If the code is being probed, the permission man-
ager disables the execution permission of the probed code. At the
same time, the probed code (rather than all the code) will be mi-
grated to a random address space, where the code is executable.
Then, the security engine will judge the legitimacy of the current
control flow. To handle the legal call to the probed code, CF transfer
redirects the control flow to the random space.

The operations of MProbe on the code include probing detection,
code rewriting, legitimacy judgment and control flow transfer. All
these need the capabilities that monitor and control the activities
of execution entities (especially the ones without source code, such

Figure 1: The overall architecture of MProbe

as the loaded library code) in real time. The memory virtualization
based on EPT (Extended Page Tables) and the event mechanism
based on VMX (Virtual Machine Extension) will be adopted to
support MProbe’s implementation.

The Intel VMX non-root and VMX root will be used to divide
the OS into two modes: guest and host. Under normal cases, the
OS runs in guest. When a specific event (such as code reading)
occurs, the OS falls into the host, which is called system trap in this
paper. In host mode, MProbe can take over the control flow of the
entire OS. Besides, we can use EPT to manage all memory in the
OS, including permission (read, write, and execute) management
and space (physical space and virtual space) management. Any
memory operation that violates the management strategies will
trigger a system trap, which will be captured by MProbe. Moreover,
some specific events (such as int3, vmcall, and mov to cr3) can be
monitored and controlled by manipulating the fields in the VMCS
(virtual machine control structure).

4 PERCEIVE THE PROBING ATTACKS
The probe-wall is used to perceive the code probing of attackers.
The attack vectors in 3.1 exploit different probing techniques, which
pose challenges to the probe-wall.

Perceive Vector 1. To perceive the Vector 1, MProbe directly
disables the read permissions of the application code and library
code. Therefore, the attack will cause a permission exception when
reading code, which will be perceived by MProbe.

Unfortunately, we cannot directly control the read permissions
of memory. Although the existed methods can indirectly control
the read permission by setting the president bit (p bit) of the page
tables, they seriously affect the OS performance. EPT provides the
possibility to control the read permissions directly. We can open
and close the read permission of physical pages through the r bit
in the last-level page table of EPT. However, there are still many
problems in operating the physical pages of the code.

First, the OS does not load all code into the memory at one time.
It loads the code into the memory when the code is called for the
first time. So, we don’t know the corresponding physical addresses
of the code before it is executed, and we can’t set it to be unreadable
in advance. Second, all the physical memory is shared. A physical
page will be used to store data or code at different periods. For
example, after a process dies, its code pages may be used to store

216

ACSAC ’22, December 05–09, 2022, Austin, TX, USA YongGang Li et al.

Figure 2: The overall design of user code memory allocation

data of other processes. If we set the code page to be unreadable
and cannot change it to be readable when it is recycled, then other
execution entities will inevitably cause a memory exception when
reading the data in the memory.

The most direct way to solve the above problems is to track
every physical page allocation. By tracking all page faults in the
OS, we can identify the code page one by one. However, the fre-
quency of page faults in the OS is very high, and capturing all page
faults is expensive. In our test, we captured all page allocations by
hooking the function do_page_fault. We found this method caused
a 50%∼350% reduction for the running speed of processes (such
as Nbench). Even if the PFEC_MASK and PFEC_MATCH fields in
VMCS can be used to only capture the code page allocations, the
running speed of the process slows down by 30% to 170%. Such
performance loss is unacceptable.

In Linux, memory allocation is done by the buddy system. Physi-
cal pages are organized and managed by zone list, zone and page. In
the native OS of the NUMA architecture with two CPUs, the buddy
system uses two zone lists for each node to manage all zones. The
first zone list is used to manage the zones connected to the current
CPU, and the second is used to manage the zones in all CPUs. When
there is a page fault in code segment, the buddy system will select
a specific number of physical pages from a zone in the zone list
(preferably list_0).

We combine EPT to modify the buddy system to reduce the
performance loss caused by perceiving code reading. This is shown
in Figure 2. It doubles the number of the original zone lists. In the
new buddy system, list_0 and list_1 are used to allocate memory
for all Linux objects except user code, while list_2 and list_3 are
only used to allocate physical pages for user code. list_0 and list_2
divide the memory directly connected to the current CPU into two
parts evenly. list_1 and list_3 divide all the memory into two parts
evenly.

We set the memory in list_0 and list_1 to be readable, writable
and executable through EPT. Therefore, accessing the memory will
not be affected in any way. To capture the attacker’s code reading,

we must set the code to be unreadable before the probing attack
occurs. At the same time, to ensure the OS can load the code into the
memory, we also need to set the physical page to be writable when
the code is loaded. However, setting a physical page as writable and
unreadable at the same time in EPTwill cause EPTmisconfiguration.
To solve this problem, we use EPT_1 to set the physical memory
in list_2 and list_3 to be executable only, and use EPT_2 to set the
physical memory in list_2 and list_3 to be readable, writable but
non-executable.

The process won’t read its own code. However, there are mixed
pages containing both code and data. For such pages, when deploy-
ing ASLR, the base address is adjusted so that data and code are
stored in different pages. Therefore, data and code can be set to
different permissions.

When the OS loads the user code, it calls the function
filemap_fault. Therefore, we perform EPT switching by adding
a hook in filemap_fault. If the filemap_fault is triggered by a code
page fault, we will switch EPT to EPT_2 by executing the instruc-
tion vmfunc, and switch EPT back to EPT_1 when filemap_fault
returns. When the OS attempts to load user code, a physical page
will be selected from list_2 or list_3 that has been set to be readable
and writable but non-executable. When the code has been loaded
into memory, the code page will become executable but unreadable
and unwritable. Therefore, when a code reading occurs, a system
trap will be triggered, which will be captured by MProbe. In a word,
MProbe can set the code to be unreadable before it is executed with-
out tracking all code pages’ allocation like NEAR[49], or capturing
every code page access like XnR[50].

In summary the buddy system is modified to create a memory
pool, which is the source of code page allocation. Pages in this pool
are pre-set as unreadable. So, we can prevent code reading probes
without tracking page allocation and reading activities. System
traps are triggered whenever abnormal activities occur. Then we
can analyze the current state and history activities of the process.

Perceive Vector 2. Vector 2 searches for available gadgets by
analyzing the crash information caused by arbitrary jumps, which

217

MProbe: Make the code probing meaningless ACSAC ’22, December 05–09, 2022, Austin, TX, USA

usually requires the assistance of arbitrary writes. Due to ASLR,
arbitrary jumps are likely to jump into unmapped space or into
illegal binary code. The former triggers the signal SIGSEGV and the
latter triggers the signal SIGILL. In user space, the available address
space is 128TB. The code segment is only a small part in it, and the
vast majority of the areas are unmapped. For example, a 128MB code
segment occupies only one millionth of the entire space. Therefore,
if the address knowledge is unknown due to the fine-grained ASLR,
an arbitrary jump has a high probability of transferring the control
flow to an unmapped area. Even if an attacker is able to transfer
the control flow to the mapped code segment, he cannot precisely
transfer it to the available gadgets. According to our observations,
the arbitrary jumps within the code segment have a high probability
of triggering illegal instructions. We simulate BROP by arbitrarily
tampering with the last 12 bits of the return addresses. The results
show that the probability of triggering illegal instructions exceeds
99% for three consecutive control flow transfers.

