
Connectivity-Aware Link Analysis for Skewed Graphs
YuAng Chen

The Chinese University of Hong Kong, Shenzhen
yuangchen@link.cuhk.edu.cn

Yeh-Ching Chung
The Chinese University of Hong Kong, Shenzhen

ychung@cuhk.edu.cn

ABSTRACT
Link analysis is a fundamental task for graph analytics, as it enables
the identification of important nodes and patterns in the graph.
Link analysis algorithms typically require traversing the graph and
accessing the links of each node. However, for graphs with a skewed
degree distribution, the computing efficiency of link analysis is
severely constrained due to irregular connectivity, which results in
randomized memory accesses and high cache miss ratio.

In this paper, we conduct a thorough investigation into skewed
graphs’ structural characteristics, focusing on their interaction with
the computational patterns observed in link analysis algorithms
and the underlying hardware architecture. Generalizing the un-
derstanding, we develop a novel framework named Mixen. Mixen
applies a lightweight filtering procedure to enhance graph locality
and reschedule computations. Different graph components are se-
lectively processed under distinctive paradigms. Thereby, Mixen
allows for efficient graph traversal and performance optimization.

We evaluate Mixen on modern multicore systems, comparing its
performance to state-of-the-art frameworks across various graphs
and algorithms. The results indicate that Mixen significantly out-
performs its counterparts. Over the best-performing alternative,
Mixen achieves a 3.42× speedup in execution time. Furthermore,
we explore the design space of Mixen, examining its trade-offs and
the correlation with cache-memory dynamics.

CCS CONCEPTS
• Computer systems organization → Multicore systems; •
Graph Processing; • Parallel Computing;

KEYWORDS
Skewed Graphs, Link Analysis Algorithms, Multicore Systems
ACM Reference Format:
YuAng Chen and Yeh-Ching Chung. 2023. Connectivity-Aware Link Analy-
sis for Skewed Graphs. In 52nd International Conference on Parallel Processing
(ICPP 2023), August 07–10, 2023, Salt Lake City, UT, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3605573.3605579

1 INTRODUCTION
Link analysis of graphs is a powerful tool for evaluating the rela-
tionships and connections between entities in a complex system. In
this approach, the entities are represented as nodes in a graph, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00
https://doi.org/10.1145/3605573.3605579

the relationships between them are represented as links (or namely
edges). Link analysis has been instrumental in understanding the
real world and has been applied in diverse applications, such as
web search [32], recommendation systems [21] and social network
analysis [8].

Let the set of nodes be represented by 𝑉 with size 𝑛, and the set
of links is indicated by 𝐸 with size𝑚. The graph can be denoted by
𝐺=(𝑉 , 𝐸). The input for the link analysis algorithm is the adjacency
matrix 𝐴 of graph 𝐺 , where 𝐴[𝑖, 𝑗] equals 1 if there exists a link
from node 𝑖 to node 𝑗 , and 0 otherwise. The algorithm’s output
can be an n-dimensional vector 𝑦, where the 𝑖-th coordinate 𝑦𝑖
represents the score of node 𝑖 in the graph.

v0

v5

v6

v1

v4

v3

Seed

Isolated

v2
Sink

v0 v1 v2 v3 v4 v5 v6

v0 1

v1 1 1

v2

v3

v4 1 1

v5 1

v6 1 1

So
ur
ce

Destination

Figure 1: A sparse graph and its adjacency matrix

A naive heuristic, referred to as the InDegree algorithm, is of-
ten considered as the precursor to all link analysis algorithms [6].
The InDegree algorithm ranks nodes based on the count of links
to them; that is, the popularity of a node equals to its in-degree.
This algorithm has led to the development of various link anal-
ysis algorithms, such as PageRank [32], HITS [20], SALSA [27].
Besides, the InDegree algorithm can be translated into a SpMV
operation 𝑦 = 𝐴𝑇 𝑥 , where 𝐴𝑇 is the transposed matrix of 𝐴, and 𝑥
is a vector recording initial properties of nodes. Based on the SpMV,
advanced machine learning algorithms can be devised, including
Collaborative Filtering [21] and Graph Neural Networks [19].

Despite the importance of link analysis algorithms in various
fields, their computing efficiency is often hampered by the intricate
structure of graphs. Graphs representing real-world phenomena,
such as social networks [33] andwebsite links [22], generally adhere
to a skewed degree distribution [14], which can result in issues
such as load imbalance, poor cache locality, and redundant memory
traffic in multicore systems [11].

In skewed graphs, a substantial portion of links is connected by
a small fraction of nodes, referred to as hubs. The presence of hot
nodes results in a significant volume of memory traffic. The proces-
sor might repeatedly access these hubs, generating random and re-
dundant jumps in memory space that bottlenecks the computation.
By contrast, the remaining nodes exhibit sparse connectivity and
thus offer limited reuse opportunities. In general, skewed graphs

https://doi.org/10.1145/3605573.3605579
https://doi.org/10.1145/3605573.3605579

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Chen and Chung, et al.

exhibit irregular access patterns, leading to suboptimal spatial and
temporal locality. In other words, accessing a node’s connections
does not ensure that subsequent node connections are closely stored
in time or memory. This results in inefficient memory utilization
and increased cache misses.

In this paper, we reveal the inefficiencies and redundancies hid-
den inside the skewed graphs, which are often ignored by existing
graph traversal approaches. To address these issues, we propose
a graph framework, named Mixen, that leverages the structural
properties of skewed graphs to facilitate link analysis.

In summary, our contribution can be generalized into the follow-
ing points:

• We analyze the structural characteristics of skewed graphs
and their traversing pattern for link analysis algorithms.
The performance limitations of graph processing, which
arise from the irregular connectivity inherent to graphs, are
described.
• Our proposed processing framework, Mixen, is designed to
accelerate the link analysis of graphs. Mixen firstly applies
a light filtering optimization to the input graph, allowing
for efficient rescheduling of computation to avoid redun-
dant memory traffic. Further, Mixen adopts mixed encoding
schemes and processing paradigms to different graph por-
tions. This enables the optimization of accessing individual
subgraphs and thus achieves an overall performance gain.
• We theoretically demonstrate the effectiveness of Mixen in
improving the memory utility. Performance models are de-
rived to quantitatively describe Mixen’s behavior, its impact
on the multicore systems and its performance limitations.
• To validate the performance of Mixen, we conduct extensive
experiments on multicores using a wide range of graphs
and algorithms. Mixen is compared to state-of-the-art frame-
works. Against the fastest among them,Mixen delivers speedups
by 3.42×.

2 BACKGROUND
2.1 Structural Property of Skewed Graphs
In skewed graphs, a few nodes have significantly more links com-
pared to the majority of nodes, which have relatively few links. The
degree distribution of such graphs is characterized by a skewed dis-
tribution. Also, the skewed graphs can be referred to as power-law
or scale-free graphs [14].

Table 1 lists the structural information of skewed graphs, as
well as non-skewed graphs for comparison. Here, we define hubs
as nodes with in-degrees greater than the average degree of the
entire graph. Hubs account for less than 8% of the nodes in the
skewed graphs, yet they constitute over 90% of the connections.
The uneven distribution in skewed graphs presents both opportu-
nities and obstacles when optimizing graph accessing. For instance,
frequently-accessed hubs have a higher chance of remaining in
the cache; whereas, their large number of processed messages may
exhaust the cache and prevent other nodes from being reused.

Furthermore, many nodes in skewed graphs have no connections
in at least one direction. Depending on the connectivity, nodes can
be classified into four types : (1) Regular nodes have both incoming

Table 1: The structural characteristics of skewed and non-
skewed graphs. 𝑉ℎ𝑢𝑏 and 𝐸ℎ𝑢𝑏 are the percentages of hubs
and hubs’ edges over the graph. The percentages of 4 types
of nodes is listed.

Graphs 𝑉ℎ𝑢𝑏 𝐸ℎ𝑢𝑏 Reg. Seed Sink Iso.

Sk
ew

ed

weibo [33] 1 99 1 99 0 0
track [36] 5 88 46 54 0 0
wiki [22] 11 88 22 33 45 0
pld [31] 15 82 56 8 28 8
rmat [9] 7 94 26 7 8 59
kron [3] 8 92 49 0 0 51

N
on

- road [22] 50 66 100 0 0 0
urand [3] 52 59 100 0 0 0

and outgoing links. (2) Seed nodes1 have only outgoing links. (3)
Sink nodes have only incoming links. (4) Isolated nodes have no
links. The existence of zero-degree nodes is a natural outcome of
imbalanced degree distributions in graphs: as some nodes acquire
more links, other nodes will have fewer links. This fact is often
ignored despite its significant impact on graph traversal, which is
to be elaborated in Section 3.

In contrast, non-skewed graphs exhibit completely different fea-
ture. Nearly half of the nodes are identified as hubs, but these
hubs only compose up to 2/3 of the total connections. Also, the
two non-skewed graphs are bidirected, so all nodes are considered
regular.

2.2 Link Analysis Algorithms
Link analysis algorithms are used to analyze the structure of a graph.
The InDegree algorithm is the simplest link analysis algorithm. It
measures the importance of a node based on the number of incom-
ing links. PageRank [32] is arguably the most well-known rank-
ing algorithm, serving as the foundational algorithm for Google’s
search engine in its early years. HITS assigns two scores to nodes
that mutually reinforce each other [20], while SALSA uses a ran-
dom walk approach to compute two scores per node [27]. Although
these algorithms may differ in their specific criteria for determining
the importance, they perform similarly to the InDegree algorithm
[6]. For simplicity, we will use the InDegree algorithm to illustrate
the computing pattern common to link analysis algorithms in the
following context.

Algorithm 1 present memory-friendly approaches to implement-
ing the InDegree algorithms. They are designed for graphs format-
ted in compressed sparse rows or columns (CSR or CSC). CSR and
CSC are storage formats for sparse matrices. CSR uses row pointers
and column indices, whereas CSC uses column pointers and row
indices to keep track of the non-zero elements’ positions in the
original matrix. Both the CSR and CSC formats are widely used as
default representations for graphs and matrices in various scientific
computing systems [18, 40].

1Conventionally, these are referred to as source nodes. However, the term "source" is
also used in reference to "destination" nodes to describe message direction. Therefore,
to avoid confusion, the term "seed" is used instead.

Connectivity-Aware Link Analysis for Skewed Graphs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

Algorithm 1: The InDegree algorithm with CSR and CSC
1 for i = 0 to n-1 do in parallel ⊲ Pushing Flow
2 for j = csrPtr[i] to csrPtr[i+1] - 1 do
3 atomAdd(y[csrIdx[j]], x[i])
4 . . .
5 for i = 0 to n-1 do in parallel ⊲ Pulling Flow
6 for j = cscPtr[i] to cscPtr[i+1] - 1 do
7 y[i] += x[cscIdx[j]]

With the CSR format, the InDegree algorithm can be processed
in a pushing flow as shown in lines 2-4 of Algorithm 1. x and y
are the input and output vectors, respectively. csrPtr and csrIdx
correspond to the row pointers and column indexes of CSR. To
avoid multiple threads writing to the same element in the output
array simultaneously, an atomic instruction is deployed for the
addition assignment. Alternatively, the InDegree algorithm can be
executed in a pulling flow as at line 5-7, where cscPtr and cscIdx
refer to the column pointers and row indexes of the CSC format.
This approach eliminates the need for atomic operations. Thus,
in comparison with the pushing flow using CSR, the pulling flow
with CSC is the preferred method for implementing link analysis
algorithms .

Algorithm 2: The InDegree algorithm with Blocking
1 for b ∈ blocks do in parallel
2 Scatter(b, bins)

3 for b ∈ blocks do in parallel
4 Gather(b, bins)

Blocking is another approach for eliminating the need for atomic
operations while keeping message propagation in the pushing flow
[4, 7, 25]. This technique partitions the graph into blocks (e.g.,
blocked CSR). Each thread is confined to accessing only a specific
block, which reduces thread contentions. A buffering bin is allo-
cated to every block to convert propagations to sequential memory
accesses. The execution of a graph workload is scheduled into three
phases: Scatter, Gather, and Apply (GAS). Algorithm 2 outlines the
InDegree algorithm with blocking optimizations, where the Apply
phase is omitted as it is not executed. During the Scatter phase,
source nodes push data to the bins. In the Gather phase, the data in
the bins are accumulated for the correct sum. Finally, in the Apply
phase, user-defined functions are applied to update the sum.