If the signal SIGSEGV or SIGILL appears, the current process will
be killed. However, the OS allows applications to handle such sig-
nals themselves to avoid process crashes. As a result, attackers can
repeatedly probe memory without process crashes. Moreover, pro-
cess cloning can also help an attacker to repeatedly probe memory,
which can avoid the parent process’s crash.

To perceive Vector 2, MProbe modifies the system call signal,
which is used by the application to handle signals itself. If the signal
handled by the system call signal is SIGSEGV or SIGILL, the instruc-
tion that triggers the signal will be judged as a probing instruction.
Even a child process obtained by process cloning can be captured
when it triggers SIGSEGV or SIGILL. After that, MProbe locates the
same instruction in its parent process (if it exists) according to the
probing instruction of the child process.

If the application does not define a signal handler, the OS will
call do_coredump by default to handle the signals SIGSEGV and
SIGILL. After that, the process will be killed. However, an attacker
can repeatedly probe memory by restarting the process again and
again until getting available gadgets. To perceive this attack, we
add a hook at the kernel function do_coredump to get its parameters
signr and regs, which store the signal type and the code address
that triggers the signal, respectively. If the signal being handled is
SIGSEGV or SIGILL, we compute a hash value for the code block
(CB_n) triggered the signal. At the same time, we also record 128
bytes of code (C_n) at a random location (L_n) in the process code
segment. When do_coredump processes the signal SIGSEGV or SIG-
ILL again, we first calculate the hash value of the code block that
triggers the signal, and compare it with the recorded hash values.
If there is a same hash value CB_n, we need to judge whether the
current process is a restarted process by comparing C_n with the
current process’s code at L_n. If they are same, we record the code
block and modify the ELF file of the process to mark it with int3.
When the process is restarted again, calling the marked code block
triggers a system trap. After that, MProbe will use security policies
to check its legitimacy, which will be introduced in Chapter 5.

Perceive Vector 3. Vector 3 exploits side-channel to crack the
12th to 47th bits of the random address. In the process of converting
a virtual address to a physical address, the 12th to 20th, 21st to 29th,
30th to 38th, and 39th to 47th bits of the virtual address respectively

Figure 3: Hide the function address in GOT

indicate the index values of the page tables at 4 levels. Each entry
in the 1st to 4th level page tables can index 4KB, 2MB, 1GB, and
512GB memory, respectively. To obtain the last 3 bits of the index
value of the page table at each level, Vector 3 needs to access the
memory which is separated from the virtual address by n*4KB,
n*2MB, n*1GB, and n*512GB respectively (n<8). For example, to
get the index value of the virtual address V in the third-level page
table, Vector 3 needs to execute V+n*1GB (n=1, 2, 3...) in sequence
until the current cache line is filled. In practice, the size of the
code segment rarely exceeds 1GB, and even less than 512GB. So, to
execute the code at V+n*xGB, the attacker needs to allocate a new
area at V+n*xGB, where the code is executable.

If the space at V+n*xGB (V∈code segment, n<8, x=1 or 512) is
unmapped, MProbe uses the kernel function do_mmap to map
the space and sets its corresponding page tables to be unreadable
through EPT. It should be noted that we just allocated some page
tables for V+n*xGB, without allocating other physical memory for
it. If the space at V+n*xGB has been mapped, MProbe also sets
the page table corresponding to the space to be unreadable. When
there is a memory access to this area, MProbe enables the read
permission of the page tables and records the accessed memory
address. Note that the cloned process also has the same permission
configurations. MProbe can perceive the memory probing when
Vector 3 cracking the virtual address, regardless of whether the
area at V+n*xGB has been mapped or not.

Perceive Vector 4. Vector 4 exploits data leak to read the GOT
address stored in PLT. Then, it can read the addresses of library
functions stored in GOT with the same way. MProbe has set the
code segment including PLT to be unreadable (described in the sec-
tion Perceive Vector 1). So, attackers cannot read the GOT address
(relative offset) stored in PLT.

To prevent attackers from directly reading the library function
addresses in GOT, MProbe sets GOT to be unwritable when the
process starts, which is shown in Figure 3. Therefore, each library
function address can be captured by MProbe when it is written
to the GOT. Then, the library function address (real address) will
be written to a non-readable code snippet (secret code). After that,
each library function address written to the GOT is tracked and
recorded. The real library function address will be stored in an
unreadable area (secret code) to prevent the leakage of the library
function addresses. Finally, the code snippet’s starting address (L0)
will be filled in GOT. As a result, Vector 4 cannot get the address of
the library function by reading GOT.

In addition to the above 4 attack Vectors, allocation oracles, pro-
cess cloning and arbitrary writing can also be used to probe the
memory. But none of them can directly get available gadgets or ac-
curate code address. They need to be combined with other probing

218

ACSAC ’22, December 05–09, 2022, Austin, TX, USA YongGang Li et al.

technologies to complete the final probing purpose. For example,
after the process cloning gets a child process, the attacker still needs
to read code to obtain the code information of the parent process.
Therefore, MProbe does not treat the three probing technologies as
the perceiving targets, but it can still perceive the memory probing
activities when the three probing technologies are combined with
others.

5 PREVENT THE PROBED CODE IS USED AS A
GADGET

In the real attack scenario, when the code probing is perceived,
some code snippets may have been probed. For example, arbitrary
jump may have been executed several times before it is perceived
by MProbe. In special cases, some code snippets can even be used
as gadgets directly without probing. For example, an attacker can
modify the function pointer by exploiting a heap overflow, and then
get an available gadget call *rax. Although some gadgets can be used
without probing, they cannot constitute a complete gadget chain.
Some of them will be used as a probing tool, and others will be used
as a node in the gadget chain after probing. In a word, whether it is
the code that has been probed or can be used as a gadget without
probing, it is dangerous. Therefore, we must stop the probed code
from being used as gadgets or probing tools. Whether it is used to
probe code or connect other gadgets, its malicious purpose can be
detected by MProbe.

When the Vector 1 is perceived, MProbe directly prevent the
current code reading. Generally speaking, the process does not read
its own code or library code. Therefore, the prohibition of code
reading will not affect the execution of the process.

When the Vector 2 is perceived, the jump activity may be at-
tacker’s probing activity, or it may only be a mistaken operation
of the current process. In fact, it has a certain risk whether it’s a
mistaken operation or a malicious operation. Even if the current
jump is malicious, it may not be the root cause of this abnormal
execution. The reason is that other malicious jump instructions
may have been executed multi times before the current jump in-
struction is executed. For example, BROP can find the code snippet
ret by modifying return addresses, and several ret may have been
located before the signal SIGSEGV or SIGILL is triggered. Therefore,
we cannot directly prohibit the current instructions from being
executed like processing Vector 1. Because this will not only affect
the probed code being legally called, but may also miss the root
cause of abnormal execution.

When Vector 3 is perceived, it means that the attacker may have
found a code snippet that conforms to a specific gadget form. Avail-
able gadgets are stored in the memory being cracked. At this point,
the attacker is trying to crack the 12th∼14th, 21st∼23rd, 30th∼32nd,
and 39th∼41st bits of the virtual address. In addition to these bits,
the others in the 12th∼47th bits have been cracked. That is, for
the memory being probed, most of its address has been leaked.
Attackers can further crack the remaining bits exploiting process
cloning or malloc oracles, and the difficulty of cracking decreases
exponentially. Like Vector 2, we also cannot directly prohibit the
probed code from being called.

When Vector 4 is perceived, the attacker is either reading the PLT
or the secret code (see Figure 3). In a legitimate scenario, neither the

PLT nor the secret code will be read by process. Therefore, MProbe
can directly prohibit the current read activity without affecting the
normal execution of the process.

To sum up, for Vector 1 and Vector 4, MProbe prevents attackers
from deploying CRAs by prohibiting the current probing activity.
Because Vector 1 and Vector 4 will be perceived by MProbe at the
beginning of code probing. At this point, attackers have neither
available gadgets nor leaked address. For Vector 2 and Vector 3, pro-
hibiting their probing activity does not provide sufficient security
for the process. Because, when Vector 2 and Vector 3 are perceived
by MProbe, attackers have found available gadgets, or got most
bits of the address. Therefore, MProbe needs to prevent them from
being used as gadgets.

The gadget contains a control flow transfer instruction, and the
transfer target is stored in writable memory. These instructions
(called ICT instructions in this paper) include call *register, call
*(register), call *value(register), call *(register1, register2, value), call
*pointer, jmp *register, jmp *(register), jmp *address (, register, value),
ret, retn value, and retf value. In Vector 2 and Vector 3, the code block
containing an ICT instruction is what MProbe needs to monitor
and protect. Such a code block starts with the next instruction of
a control flow transfer instruction (such as call address) and ends
with an ICT instruction.

When Vector 2 is perceived because of system traps, MProbe
analyzes the binary code to find the code block caused the execution
exception. This code block may just be a node in the entire probing
chain. Another word, before the current code block is executed, the
attacker may have probed the code space multiple times and got
several available gadgets. Only the current code block triggering
an exception is captured by MProbe. Therefore, MProbe needs to
backtrack the control flow transfer to detect whether the attacker
has found available gadgets.

MProbe uses LBR registers to look up the last 16 pairs of jump
instructions to find the 16 most recently executed code blocks.
By setting the MSR_LBR_SELECT field in LBR registers, MProbe
only captures ICT instructions in user code (ring>0). In addition,
call address will also be captured. In theory, attackers may have
executed more than 16 code blocks containing ICT instructions
or call address before being perceived. In such execution scenario,
only analyzing the LBR register cannot get all the probed code
blocks. Although Intel BTS can solve this problem, it significantly
slows down the execution speed of the process. In contrast, the
overhead introduced by LBR is almost negligible. Fortunately, we
found that, under the protection of fine-grained ASLR and MProbe,
Vector 2 cannot execute 16 illegal code blocks consecutively without
triggering a system trap. Under the ASLR and MProbe, we use redis,
tar, httpd, and Nginx as attack objects respectively, and simulate
BROP attack by manually tampering with the return addresses.
When return addresses are arbitrarily rewritten, the probability of
triggering a system trap for the first execution of the instruction
ret exceeds 99%. When only the last 12 bits of return addresses are
tampered with arbitrarily, the instruction ret calls an average of
1.27 code blocks when triggering a system trap. In our 4000 tests,
BROP can only execute at most 5 code blocks without triggering
a system trap. In most cases, it will be captured by MProbe after
probing only one code block. Therefore, we conclude that 16 pairs
of LBR registers are enough for MProbe.

219

MProbe: Make the code probing meaningless ACSAC ’22, December 05–09, 2022, Austin, TX, USA

Figure 4: Migrate a code block to a random space

Code blocks containing ICT instructions collected by LBR should
be judged by MProbe according to the security strategies (described
later). The code block judged to be illegal is the probed code that
can be used as a gadget. We will describe how MProbe prevents
them from being used as gadgets later.

When Vector 3 is perceived because of system trap, MProbe
locates the probed code block based on the offset between the
exception address (the memory address where the EPT exception
occurred) and the original code space. For example, assuming the
exception address is V, the offset between it and the real code
space is 1GB, and the probed code block is V-1GB. Due to the fine-
grained ASLR, an attacker cannot deduce the addresses of other
code blocks from the probed one. Therefore, the probed code block
is the attacker’s target, which is an available gadget if there is an
ICT instruction in the code block.

Whether it is in Vector 2 or Vector 3, the probed code block
containing a gadget will be migrated to a new random space, as
shown in Figure 4. The first instruction of the code block in the real
code space is rewritten as jmp L2, which transfers the control flow to
the random space. Except for the first instruction, other instructions
in the code block are rewritten as the one-byte instructions int3. So,
unless the control flow is passed to L2, other calls to the probed code
block will trigger a system trap because of executing int3, which
can be captured by MProbe.

In the random space, the migrated code block is basically the
same as the original one. We only add an instruction jmp check_box
before the last instruction (ICT instruction) of the code block.
check_box is a verification function, which can check the ICT in-
struction’s legitimacy according to the security strategies. If it is
legal, check_box will transfer the control flow back to the ICT in-
struction in random space. Otherwise, check_box executes the in-
struction vmcall to trigger a system trap. After that, MProbe will
directly kill the current process. In addition, check_box uses LBR to
get the executed code blocks and analyze their control flow transfer
according to the security strategies.

There are two strategy sets established by MProbe, one is the
constraint strategy set and the other is the protection strategy set.
The former is used to ensure the probed code block to transfer the
control flow to a legal location, and the latter prevents the probed
code block from being called maliciously. The constraint strategies
of the probed code blocks include the following:

A. jmp * only allows control flow jumping to the inside of the
current function, and call * can only jump to the head of other
functions. It should be noted that longjmp can be gained by
parsing the longjmp() function in the ELF file, and we allow
it to jump to the target address.

B. If without going through PLT, call and jmp cannot transfer
the control flow to a library from application code, nor can
transfer it to any other libraries from the current library.

C. The jump targets of ICT instructions must conform to the
code alignment forms in the ELF file.

D. The return address of the instruction ret cannot be changed
before ret is executed. To protect the return address of ret,
MProbe needs to get the return address first. When there
is a ret in the probed code block, we detect the code block
recorded by the LBR to find the recently executed instruction
call. If there is no call, the first code block recorded by LBR
will be marked with int3. When the marked code block is
executed again, we use LBR to find other 15 code blocks
that have been executed. Follow this method and go on until
the call that is paired with ret is located. After that, the
instruction call will be redirected to a new code block, which
can record the currently stored return address. Finally, when
ret is executed, the recorded return address will be compared
with the current one to check whether it has been tampered
with.

The protection strategies are used to detect the control flow trans-
ferred to the probed code blocks, as shown below:

A. The instruction calling the probed code block in the real code
space must conform to the constraint strategies.

B. If the instruction that transfers control flow to the probed
code block in the real code space is jmp/call address, the
transfer activity is legal.

C. If the instruction (i.e., jmp L2 in Figure 4) that transfers
control flow to the random space is in the probed code block,
MProbe will look up which instruction transfers the control
flow to the probed code block based on the LBR. The control
flow transfer must conform to (1) and (2). It should be noted
that, due to MSR_LBR_SELECT is in use, LBR only records
ICT instructions and call addresse. So, if the control flow
transfer instruction is jmp address, MProbe will not be able
to locate it. When MProbe finds that the instruction recorded
by LBR cannot jump to the probed code block in the real code
space, we can judge that the control flow transfer instruction
is jmp address, which is legal.