3 MOTIVATION
This section presents the motivation for our work. We compare
different execution paradigms of the link analysis algorithms, dis-
cussing their respective advantages and disadvantages. Meanwhile,
we also analyze the redundancy and inefficiency resulting from the
irregular connectivity of graphs.

The performance of graph processing is typically constrained by
memory activities rather than arithmetic computations [4]. Thus,
our investigation focuses on the memory behaviors of the pulling
flow and the blocking approach. The pushing flow is ignored since

it behaves similarly to the pulling flow, with the exception of re-
quiring additional atomic instructions. Specifically, two memory
activities are examined: memory traffic volume (i.e., read and write
operations) and random memory access (i.e., non-sequential ad-
dress jumps). To simplify our analysis, we assume that data types
for nodes, links, and updates each occupy 1 Byte.

Memory Traffic Volume. The GAS paradigm of the blocking
InDegree is intrinsically inefficient. This is due to the fact that, in
each iteration, data transmissions are initiated twice. Firstly, the
Scatter phase reads the CSR of size 𝑛 +𝑚 and the input array 𝑥

of size 𝑛, and subsequently generates 𝑚 data for writing to the
bins. Then, the Gather phase loads𝑚 pairs of data and destination
for accumulation, and writes 𝑛 sums. As a result, the total traffic
volume is 4𝑚 + 3𝑛 Bytes.

In contrast, the pulling flow propagates updates only once. The
CSC of size 𝑛 +𝑚 is scanned, while the elements in 𝑥 are loaded𝑚
times. The output array 𝑦 of size 𝑛 is then written back to memory.
As a result, the memory traffic for the pull method is only 2𝑚 + 2𝑛
bytes, which is substantially lower than that for the GAS method.

Random Memory Access. Although the pulling approach re-
duces memory traffic, it suffers from highly randomized accesses.
As illustrated in Algorithm 1, requests to the cscPtr, cscIdx, and
y arrays are sequential, ensuring high cache locality. However, the
reads to the x array are random, with up to𝑚 reads, resulting in
poor cache utility.

The blocking approach, derived from the CSR-based pushing
flow, sequentially accesses the csrPtr, csrIdx, and x arrays, while
random writes are directed to the y array. Fortunately, the random
writes can be substantially decreased through sorting the propa-
gation with the bins [4, 25]. Data access within bins is sequential,
with random access arising solely from block fetching (line 1 and
3 in Algorithm 2). Consequently, the number of random requests
amounts to (𝑛/𝑐)2, where 𝑐 represents the cache size utilized to
establish the block size.

Using the graph wiki with 𝑛 = 18.2 M and𝑚 = 172.2 M as an ex-
ample, we assume a cache size 𝑐 = 64 KB, resulting in (𝑛/𝑐)2 ≈ 2852
= 80.9 K blocks. Under the worst-case scenario, where locality is
absent in wiki, accesses are entirely randomized. Approximately,
the pulling InDegree incurs 172.2 M random accesses, while the
blocking approach only causes 80.9 K accesses. However, the block-
ing approach generates an additional 362.6 MB of memory traffic
compared to the pulling method.

In conclusion, the blocking technique reduces random memory
accesses at the expense of increased memory traffic. For graphs
exhibiting high locality, random accesses are inherently minimal,
rendering the performance gains of blocking negligible or even de-
teriorated [4]. Based on the quantitative analysis, we are motivated
to seek a solution that harnesses the advantages of both blocking
and pulling methods for link analysis.

Redundant Message Passing. When represented as an adja-
cency matrix 𝐴, a seed node 𝑣 𝑗 corresponds to an empty column,
denoted as 𝐴[:, 𝑗] = 0. Similarly, a sink node 𝑣𝑖 signifies an empty
row, expressed as𝐴[𝑖, :] = 0. An isolated node implies that both the
corresponding row and column are empty.

Although CSR compresses the adjacency matrix by sequentially
storing non-zero elements in each row, this format remains inef-
ficient for graph traversal. For example, in the wiki graph, 45% of

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Chen and Chung, et al.

nodes (i.e., sink nodes) lack outgoing links, indicating that nearly
half of the elements in the CSR pointer array are repeated if the
graph is represented in CSR. These elements are unnecessarily
scanned in every iteration. Analogously, if wiki is stored in CSC,
approximately one-third of redundant elements (i.e., seed nodes)
stored in the CSC offset array.

Furthermore, the directionality of irregular connectivity results
in redundant memory traffic for the link analysis. During compu-
tation, regular nodes serve as central points due to their iterative
updates. Seed nodes, however, maintain their data unchanged after
initialization, leading to the repetitive broadcasting of the same
data. Sink nodes, which do not impact other nodes, have their states
determined solely by their in-neighbors. Consequently, propaga-
tion towards sink nodes can be delayed until the completion of
other nodes in the final iteration. Lastly, isolated nodes are entirely
independent and thus unnecessary.

The GAS employed by blocking approach amplifies redundancy,
as the unnecessary traffic related to seed and sink nodes is doubled
by the Scatter and Gather phases. In order to improve the perfor-
mance of graph traversal, regardless of the employed method (e.g.,
either pulling or blocking), it is essential to eliminate the redun-
dancy of message passing.

4 MIXEN
In this section, we propose Mixen, our solution for enhancing the
performance of link analysis algorithms. Mixen aims to capitalize
on the benefits of both blocking and pulling flows, while simulta-
neously addressing the irregular connectivity intrinsic to graphs.

4.1 Graph Filtering and Relabeling
The goal of graph filtering is to avoid redundant memory traffic
and improve cache locality. Also, the filtering process is expected to
be lightweight, which can be compensated for by a few iterations
of downstream applications.

To accomplish these objectives, we develop a strategy that (1)
relabels node IDs based on their degrees and (2) then replacing
the original nodes with the relabeled nodes in the memory space.
The connectivity analysis presented in Section 2.1 offers valuable
insights for devising the relabeling algorithm.

Firstly, Mixen exmaines whether a node has a zero-degree. If
the node does, Mixens determines the type of the node based on
its directionality. Next, regular nodes are assigned the first IDs,
followed by seed nodes which are relabelled with the next available
IDs. Similarly, sink and isolated nodes are allocated in subsequent
own memory addresses. As a result, a subgraph consisting solely
of regular nodes is produced, as depicted in Fig. 2b.

Secondly, Mixen implements an additional filtering step on the
regular subgraph to enhance graph locality. Hubs within the sub-
graph, which are regulars nodes with in-degrees higher than the
graph’s average degree, are relocated to the front of non-hub nodes.
This ensures that frequently accessed nodes are co-located, thereby
increasing the likelihood of cache reuse. By evaluating hubs based
on in-degree, nodes with numerous incoming links from regular and
seed nodes are collected, which allows for more effective caching
of seed-to-regular messages for later reuse (detailed in Section 4.3).
Additionally, we preserve the relative order of nodes within each

v0 v1 v2 v3 v4 v5 v6

v0 1

v1 1 1

v2

v3

v4 1 1

v5 1

v6 1 1

seed reg. sink iso. reg. reg. reg.

seed

reg.

sink

iso.

reg.

reg.

reg.

(a) Original A

v1 v4 v5 v6 v0 v2 v3

v1 1 1

v4 1 1

v5 1

v6 1 1

v0 1

v2

v3

reg. reg. reg. reg. seed sink iso.

reg.

reg.

reg.

reg.

seed

sink

iso.

(b) 1st step

v5 v1 v4 v6 v0 v2 v3

v5 1

v1 1 1

v4 1 1

v6 1 1

v0 1

v2

v3

hub reg. reg. reg. seed sink iso.

hub

reg.

reg.

reg.

seed

sink

iso.

(c) 2nd step

Figure 2: 2-step filtering of graphs

category in both steps, ensuring minimal disruption to the original
graph structure.

v0 v1 v2 v3 v4 v5 v6

v0 1

v1 1 1

v2 1 1

v3 1 1

v4 1

v5

v6

push

pu
ll

block

0 3 5 6

0 0 3 0 1 2 1 3

Node Ptr

Link Index

7 8

CSR CSR CSC

regular seed sink

8

iso.

1

out in

Figure 3: Mixed representation of CSR and CSC for the fil-
tered graph. Regular nodes (including hubs) and seed nodes
are encoded in CSR, and sink nodes are encoded in CSC. The
three types of nodes are processed in different paradigms.

The subgraphs are represented using a mixed form of CSR and
CSC. Regular nodes, including the hubs, are encoded in CSR, prepar-
ing for cache blocking. Seed nodes are encoded in CSR too, as seed
nodes exclusively have outgoing links. In contrast, sink nodes are
encoded in CSC, given that they only possess incoming links. As
depicted in Fig. 3, the index array within the CSR part stores the
out-neighbors (i.e., column ID) of nodes, while the index array
within the CSC part stores the in-neighors (i.e., row ID) nodes. The
boundary information separating the regular, seed, sink and iso-
lated nodes are stored as meta-data to facilitate management during
graph processing.

It should be emphasized that minimizing the cost of graph fil-
tering is a primary concern in designing our optimization strategy.
We reduce the overhead in two aspects. (1) The 2-step filtering
procedure is merged into a single graph scan, thus decreasing both
computational demands and data loading costs. (2) The CSR and
CSC representations of the subgraphs are directly extracted from
the existing CSR and CSC of the original graph. The extraction
not only eliminates extra overheads of format conversion, but also
reduces memory footprints compared to those required by the
original CSR plus CSC. In such way, the filtering of the graph is
streamlined with the optimization of data representation, delivering
higher efficiency.

4.2 Graph Partitioning and Binning
The filtered subgraph of regular nodes is further optimized by 2-D
blocking. The block size is determined by a cache-related indicator,
denoted as 𝑐 , which is optimized in Section 6.4. Given that the sub-
graph contains 𝑟 regular nodes, the filtered subgraph is partitioned

Connectivity-Aware Link Analysis for Skewed Graphs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

into 𝑟
𝑐 ×

𝑟
𝑐 blocks. In other words, denoting 𝑏 = 𝑟

𝑐 , the submatrix is
converted to 𝑏 × 𝑏 blocks.

The cache-sized block serves as the basic data unit for threads
to process. It imposes constraints on the thread behavior in two
dimensions. Firstly, the horizontal width of the block specifies the
node range for a thread to access. Secondly, the vertical height of
the block limits the propagation range of updates. Thus, As a result,
the access to the graph for each thread is controlled within the
cache. The 2-D blocking can be easily implemented by partitioning
the CSR of the filtered graph into multiple local CSRs in parallel.

Mixen improves graph locality by filtering the graph and re-
locating hubs to the beginning of the vertex set. However, the
concentration of hubs may result in workload imbalance among
threads. To tackle this issue, a load balancing scheme [12, 44] is
employed. This scheme estimates the workloads by counting the
number of nonzeros within each block. Mixen ensures that the total
number of nonzeros per block does not exceed twice the average
number of blocks. If a block becomes overloaded, it is divided into
smaller blocks.

Moreover, Mixen utilizes dynamic and static bins for data buffer-
ing. The dynamic bins are updated in every iteration. They are
used to sort the propagation [4], such that the random memory
jumps within each block are converted into sequential memory
access. Further, to reduce the memory traffic, the edge compression
technique [25] is deployed, which compresses the messages from
a single source node to multiple destination nodes into a single
transmission within a block.