D. Any instruction must exploit the code at L1 in Figure 4 to
transfer control flow to random space. Otherwise, it is illegal.

E. Regardless of whether the current control flow violates the
constraint strategies or the protection strategies, it will be
judged to be illegal. After that, MProbe will start from the
recently executed code block recorded by LBR for legitimacy
detection. It uses both the constraint strategies and protec-
tion strategies to detect the legitimacy of the control flow
transfer one by one, until a legal transfer activity is found.

In short, under the protection of MProbe, all the control flow trans-
ferred to the probed code block must be detected and analyzed. If
it is illegal, MProbe can detect its illegal activities and prevent it
from being used as a gadget.

6 TRANSFER LEGAL CONTROL FLOW
If a code block has been probed, it will be rewritten in the original
space. Then, the probed code block will be migrated to a random

220

ACSAC ’22, December 05–09, 2022, Austin, TX, USA YongGang Li et al.

Figure 5: Transfer the legal control flow

space. For application code, we can directly modify its binary code
in the host mode without affecting other processes. For the library
code shared by multiple processes, the modification activity will
affect the normal execution of other processes. First, if the code
being rewritten is just called by other processes, an execution con-
flict will be triggered. Second, the random space is only mapped to
the address space of the current process, not the address space of
all processes. When other processes call the rewritten code block,
the control flow will be redirected to an unmapped or wrong area,
which will also cause exceptions.

To solve this problem, MProbe reallocates a new physical page
for the probed library code , as shown in Figure 5. The memory page
where the probed code block is located will be completely copied
into the new page. In the new page, the probed code block will be
rewritten, and the code on the original page remains unchanged.
Then, MProbe modifies the last level page table of the current
process, so that the table item pointing to the probed page points to
the new page. After that, the current process’s access to the probed
code will be redirected to the new page without affecting other
process’s access to the probed code block in the original page. It
should be noted that the addresses of the same library function in
different processes are not the same. Therefore, attackers cannot
use the library code probed in different processes to build a gadget
chain.

The control flow transferred to the rewritten code in the real
code space triggers a system trap, even it’s legal. Although we can
redirect the control flow to the random space after the system trap
occurs, frequent system traps and security checking are expensive.
In fact, if we can redirect the legal control flow to random space
without triggering a system trap, or have no checking on the legal
control flow, the performance will be reduced.

We set a whitelist for each probed code block. The white list
contains three types of data, the source addresses of the control flow,
the destination addresses of the control flow in the probed code
block, and the address in the random space that the control flow
should be redirected. All the legal control flow transfer activities will
be recorded in the whitelist. If the control flow transfer instruction
is call/jmp address, the operand address will be modified to the
corresponding address in the random space. Therefore, the control
flow can jump directly to the target address without causing any
system trap. If the transfer instruction is an ICT instruction, and
its source address and target address are in the white list, it will
be redirected to the random space, which does not need to be
checked again. The whitelist can reduce unnecessary system traps
and legitimacy detection, thereby reducing performance overhead.

7 EVALUATION
7.1 Experimental Environment
We conduct all experiments on a Linux server, which is equipped
with two 10-core Intel Xeon silver CPUs and 64GB memory. The
OS is Ubuntu16.04 with kernel 4.15.

7.2 Security analysis
In this section, we simulate arbitrary read with HeartBleed[42],
arbitrary jump with BROP[16], side-channel probing with AnC[37],
and data leakage with DOP[38]. At the same time, we run MProbe
to verify its defense capabilities. To ensure the attacks can be suc-
cessfully deployed, we assume that the attacker has obtained the
code segment scope (instead of accurate code addresses) through
allocation oracles or /proc/pid/maps.

Defense arbitrary read.We deploy HeartBleed in openssl-1.0.1c.
HeartBleed triggers a SIGSEGV when reading unmapped memory,
which is captured by MProbe. At this point, the attacker is blocked
by MProbe before they can obtain the code content.

To further observe MProbe’s response to code reading, we man-
ually modify the source code memcpy(bp,pl,payload) in openssl to
make pl point to the code segment. This attack scenario is possible
in practice. If an attacker can handle the signal SIGSEGV itself, it
can continuously increase pl without causing process crash until pl
points to the code segment. When the code is read, HeartBleed will
trigger an EPT exception. After that, MProbe blocks the current
code reading activity.

Defense arbitrary jump. When deploying BROP[16], we
skipped the step of cracking the canary and made BROP tamper
with the return address directly. In our tests, BROP increase the
return address byte by byte to search the available gadgets. The
results show that the probability of triggering the signal SIGILL
and SIGSEGV is more than 90% when BROP executes the first code
block, and the probability is more than 99% when three code blocks
are called continuously. If the attacker customizes the signal han-
dler, it will be detected by MProbe when the SIGSEGV or SIGILL is
triggered for the first time. If the attacker does not customize the
signal handler, but restarts the process to perform code probing
again after the process crashes, it will be detected in the second
code probing. After that, it can also be detected and blocked by
MProbe when probing code.

Defense side-channel probing. When AnC[37] is detected, the
attacker has already cracked most bits of the target virtual address.
At this time, only the last 3 bits of the index value of the page table
at all levels are unknown. To crack the remaining bits, the attacker
needs to access the memory at distances n*4KB, n*2MB, n*1GB,
and n*512GB from the target address (n<8). We found that it is rare
that the process code size exceeds 1GB, and there are almost no
processes that exceed 512GB. MProbe maps the unmapped areas
and make them inaccessible. Therefore, when an attacker accesses
these areas, it will be perceived and blocked by MProbe, which
leads the attacker cannot obtain the 30th∼32nd bits and 39th∼41st
bits of the virtual address.

Furthermore, the typical side-channel attacks such as
flush+reload[36], EVICT+TIME[44] and PRIME+PROBE[45] will be
detected and blocked by MProbe whenever they read the code.

221

MProbe: Make the code probing meaningless ACSAC ’22, December 05–09, 2022, Austin, TX, USA

Table 1: CRAs defense results of MProbe

binary code size total gadgets gadget chains defense

libcodeblocks.so 4267 535758 70
√

libcapstone.so 869 109538 3
√

libfam.so 15 1969 1
√

libnetpbm.so.10 60 7704 1
√

libwxsmithlib.so 1719 187992 48
√

400.perlbench 877 100750 5
√

401.bzip2 45 3942 1
√

403.gcc 2285 254156 29
√

429.mcf 8 1079 1
√

471.omnetpp 401 56954 2
√

Defense data leak. We find DOP will be perceived and blocked
by MProbe when it tries to read the GOT address stored in the PLT.
Because the PLT is in the process code segment, and it is unreadable.
In fact, even if an attacker is able to read the data stored in the GOT,
it cannot obtain the real function addresses. The reason is that the
library function addresses stored in the GOT has been transferred to
the secret code. Although attackers can get the address of the secret
code, they still cannot get the library function addresses because
the secret code is unreadable.