The static bins are writen only once for preparation and become
read-only afterwards. They accumulate and cache the data sent
from seed nodes to regular nodes. In subsequent executions, cached
data are reused to avoid repeated computation and propagation.
Moreover, static bins can be shared by multiple blocks with com-
mon rows (i.e., source nodes) because the cached data are identical
among them. As a result, the static bins are allocated per block-
row as 1-D vector. The operations relating to the bins are further
detailed in Section 4.3.

4.3 Graph Scheduling and Propagating
Upon completion of the filtering and partitioning processes, Mixen
proceeds to execute link analysis on the resultant subgraphs. The
primary workload in graph processing stems from iterative execu-
tions on regular nodes, referred to as the Main-Phase. In addition,
two supplementary phases involving seed and sink nodes contribute
to the overall workload: the Pre-Phase and Post-Phase. The entire
procedure is orchestrated in Algorithm 3, offering a systematic
method to manage the irregular graph workloads.

Pre-Phasewith Seed. During the preparation phase, seed nodes
are initialized, and then transfer their data to destination nodes
(line 3). Thereafter, they become inactive for future computations.
Receiving blocks aggregate the messages and store the resulting
data, which is utilized in the Main-Phase. To decrease the overhead
of preparation, the Pre-Phase is incorporated into an earlier stage —
the construction of blocks (line 2).

Main-Phase with Regular. The processing of regular nodes is
conceptualized as an iterative Scatter-Cache-Gather-Apply (SCGA)
model. This model operates on a 𝑏 ×𝑏 blocks and generates updates

for regular nodes. Specifically, the Cache step is a novel addition
proposed in this paper, where the prepared data in the Pre-Phase
are reused by the regular nodes. It serves as a crucial mechanism
to avoid redundant computations and communications associated
with seed nodes.

The Scatter and Cache steps are grouped within a single parallel
region (lines 5-9), which is parallelized in row-major order. In the
Scatter step, the thread assigned with index 𝑖 is responsible for
updating all the dynamic bins belonging to the 𝑖𝑡ℎ block-row (i.e.,
bin[i][:]). The thread is restricted to only access a segment of
source nodes’ data x, the range of which corresponds to the row
ID range of the 𝑖𝑡ℎ block-row. This step buffers the propagation
from the source nodes to destination node, offering the benefit of
squentialized memory accesses.

Algorithm 3: SpMV performed by Mixen
Input: x, seed, sink, regular
Output: y, sta_bin, dyn_bin

1 b = num_regular/cache_size
2 dyn_bin[b][b] = Block(regular) ⊲ Blocking
3 sta_bin[b] = Push(seed) ⊲ Pre-Phase
4 while !converge & !max_iter do
5 for i ← 0 to b-1 do in parallel ⊲ Main-Phase
6 for j ← 0 to b-1 do
7 x update dyn_bin[i][j] ⊲ Scatter
8 x reset by sta_bin[i] ⊲ Cache
9 for i ← 0 to b-1 do in parallel
10 for j ← 0 to b-1 do
11 y accumulate dyn_bin[j][i] ⊲ Gather
12 for v ∈ regular do
13 Function(y[v]) ⊲ Apply
14 Swap(x,y)
15 Pull(sink) ⊲ Post-Phase

Following the Scatter step, the Cache step resets the properties of
the regular nodes to the previously cached values. The data stored
in the static bins are written consecutively to the x (segment). By
reusing the cached values, the Cache step minimizes the need for
redundant memory traffic and repeated computation.

The Gather and Apply steps are also combined within a single
parallel region (lines 9-13), but are multi-threaded in a column-
major order. In the Gather step, the 𝑖𝑡ℎ thread accumulates the
cached data from the dynamic bins along the 𝑖𝑡ℎ block-column (i.e.,
bin[:][i]), and writes the aggregated sums to the destination
nodes y. The access range of destination nodes is confined by the
column ID of the 𝑖𝑡ℎ block-column.

Finally, the Apply step incorporates user-defined functions that
operate on the sum generated in the previous step. The computa-
tional workload of the Apply and Cache steps is relatively small.
The majority of the cost is incurred during the cross-block data
movements in the Scatter and Gather steps, where bins spanning
a column or row are sequentially accessed. Therefore, optimizing
these steps is critical for improving the overall efficiency of graph
processing.

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Chen and Chung, et al.

Post-Phase with Sink. Upon completion of the Main-Phase,
either as a result of convergence or reaching a pre-defined number
of iterations, the processing transitions into the Post-Phase. During
this phase, the sink nodes fetch data from both regular and sink
nodes along the incoming links and subsequently compute their
own updates. This final phase ensures the accurate calculation of
updates for sink nodes.

5 PERFORMANCE ANALYSIS
This section undertakes a theoretical analysis of the Indegree al-
gorithm implemented under Mixen to gain insights into Mixen’s
behavior and potential contributions.

The analysis primarily focuses on the iterative computation of
regular nodes, given that other nodes are processed at most once. In
order to simplify the analysis, the influence of the bit mask in reduc-
ing cross-block messages is not taken into account. Additionally,
we make the assumption that the input graph exhibits no locality,
implying that every link would invoke a random memory access.
The ratio of regular nodes to the total number of nodes is denoted
as 𝛼 = 𝑟/𝑛. The number of links within the subgraph of regular
nodes is denoted as 𝑚̃, while the proportion of these links relative
to all links is 𝛽 = 𝑚̃/𝑚.

Memory Traffic Volume. During the Scatter step, a scan of
regular nodes involves reading 𝑟 Bytes of updates and 𝑟 Bytes of
destination nodes, followed by writing 𝑚̃ Bytes into the data array
of bins. In the Cache step, regular nodes are reset using the cached
data, resulting in 𝑚̃ Bytes of reads and writes, respectively. The
Gather step reads 𝑚̃ Bytes from the bins and updates 𝑟 Bytes of
aggregated sums, followed by writing 𝑟 Bytes for destination nodes.
The data movement regarding the Apply step is zero, as no user-
defined functions are involved in this process. Therefore, the total
volume of memory traffic is:

𝑚𝑒𝑚 = 4𝑟 + 4𝑚̃
= 4𝛼 · 𝑛 + 4𝛽 ·𝑚 (1)

The memory traffic of Mixen is highly dependent on the propor-
tion of regular nodes 𝛼 and their connectivity 𝛽 . As the number
of regular nodes decreases (𝛼 → 0, 𝛽 → 0), memory consump-
tion is reduced. Conversely, in the worst-case scenario where an
undirected graph contains no isolated nodes (𝛼 = 1, 𝛽 = 1), the
advantages offered by Mixen are diminished. In such a situation,
Mixen incurs higher memory traffic (e.g., 4𝑛 + 4𝑚) compared to
the baseline blocking method discussed in Section 3 (e.g., 3𝑛 + 4𝑚),
owing to the additional Cache step.

RandomMemory Access.Within a block, the access to data
and destination arrays is entirely sequential, thereby promoting
high memory efficiency. Random access takes place when a thread
switches a bin for updating or accumulation. Given that there are
a total of 𝑏 × 𝑏 bins (one bin per block), the number of random
memory accesses per iteration can be expressed as:

𝑟𝑎𝑛𝑑 = 𝑂 (𝑏2) = 𝑂 ((𝛼 · 𝑛
𝑐
)2) (2)

The proportion of regular nodes, denoted as 𝛼 , regulates the
randomness by adjusting the number of blocks based on its square
number 𝛼2. Consequently, Mixen is anticipated to exhibit high
effectiveness on graphs characterized by a low 𝛼 value. In contrast,

when 𝛼 = 1, the performance deteriorates to that of conventional
blocking approach, which is (𝑛/𝑐)2.

The above discussion does not consider the locality of the graph,
which plays a substantial role in performance. Hence, in real-world
implementations, the experimental results might deviate from our
analysis. However, this discussion underscores the importance of
understanding the underlying graph structure and its implications
for the performance of graph processing.

6 EVALUATION
6.1 Setup and Implementation Details
Experiments are conducted on a modern multicore machine. It
contains a two-socket Intel Xeon Silver processor with 20 physical
cores. The capacity of L1 cache, L2 cache, LLC and main memory
are 64KB, 1MB, 27.5MB and 256GB respectively.

Table 2: Graph datasets and their attributes (M: Million).

Graphs 𝑛 𝑚 Skewed Real Directed 𝛼 𝛽

weibo [33] 5.8M 261.3M Yes Yes Yes 0.01 0.06
track [36] 12.8M 140.6M Yes Yes Yes 0.46 0.60
wiki [2] 18.2M 172.2M Yes Yes Yes 0.22 0.78
pld [26] 42.9M 623.1M Yes Yes Yes 0.56 0.84
rmat [9] 8.4M 134.2M Yes No Yes 0.26 0.59
kron [3] 67.1M 2.1B Yes No No 0.49 1
road [22] 23.9M 57.7M No Yes No 1 1
urand [3] 8.4M 268.4M No No No 1 1

Our code2 is implemented in C++ and complied using G++ 9.3.0
with O3 optimization. The parallelization is enabled by OpenMP
[13]. During the graph processing, the dynamic scheduler is em-
ployed to facilitate workload balance. The data types of nodes, links
and properties are all of 32 bits, e.g., unsigned int or float.The
size3 of a block is set to 256 KB, which contains 64K nodes. Mean-
while, 20 threads are employed for parallelization (with Hyper-
Threading disabled).

In order to obtain a convincing result, we conduct experiments
comprising 100 iterations (with convergence condition removed, if
possible), and report the average outcome. The cache performance
is measured using Linux’s perf tool [41], while memory activities
are monitored by Liwid [39].

The applications are assessed using a diverse range of graph
datasets, covering both real-world and synthetic graphs, as well as
directed and undirected ones. This variety ensures a comprehen-
sive evaluation of the performance across different types of graph
structures. Graphs weibo [33], track [36], wiki [22] and pld [31]
are crawled from social network or hyperlinks in webpages. For
these graphs, the isolated nodes are usually discarded before being
open-sourced. Graphs rmat [9] and kron [3] are manufactured using
specific graph generators. Their attributes are detailed in Table 2.

Mixen is evaluated in comparison to four other frameworks.
Ligra [37] is a vertex-centric graph framework specifically designed
2https://github.com/yuang-chen/Mixen-ICPP-23
3since a block is a square matrix, we use the side length 𝑠 in one dimension to represent
its actual size 𝑠 × 𝑠 .

Connectivity-Aware Link Analysis for Skewed Graphs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

Table 3: Graph processing time in seconds (per iteration except for BFS).

InDegree PageRank

Frwk weibo track wiki pld rmat kron road urand Frwk weibo track wiki pld rmat kron road urand

Mixen 0.008 0.091 0.085 0.116 0.061 0.366 0.017 0.076 Mixen 0.009 0.096 0.087 0.121 0.062 0.377 0.021 0.080
GPOP 0.205 0.226 0.115 0.204 0.069 0.556 0.023 0.083 GPOP 0.251 0.266 0.132 0.212 0.077 0.604 0.031 0.090
Ligra 6.000 1.575 1.025 0.840 0.305 3.330 0.031 0.352 Ligra 10.850 3.015 1.940 1.490 0.605 5.750 0.041 0.650

Polymer 4.880 1.365 0.290 0.604 0.185 0.515 0.590 0.289 Polymer 5.300 1.575 0.398 0.166 0.455 0.690 0.253 0.398
GraphMat 0.407 0.182 0.167 0.689 0.089 1.857 0.089 0.174 GraphMat 0.438 0.190 0.190 0.727 0.096 2.019 0.098 0.192

Collaborative Filtering Breadth-First Search

Frwk weibo track wiki pld rmat kron road urand Frwk weibo track wiki pld rmat kron road urand

Mixen 0.025 0.159 0.157 0.159 0.101 0.514 0.025 0.095 Mixen 0.094 0.072 0.229 0.640 0.202 0.720 1.006 0.190
GPOP 0.312 0.321 0.175 0.264 0.108 0.732 0.027 0.115 GPOP 0.062 0.173 0.326 0.956 0.126 1.731 1.199 0.278
Ligra 8.450 2.775 1.635 1.320 0.480 4.635 0.037 0.540 Ligra 0.020 0.091 0.095 0.375 0.026 0.290 0.787 0.055

Polymer - - - - - - - - Polymer 1.930 1.610 0.250 1.370 1.740 0.565 11.500 2.000
GraphMat 1.137 0.577 0.561 3.044 0.280 7.776 0.406 0.835 GraphMat 0.521 1.019 1.003 3.488 5.746 4.338 65.208 0.647

for shared-memory systems, facilitating the intuitive expression
of graph algorithms. Polymer [43] enhances Ligra by optimizing
it for the Non-Uniform Memory Access (NUMA) in contemporary
multicore architectures. GraphMat [38] transforms graph-related
tasks into matrix-based operations. GPOP [24] divides graphs into
blocks to boost cache efficiency, based on which Mixen is developed.