Defense JIT-ROP. Currently, JIT-ROP has two types of attack
forms, one requires code reading[43], and the other does not require
code reading[35]. For the former, MProbe can detect and block it.
For the latter, it turns the immediate into gadgets through the non-
alignment feature of the code. In fact, this attack does not perform
code probing, and it designs the gadgets to be used in advance.
Therefore, it is not within the protection range of MProbe.

Defense other probing technologies. For arbitrary writes,
when it triggers the signal SIGSGEV, it will be captured and blocked
by MProbe. For process cloning, it can also be detected when com-
bined with other probing techniques, such as arbitrary jump. How-
ever, MProbe cannot directly detect allocation oracles[48].

To verify the defense effect of MProbe against CRAs, we use
ROPgadget[46] to search for available gadgets andmanually connect
them together to form a gadget chain. To achieve this goal, we add
an execution breakpoint at the available gadget. When the gadget is
executed, we pass the next gadget’s address to the ICT instruction in
the current gadget to simulate control flow hijacking. The defense
results of MProbe are shown in Table 1. Each application in Table 1
contains at least one complete gadget chain.

We found that MProbe can detect the illegal control flow. The rea-
son is the illegal control flow transfer violates the control flow con-
straint strategies and protection strategies formulated by MProbe.
For example, the gadget in libfam.so needs to rewrite the return
address, which will be detected and prevented by MProbe.

Even if attackers know the existence of MProbe, they cannot
bypass MProbe. Because MProbe is built based on the attack nature.
It analyzes malicious behavior from the perspective of underlying
resource access and running trajectories. As long as the basic attack
principles (such as code reading) employed by attackers remain
unchanged, they can be detected.

Additionally, we found no false positives while monitoring
Apache, Redis, and Nginx. Because, in normal execution scenar-
ios, the process does not probe its own code or library code. As a
result, MProbe will not actively track and analyze the control flow
of the process. However, MProbe is ineffective for the CRAs that
can be deployed without code probing, such as the CRAs deployed
in unrandomized libraries.

7.3 Performance analysis
We use SpecCPU2006 to test MProbe’s impact on applications, and
use Lmbench to test the system delay and bandwidth loss. No code
probing occurred during the entire test. The results are shown in
Figure 6 and Figure 7.

We can see that, the overhead introduced by MProbe is not too
high when there are no probing attacks. The reason is MProbe is a
passive security solution. It tracks and analyzes control flow if and
only if there exist abnormal activities. In most scenarios, there is
no abnormal activity. As a result, the normal processes will not be
affected too much, and the overhead introduced by MProbe is not
too high.

Compared with the native OS, MProbe introduces new execution
modes, namely guest and host. The OS switches between the two
modes, which causes system traps. To further observe the impact of
MProbe on OS, we use some micro benchmarks to test the running
overhead, as shown in Table 2. The results show that, the system
trap is a main factor affecting OS performance. For some legal
instructions (such as jmp address) related with the probed code
block, MProbe adds them to the white list. Therefore, they will only
trigger a system trap when executed for the first time, and won’t
trigger system traps in the subsequent execution.

The system traps can be divided into two: unconditional traps
and conditional traps. In the guest, the execution of the instructions
CPUID, GETTSEC, INVD, XSETBV and all VMX instructions except
VMFUNC will cause the OS to unconditionally fall to the host from
the guest. Conditional traps are triggered by specific events, such
as EPT exceptions. Before the probing attack occurs, MProbe will
not actively track any control flow. Therefore, the frequency of
conditional traps is very small in a normal execution scenario. An-
other word, the overhead caused by MProbe in normal execution
scenarios mainly comes from the unconditional traps triggered by
specific instructions. We found that, among all the instructions

222

ACSAC ’22, December 05–09, 2022, Austin, TX, USA YongGang Li et al.

Figure 6: SpecCPU2006 test results. The abscissa is the benchmark. The ordinate on the left is the basic running time, which
corresponds to the bar graph; the ordinate on the right is the performance degradation factor, which corresponds to the line
graph. The maximum speed degradation factor of each test is less than 10%, and the average degradation is less than 3%.

Figure 7: Lmbench test results. The abscissa is the benchmark, and the ordinate is the performance degradation factor. The
average performance loss of each group of tests from left to right is 2.5%, 3.1%, 2.6%, 4.1%, 1.6%, 2%, and the average of all test
items is 2.6%.

Table 2: The test results of micro benchmarks (ns). call probed code: CP; library call: LC; jump to probed code: JP; return to
probed code: RP

No MProbe Running MProbe

call LC ret jmp ept
switch

system
trap

1st CP 2nd
CP

1st LC 2nd
LC

1st RP 2nd RP 1st JP 2nd
JP

2.88 3.39 2.57 2.06 119.06 524.35 908.05 2.95 1425.39 3.4 1009.15 69.73 964.43 2.11

causing unconditional traps, the CPUID execution frequency was
much higher than other instructions, which is a key factor intro-
ducing overhead. For some legal instructions (such as jmp address)
related with the probed code block, MProbe adds them to the white
list. Therefore, they only trigger a system trap when executed for
the first time. When they are executed again, they jump directly to
the correct address without causing any system traps. Therefore,
they do not introduce too much overhead.

In order to test the impact of MProbe on the probed process after
the probing attack occurs, we read the binary code of SpecCPU2006
through a kernel thread to simulate a probing attack. To test the
impact of the size of the probed code on MProbe, we continuously
increase the percentage of probed code. After that, we test the
impact of MProbe on the running speed of the probed process. The
test results are shown in Figure 8.

Obviously, MProbe has a greater impact on the running speed
of the probed process. The more probed code, the more MProbe

affects the process. After code probing occurs, the OS will fall into
host. MProbe creates a random space for the probed code. Then,
MProbe will track and analyze the control flow until it can detect
the control flow’s legitimacy.

During the detection, the OS will switch between the guest and
host multiple times, which will cause multiple system traps. In the
host, the process will be suspended. After that, MProbe will analyze
the legitimacy of the control flow. When the OS returns to the
guest, the process is woken up again. The more code that is probed,
the more code is tracked and analyzed, which inevitably results
in longer process hang times. Therefore, the running speed of the
process will decrease as the size of probed code increases.

Fortunately, the code probing can happen if and only if the OS is
invaded. In most cases, there is no code probing in the OS. Taking a
step back, once a code probing occurs, it is worth sacrificing about
20% of the execution speed of the probed process in exchange for the

223

MProbe: Make the code probing meaningless ACSAC ’22, December 05–09, 2022, Austin, TX, USA

Figure 8: MProbe’s impact on the process after a probing attack. After the probing occurs, the process speed slowdowns by
about 15%∼25%. The execution speed of the process will increase as the number of probed code increases.

security of the entire OS. Therefore, we believe that the performance
loss introduced by MProbe to the system is acceptable.

Similar to BUDDY[47], we also tested the impact of MProbe on
the real application Apache. The results are shown in Appendix
A. In addition, we also compare MProbe with existing security
methods, which is shown in Appendix B.

8 CONCLUSIONS
To mitigate the CRAs based on code probing, this paper proposes
an anti-probing attack method MProbe. It builds a series of anti-
probing mechanisms to perceive and prevent attackers’ code prob-
ing activities. When MProbe perceives code probing, it creates a
random space for the probed code and cancel the probed code’s ex-
ecution permission in the native address space. Therefore, although
an attacker can probe code content and address in the native ad-
dress space, it cannot execute the probed code. The results show
that MProbe introduces less than 3% performance overhead to the
OS.