For performance evaluation, we test four graph algorithms. In-
Degree (IN) and PageRank (PR) are commonly-used link analysis
algorithms, while Collaborative Filtering (CF) is a graph learning
algorithm derived from the SpMV form of InDegree. However, we
were unable to implement CF under Polymer because this would re-
quire thousands of lines of codes. Additionally, Breadth-First Search
(BFS) is a non-link-analysis algorithm that does not benefit from
the Cache step of Mixen at all. The execution of BFS ends when
results reaches to convergence. The inclusion of BFS provides a
comprehensive assessment of Mixen’s applicability across diverse
graph tasks.

6.2 Execution Time
Foremost, we evaluate the execution time of Mixen in comparison
with other frameworks, the detail of which is listed in Table 3. On
average of all results, Mixen outperforms GPOP, Ligra, Polymer,
GraphMat by 3.42×, 7.81×, 19.37×, 7.74× respectively.

Ligra exhibits poor performance in link analysis tasks due to
its reliance on pushing flows and atomics for data propagation.
However, it proves advantageous in the context of BFS, where com-
munication is sparse and collisions are less likely to occur. Polymer,
a framework derived from Ligra, outperforms its predecessor in link
analysis tasks by evenly redistributing graph data across NUMA
nodes. Despite this improvement, the adopted approach deterio-
rates the performance of BFS, resulting in a trade-off between the
selected algorithms.

GraphMat facilitates message propagation in the pulling flow,
while being oblivious of the underlying hardware architecture. It
often achieves better performance than Ligra and Polymer for link
analysis tasks. Nonetheless, GraphMat exhibits suboptimal perfor-
mance in BFS.

GPOP, being the second fastest framework, is designed with the
awareness of cache hierarchy. It optimizes graph processing by
organizing propagation into cache-fitting blocks. However, GPOP
does not adequately address the irregular connectivity patterns
typically observed in power-law graphs, which leads to redundant
communications and computations.

Mixen leverages the connectivity of graphs, integrating the ad-
vantages of optimization techniques proposed in previous works.
By reorganizing graphs, Mixen is able to extract the locality of
graphs and to efficient subdivide the graph into subgraphs. The
most appropriate approach is used for each individual subgraph,
thereby optimizing the overall performance.

Furthermore, although Mixen was originally designed for di-
rected, skewed graphs and link analysis algorithms, it successfully
enhances the performance across various other graph types and
applications. As a derivative, Mixen outperforms GPOP in terms of
undirected graphs (e.g., road), non-skewed graphs (e.g., urand) and
sparser algorithms (e.g., BFS) in most of cases.

6.3 Memory and Cache Utility
In this section, we examine Mixen’s memory activities by compar-
ing it with two variants. One variant solely applies the pulling flow
to the graph as GraphMat, which referred to as Pull. The other ex-
clusively adopts the blocking strategy as GPOP for the entire graph,
which is denoted as Block. The use of these variants minimizes the
impact of differing design principles across frameworks, therefore
contributing to a more accurate and fair performance evaluation.

Fig. 4 demonstrates that Mixen produces the least amount of
traffic, particularly on Graph weibo where the majority of traffic is
scheduled out of the main phase. Moreover, a notable correlation
is observed between memory traffic and execution time across
different processing approaches.

The Pull variant frequently generates the highest memory traffic
compared to other methods, resulting in reduced processing speed.
However, an exception occurs with the graph road, which is charac-
terized by a low maximum degree and a large diameter. Accessing
this graph induces infrequent and long-distance jumps in memory

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Chen and Chung, et al.

weibo track wiki pld rmat kron road urand

0.5

2

8

32

128

Ex
ec

ut
io

n
Ti

m
e

0.5

2

8

32

128
Mixen Block Pull

M
em

ory Traffic

Figure 4: Normalized execution time (plotted as bars) and
normalized memory traffic (plotted as dots) across Mixen as
well as its Block and Pull variants.

space, inherently showing low temporal and spatial locality. In such
instances, the Pull variant generates minimal memory traffic and
yields better performance than the Block variant.

The Block variant restricts each thread’s access range to a specific
block, effectively minimizing random jumps within the memory
space and retaining operations in cache. Consequently, the Block
variant outperforms the Pull variant on skewed graphs that offer
locality opportunities to exploit. Mixen further refines the basic
blocking technique by eliminating unnecessary memory traffic. As
a result, Mixen consistently achieves the higher processing speed.

weibo track wiki pld rmat kron road urand
0.0

0.5

1.0

1.5

2.0

2.5

L2
 C

ac
he

 R
ef

er
en

ce
s

Mixen Block Pull

Figure 5: Normalized L2 cache references. Upper empty bars:
cache misses; lower shadowed bars: cache hits.

We further investigate into the references (i.e., hits + misses)
to the private L2 cache owned by each core. For the Pull variant,
cache misses account for a major portion of references, amounting
to 62%. In contrast, the cache miss ratios for Mixen and its Block
variant are significantly lower, at 27% and 29% respectively. The
excessively high cache misses is a crucial factor contributing to the
high memory traffic observed in the Pull variant.

Mixen promotes more efficient cache utilization in two aspects.
First, a large volume of message passing is avoided. This reduces the
numbers of data and arithmetic instructions throughout the cache
hierarchy. Hence, Mixen generates less cache references. Second,
hubs are relocated to the beginning of the vertex set, allowing
frequently accessed nodes to be co-located. Thereby, both the spatial
and temporal locality of the data are improved, facilitating lower
cache miss ratio.