However, MProbe still has some limitations. First, it is only effec-
tive for the code probing in user space, but not effective in kernel
space. Since the kernel resides in memory for a long time and
is completely shared, any modification to the kernel will affect
all execution entities. This will undoubtedly greatly increase the
performance of the OS. In addition, the kernel itself has certain
self-debugging capabilities, and it needs to have code reading ca-
pabilities. For example, the kernel will read the code that caused
kernel errors. It is currently difficult for us to efficiently distinguish
between legal code reading and illegal code reading in kernel. Sec-
ond, MProbe can only be deployed on x86 architecture processors.
Third, MProbe is only valid for open source Linux, but invalid for
closed source Windows. How to improve MProbe’s universality in
different software and hardware will be a focus of our future work.

REFERENCES
[1] Biondo A, Conti M, et al. “The Guard’s Dilemma: Efficient Code-Reuse Attacks

Against Intel {SGX}”. Proc. The 27th USENIX Security Symposium. 2018: 1213-1227.
[2] He W, Das S, Zhang W, et al. “BBB-CFI: lightweight CFI approach against code-

reuse attacks using basic block information”. ACM Transactions on Embedded
Computing Systems, 2020, 19(1): 1-22. DOI:https://doi.org/10.1145/3371151

[3] Crane S J, Volckaert S, Schuster F, et al. “It’s a TRaP: Table randomization and
protection against function-reuse attacks”. Proc. The 22nd ACM SIGSACConference
on Computer and Communications Security. 2015: 243-255. DOI:https://doi.org/10.
1145/2810103.2813682

[4] Kayaalp M, Schmitt T, Nomani J, et al. “Signature-based protection from code
reuse attacks”. IEEE Transactions on Computers, 2013, 64(2): 533-546. DOI:https:
//doi.org/10.1109/tc.2013.230

[5] DeLozier C, Lakshminarayanan K, Pokam G, et al. “Hurdle: Securing Jump In-
structions Against Code Reuse Attacks”. Proc. The 25th International Conference
on Architectural Support for Programming Languages and Operating Systems. 2020:
653-666. DOI:https://doi.org/10.1145/3373376.3378506

[6] Dang T H Y, Maniatis P, et al. “The performance cost of shadow stacks and
stack canaries”. Proc. The 10th ACM Symposium on Information, Computer and
Communications Security. 2015: 555-566.DOI: https://doi.org/10.1145/2714576.
2714635

[7] Marco-Gisbert H, Ripoll. “Address space layout randomization next generation”.
Applied Sciences, 2019, 9(14): 2928. DOI:https://doi.org/10.3390/app9142928

[8] Wang C, Chen B, Liu Y, et al. “Layered object-oriented programming: Advanced
vtable reuse attacks on binary-level defense”. IEEE Transactions on Information
Forensics and Security, 2018, 14(3): 693-708. DOI:https://doi.org/10.1109/tifs.2018.
2855648

[9] Ho JW. “Efficient and robust detection of code-reuse attacks through probabilistic
packet inspection in industrial IoT devices”. IEEE Access, 2018, 6: 54343-54354.
DOI:https://doi.org/10.1109/access.2018.2872044

[10] D. Williams-King, G. Gobieski, K. Williams-King, et al. “Shuffler: Fast and deploy-
able continuous code re-randomization,” Proc. The OSDI, 2016.

[11] Chao Zhang, Tao Wei, et al. “Practical Control Flow Integrity and Randomization
for Binary Executables”. Proc. 2013 IEEE Symposium on Security and Privacy.
Washington, DC, USA, 559–573. DOI:https://doi.org/10.1109/sp.2013.44

[12] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. “Stitch-
ing the Gadgets: On the Ineffectiveness of Coarse-grained Control-flow Integrity
Protection”. Proc. The 23rd USENIX Conference on Security Symposium. Berkeley,
CA, USA, 401–416.

[13] Gupta A, Kerr S, Kirkpatrick M S, et al. “Marlin: A fine grained randomization
approach to defend against ROP attacks”. Proc. The International Conference
on Network and System Security. Springer, Berlin, Heidelberg, 2013: 293-306.
DOI:https://doi.org/10.1007/978-3-642-38631-2_22

[14] Hiser J, Nguyen-Tuong A, et al. “ILR: Where’d my gadgets go?” Proc. The IEEE
Symposium on Security and Privacy. IEEE, 2012: 571-585. DOI:https://doi.org/10.
1109/sp.2012.39

[15] Lu†Kangjie, Nürnberger S, Backes M, et al. “How to Make ASLR Win the Clone
Wars: Runtime Re-Randomization”. Proc. The 23rd Network and Distributed System
Security Symposium (NDSS), San Diego, CA, USA, 2016. DOI:https://doi.org/10.
14722/ndss.2016.23173

[16] Bittau, A., Belay, A., et al. “Hacking Blind”. Proc. The IEEE Security and Privacy,
2014, 227–242. DOI:https://doi.org/10.1109/sp.2014.22

[17] Rudd R, Skowyra R, Bigelow D, et al. “Address Oblivious Code Reuse: On the
Effectiveness of Leakage Resilient Diversity.” Proc. NDSS. 2017.

[18] Gktasgktas E, Gawlik R, et al. “Undermining Information Hiding (And What to
do About it)”. Proc. The 25th USENIX Security. 2016.

[19] Gawlik R, Kollenda B, Koppe P, et al. “Enabling Client-Side Crash-Resistance
to Overcome Diversification and Information Hiding”. Proc. The NDSS. 2016, 16:
21-24. DOI:https://doi.org/10.14722/ndss.2016.23262

[20] Göktas E, Razavi K, et al. “Speculative Probing: Hacking Blind in the Spectre
Era”. Proc. The 2020 ACM SIGSAC Conference on Computer and Communications
Security. 2020: 1871-1885. DOI:https://doi.org/10.1145/3372297.3417289

[21] Braden K, Davi L, et al. “Leakage-Resilient Layout Randomization for Mobile
Devices”. Proc. The NDSS. 2016, 16: 21-24. DOI:https://doi.org/10.14722/ndss.2016.

224

https://doi.org/10.1145/3371151
https://doi.org/10.1145/2810103.2813682
https://doi.org/10.1145/2810103.2813682
https://doi.org/10.1109/tc.2013.230
https://doi.org/10.1109/tc.2013.230
https://doi.org/10.1145/3373376.3378506
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.3390/app9142928
https://doi.org/10.1109/tifs.2018.2855648
https://doi.org/10.1109/tifs.2018.2855648
https://doi.org/10.1109/access.2018.2872044
https://doi.org/10.1109/sp.2013.44
https://doi.org/10.1007/978-3-642-38631-2_22
https://doi.org/10.1109/sp.2012.39
https://doi.org/10.1109/sp.2012.39
https://doi.org/10.14722/ndss.2016.23173
https://doi.org/10.14722/ndss.2016.23173
https://doi.org/10.1109/sp.2014.22
https://doi.org/10.14722/ndss.2016.23262
https://doi.org/10.1145/3372297.3417289
https://doi.org/10.14722/ndss.2016.23364
https://doi.org/10.14722/ndss.2016.23364

ACSAC ’22, December 05–09, 2022, Austin, TX, USA YongGang Li et al.

23364
[22] Chen X, Bos H, Giuffrida C. “CodeArmor: Virtualizing the code space to counter

disclosure attacks”. Proc. The IEEE European Symposium on Security and Privacy,
2017: 514-529. DOI:https://doi.org/10.1109/eurosp.2017.17

[23] Kuznetsov V, Szekeres, László, Payer M, et al. “Code-Pointer Integrity”. Proc.
The Usenix Symposium on Operating Systems Design & Implementation. 2014.
DOI:https://doi.org/10.1145/3129743.3129748

[24] Lu K, Song C, Lee B, et al. “ASLR-Guard: Stopping address space leakage for code
reuse attacks”. Proc. The 22nd ACM SIGSAC conference on computer and commu-
nications security. 2015: 280-291. DOI:https://doi.org/10.1145/2810103.2813694

[25] Davi L, Liebchen C, Sadeghi A R, et al. “Isomeron: Code Randomization Re-
silient to (Just-In-Time) Return-Oriented Programming”. Proc. The Network and
Distributed System Security Symposium. 2015. DOI:https://doi.org/10.14722/ndss.
2015.23262

[26] Backes M, Nürnberger S. “Oxymoron: Making fine-grained memory randomiza-
tion practical by allowing code sharing”. Proc. The 23rd USENIX Security Sympo-
sium. 2014: 433-447.

[27] HongHu, ChenxiongQian, et al. “Enforcing Unique Code Target Property for
Control-Flow Integrity”. Proc. The 2018 ACM SIGSAC Conference on Computer
and Communications Security. ACM, New York, NY, USA, 1470–1486. DOI:https:
//doi.org/10.1145/3243734.3243797

[28] Caroline Tice, Tom Roeder, et al. “Enforcing Forward-edge Control-flow Integrity
in GCC & LLVM”. Proc. The 23rd USENIX Conference on Security Symposium.
USENIX Association, Berkeley, CA, USA, 941–955.

[29] Ben Niu and Gang Tan. “Per-Input Control-Flow Integrity”. Proc. The 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, NY, USA,
914–926. DOI:https://doi.org/10.1145/2810103.2813644

[30] Chao Zhang, Chengyu Song, Kevin Zhijie Chen, et al. “VTint: Protecting Virtual
Function Tables’ Integrity”. Proc. The Network and Distributed System Security
Symposium, 2015. DOI:https://doi.org/10.14722/ndss.2015.23099

[31] Chao Zhang, Dawn Song, Scott A Carr, Mathias Payer, et al. “VTrust: Regain-
ing Trust on Virtual Calls”. Proc. The Network and Distributed System Security
Symposium, 2016. DOI:https://doi.org/10.14722/ndss.2016.23164

[32] Criswell J, Dautenhahn N. “KCoFI: Complete control-flow integrity for commod-
ity operating system kernels.” Proc. The IEEE Symposium on Security and Privacy.
IEEE, 2014: 292-307. DOI:https://doi.org/10.1109/sp.2014.26

[33] ZhangM, Sekar R. “Control flow integrity for {COTS} binaries” Proc. 22nd USENIX
Security Symposium. 2013: 337-352. https://doi.org/10.1145/2818000.2818016

[34] Mohan V, Larsen P, Brunthaler S, et al. “Opaque Control-Flow Integrity” Proc.
NDSS. 2015, 26: 27-30. DOI:https://doi.org/10.14722/ndss.2015.23271

[35] Maisuradze G, Backes M, et al. “What cannot be read, cannot be leveraged? revis-
iting assumptions of JIT-ROP defenses”, Proc. 25th USENIX Security Symposium,
2016: 139-156.

[36] Yarom Y, Falkner K. “FLUSH+ RELOAD: A high resolution, low noise, L3 cache
side-channel attack” Proc. 23rd USENIX Security Symposium. 2014: 719-732.

[37] Gras B, Razavi K, Bosman E, et al. “ASLR on the Line: Practical Cache Attacks on
the MMU” Proc. NDSS. 2017, 17: 26. DOI:https://doi.org/10.14722/ndss.2017.23271

[38] Hu H, Shinde S, Adrian S, et al. “Data-oriented programming: On the expressive-
ness of non-control data attacks”. Proc. IEEE Symposium on Security and Privacy
(SP). 2016: 969-986. DOI:https://doi.org/10.1109/sp.2016.62

[39] Hu Z, Chen P, et al. “A co-design adaptive defense scheme with bounded secu-
rity damages against Heartbleed-like attacks”. IEEE Transactions on Information
Forensics and Security, 2021, 16: 4691-4704. DOI:https://doi.org/10.1109/tifs.2021.
3113512

[40] Omotosho A, Welearegai G B, Hammer C. “Detecting return-oriented program-
ming on firmware-only embedded devices using hardware performance counters”.
Proc. the 37th ACM/SIGAPP Symposium on Applied Computing. 2022: 510-519.
DOI:https://doi.org/10.1145/3477314.3507108

[41] Lin K, Xia H, Zhang K, et al. “AddrArmor: An Address-based Runtime Code-
reuse Attack Mitigation for Shared Objects at the Binary-level.” Proc. 2021 IEEE
Intl Conf on Parallel & Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Communications, Social Computing
& Networking (ISPA/BDCloud/SocialCom/SustainCom). 2021: 117-124. DOI:https:
//doi.org/10.1109/ispa-bdcloud-socialcom-sustaincom52081.2021.00029

[42] Wang J, Zhao M, Zeng Q, et al. “Risk assessment of buffer" Heartbleed" over-
read vulnerabilities.” Proc. 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. 2015: 555-562. DOI:https://doi.org/10.1109/
dsn.2015.59

[43] Snow K Z, Monrose F, Davi L, et al. “Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization.” Proc. IEEE Symposium on
Security and Privacy. 2013: 574-588. DOI:https://doi.org/10.1109/sp.2013.45

[44] Osvik D A, Shamir A, Tromer E. “Cache attacks and countermeasures: the case
of AES.” Proc. Cryptographers’ track at the RSA conference. 2006: 1-20. DOI:https:
//doi.org/10.1007/11605805_1

[45] Liu, Fangfei, et al. "Last-level cache side-channel attacks are practical." Proc. IEEE
symposium on security and privacy. 2015.

[46] J. Salwan. “ROPgadget–Gadgets Finder and Auto-Roper.” http://shell-storm.org/
project/ROPgadget

[47] Lu K, Xu M, Song C, et al. “Stopping memory disclosures via diversification and
replicated execution.” IEEE Transactions on Dependable and Secure Computing,
2018, 18(1): 160-173. DOI:https://doi.org/10.1109/TDSC.2018.2878234

[48] Oikonomopoulos A, Athanasopoulos E, Bos H, et al. “Poking holes in information
hiding.” Proc. USENIX Security Symposium (USENIX Security 16). 2016: 121-138.

[49] Jan Werner, George Baltas, Rob Dallara, Nathan Otternes, Kevin Snow, Fabian
Monrose, and Michalis Polychronakis. 2016. No-Execute-After-Read: Preventing
Code Disclosure in Commodity Software. In Proceedings of the 11th ACM Asia
Conference on Computer and Communications Security (ASIACCS).

[50] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn-
berger, and Jannik Pewny. 2014. You Can Run but You Can’t Read: Preventing
Disclosure Exploits in Executable Code. In CCS.

[51] Zhang M, Polychronakis M, Sekar R. Protecting cots binaries from disclosure-
guided code reuse attacks[C]//Proceedings of the 33rd Annual Computer Security
Applications Conference. 2017: 128-140.

[52] Tang A, Sethumadhavan S, Stolfo S. Heisenbyte: Thwarting memory disclosure
attacks using destructive code reads[C]//Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 2015: 256-267.

[53] Crane S, Liebchen C, Homescu A, et al. Readactor: Practical code randomization
resilient tomemory disclosure[C]//2015 IEEE Symposium on Security and Privacy.
IEEE, 2015: 763-780.

[54] Chen Y, Zhang D, Wang R, et al. NORAX: Enabling execute-only memory for
COTS binaries on AArch64[C]//2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 2017: 304-319.

[55] Gionta J, EnckW, Ning P. HideM: Protecting the contents of userspace memory in
the face of disclosure vulnerabilities[C]//Proceedings of the 5th ACM Conference
on Data and Application Security and Privacy. 2015: 325-336.

[56] Bigelow D, Hobson T, Rudd R, et al. Timely rerandomization for mitigating
memory disclosures[C]//Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 2015: 268-279.

APPENDIX A
The results of testing Apache are shown as Table3, which show
that MProbe slowdowns Apache by an average of 4.29%, which
indicates MProbe is capable of handling multi-process programs
efficiently.

APPENDIX B
Compared with existing methods, MProbe has defense effects
on more code probing technologies, which is shown as Table 4.
Readactor[53] and TASLR[56] rely on the source code, causing them
to invalidate the inline assembly or extra code introduced by the
linker and loader. Secret[51] remaps all code pointers. If a pointer is
rewritten arbitrarily, it will be detected due to no matched pointer
with it. Therefore, Secret has a certain defense effect on arbitrary
write and arbitrary jump. However, it is difficult and expensive to
obtain and manipulate all pointers. XnR[50] will switch the slid-
ing window due to frequent code jumps, which will cause huge
overhead in corner cases. Most of the methods in Table 4, such as
Heisenbyte[52], NORAX[54], and HideM[55], do not mention the
defense to process cloning. In addition, except for MProbe, other
methods are invalid to side channel probing attacks. Moreover, be-
cause MProbe does not actively track all control flow transfers, it
will not introduce excessive overhead.

225

https://doi.org/10.14722/ndss.2016.23364
https://doi.org/10.1109/eurosp.2017.17
https://doi.org/10.1145/3129743.3129748
https://doi.org/10.1145/2810103.2813694
https://doi.org/10.14722/ndss.2015.23262
https://doi.org/10.14722/ndss.2015.23262
https://doi.org/10.1145/3243734.3243797
https://doi.org/10.1145/3243734.3243797
https://doi.org/10.1145/2810103.2813644
https://doi.org/10.14722/ndss.2015.23099
https://doi.org/10.14722/ndss.2016.23164
https://doi.org/10.1109/sp.2014.26
https://doi.org/10.1145/2818000.2818016
https://doi.org/10.14722/ndss.2015.23271
https://doi.org/10.14722/ndss.2017.23271
https://doi.org/10.1109/sp.2016.62
https://doi.org/10.1109/tifs.2021.3113512
https://doi.org/10.1109/tifs.2021.3113512
https://doi.org/10.1145/3477314.3507108
https://doi.org/10.1109/ispa-bdcloud-socialcom-sustaincom52081.2021.00029
https://doi.org/10.1109/ispa-bdcloud-socialcom-sustaincom52081.2021.00029
https://doi.org/10.1109/dsn.2015.59
https://doi.org/10.1109/dsn.2015.59
https://doi.org/10.1109/sp.2013.45
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
http://shell-storm.org/project/ROPgadget
http://shell-storm.org/project/ROPgadget
https://doi.org/10.1109/TDSC.2018.2878234

MProbe: Make the code probing meaningless ACSAC ’22, December 05–09, 2022, Austin, TX, USA

Table 3: Overhead of processing time (ms) per request incurred to Apache httpd under MProbe with different numbers of
worker processes and different numbers of concurrent connections. s=1MB.

Level c=1 c=16 c=64 c=128 c=256

worker Orig. MProbe Loss Orig. MProbe Loss Orig. MProbe Loss Orig. MProbe Loss Orig. MProbe Loss
p=1 17.3 17.6 1.73% 14.8 15.1 2.03% 13.6 13.9 2.21% 12.9 13.5 4.65% 13.1 13.8 5.34%
p=2 16.5 17.5 6.06% 12.7 13.6 7.09% 11.1 11.5 3.60% 12.5 13.1 4.80% 12.8 13.4 4.69%
p=3 18.1 18.4 1.66% 11.9 12.8 7.56% 9.9 10.8 9.09% 12.1 12.4 2.48% 13.2 13.9 5.30%
p=4 17.4 17.9 2.87% 11.4 12.9 13.16% 10.2 10.3 0.98% 12.6 12.9 2.38% 14.1 14.1 0.00%
p=5 17.2 18.5 7.56% 10.3 10.6 2.91% 9.8 10.5 7.14% 11.9 12.2 2.52% 12.9 13.5 4.65%
p=6 16.9 17.6 4.14% 11.1 11.9 7.21% 9.6 9.9 3.13% 11.8 12.1 2.54% 13.4 13.4 0.00%
p=7 17.2 18.2 5.81% 10.4 11.2 7.69% 10 10 0.00% 12.2 12.5 2.46% 13.2 13.3 0.76%
p=8 16.8 18.5 10.12% 10.2 11.5 12.75% 10.1 10.2 0.99% 13.1 13.1 0.00% 14.3 14.5 1.40%
Geomean 4.99% 7.55% 3.39% 2.73% 2.77%

Table 4: Comparison with existing methods. NSC: not rely on source code. M-overhead: maximum overhead in SPEC. *: effective
for part.

APP NSC arbitrary read arbitrary write arbitrary jump side channel data leak process clone M-overhead

Secret[51]
√ √

* * х
√

х 36%
NEAR[49]

√ √
х х х * х 19.88%

Heisenbyte[52]
√ √

х х х * х 62%
XnR[50]

√ √
х х х * х 526%

Readactor[53] х
√

х х х х х 26%
NORAX[54]

√ √
х х х

√
х -

HideM[55]
√ √

х х х * х <7%
TASLR[56] х * * х х х

√
10.1%

MProbe
√ √

*
√ √ √

* <15%

226

	Abstract
	1 INTRODUCTION
	2 RELATED WORKS
	2.1 Anti-probing methods
	2.2 Control flow path protection

	3 THE OVERALL DESIGN OF MPROBE
	3.1 Assumptions and threat models
	3.2 Overall architecture of MProbe

	4 PERCEIVE THE PROBING ATTACKS
	5 PREVENT THE PROBED CODE IS USED AS A GADGET
	6 TRANSFER LEGAL CONTROL FLOW
	7 EVALUATION
	7.1 Experimental Environment
	7.2 Security analysis
	7.3 Performance analysis

	8 CONCLUSIONS
	References