6.4 Block Size
The block size plays a important role in determining the perfor-
mance of Mixen. The choice of block size signifies a sophisticated
tradeoff between workload distribution, cache locality and memory
traffic. In Fig. 6, experimental results demonstrate that the size of a
block best fits within either L2 cache or L1 cache.

16 32 128 256 512 1024 2048 409664
0.00

0.25

0.50

0.75

1.00

1.25

Block Size
Ex

ec
ut

io
n

Ti
m

e

weibo track wiki pld
rmat kron road urand

L2 Cache LLCL1 Cache

Figure 6: The normalized execution time with varied block
size.

For graphs fitting within L1 cache, the key factor impacting the
block size is the workload distribution among threads. When run-
ning multi-threaded programs, it is essential to generate a sufficient
number of tasks to keep the threads occupied and prevent any
thread from idling. In the case of Mixen, we found that effective
parallelization during the Main-Phase occurs when the number of
blocks is at least four times greater than the number of threads.
Thus, for graphs that contain only a limited number of regular
nodes, it is necessary to choose a correspondingly small block size
to create enough blocks.

For graph fitting within L2 cache, the number of regular nodes is
large enough to generate a sufficient number of blocks to feed the
threads. In such case, other factors become more influential in deter-
mining the performance. The optimal performance is reached when
these factors reach a balanced point, ensuring the most effective
compromise.

Fig. 7 offers a concrete example of graph pld, which illustrates the
interactions among different performance factors. When the block
size is too small, such as 16KB, the accesses to LLC and memory are
exceptionally high. In this scenario, the blocking technique cannot
effectively enhance data reuse in caches. As the block size increases,
the utilization of LLC and memory improves, resulting in a shorter
execution time. Nonetheless, if the block size becomes overly large,
such as 1MB, the performance would deteriorate again. Although
the optimal results for LLC and memory efficiency are attained
at different points, the best overall performance is achieved when
both factors are accommodated within the L2 cache, at a block size
of approximately 256KB.

Connectivity-Aware Link Analysis for Skewed Graphs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

1 6 K 3 2 K 6 4 K 1 2 8 K 2 5 6 K 5 1 2 K 1 M 2 M 4 M
0
1
2
3
4
5
6
7

 L L C M e m o r y

S i d e L e n g t h o f B l o c k s (B y t e s)

LL
C H

its
(G

)

L L CL 2 C a c h eL 1 C a c h e

2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

 M
em

ory
 Tr

aff
ic (

GB
)

Figure 7: LLC hits and memory traffic with different block
sizes for graph pld

6.5 Preprocessing Overhead
In this section, we evaluate the overhead associated with Mixen,
which can be attributed to two primary factors: (1) graph filtering,
and (2) graph partitioning.

Table 4: The preprocessing overheads of frameworks

Graph GPOP Ligra Polymer GraphMat Mixen

Filter Partition Total

weibo 0.94 31.30 26.20 32.64 2.67 0.17 2.85
track 0.55 11.50 10.90 18.30 1.58 0.22 1.80
wiki 0.71 12.80 17.40 21.53 1.31 0.29 1.60
pld 6.32 32.70 65.60 80.14 4.73 2.81 7.54
rmat 0.69 6.88 11.30 18.70 0.91 0.74 1.65
kron 16.45 118.00 188.00 325.14 13.31 4.62 17.92
road 0.88 12.90 31.10 33.97 0.68 0.17 0.85
urand 0.19 1.28 4.88 7.87 1.73 0.73 2.46

Table 4 lists the preprocessing time required by the frameworks.
Ligra, Polymer, and GraphMat require a significant amount of time
to convert a graph from edge lists into their own customized formats.
In contrast, Mixen and GPOP directly accept the CSR binary format
without needing any format conversion. Thus, the overheads of
Ligra, Polymer, and GraphMat are substantially higher than those
of GPOP and Mixen. GPOP achieves lower overhead compared to
Mixen due to its simpler optimization strategy. The primary source
of Mixen’s overhead stems from the filtering process, during which
the entire graph is reallocated within the memory space.

7 RELATEDWORK
SpMV. SpMV has been drawing enormous research attention over
the past decades for diverse computing architectures, including
CPUs [42] and GPUs [16]. The essential challenge of SpMV arises
from the massive number of zeros in the sparse matrix, which are
not engaged in the computation. Hence, the matrices are commonly
represented in compressed formats that contain only the non-zeros
[5].

However, there is no single format universally suitable for all
SpMV algorithms on all architectures. The selection of matrix rep-
resentation depends on the specific tasks. For instance, when the

non-zeros are well structured and form a few matrix diagonals,
Diagonal (DIA) is a favored choice [35]. Ellpack (ELL), allowing a
general pattern of matrices, suits for regular SIMD programming
[17]. For the irregular matrices, Coordinate List (COO) copes with
the problem of load imbalance [15]. Furthermore, Hybrid (HYB)
approach is devised by decomposing the matrix into two parts of
regular ELL and irregular COO [1].

The duality between graphs and matrices remarkably stimu-
lates the advancement in both domains. Graph algorithms, such as
PageRank and BFS, serve as the representative SpMV applications
in SpMV papers [28]. In reverse, optimized SpMV operations also
inspire the high performance of graph processing [38].

Graph Processing. Mixen belongs to the category of shared-
memory graph processing. In this case [10, 24, 37], a modern server
is deployed, equipped with sufficiently large memory and multiple
cores, for example, 1 TB and 128 cores. Thus, graphs can be fitted
into the memory and globally shared by all threads.

When the memory volume of multicore systems is not able
to accommodate large-scale graphs, the graph processing can be
scaled up to distributed systems [46]. The distributed-memory pro-
cessing requires explicit graph partitioning, so that subgraphs are
locally handled by each node. However, the synchronization among
subgraphs incurs expensive communication overheads across the
network. Thus, the distributed work sometimes deliver suboptimal
performance in comparison with the shared-memory counterpart
[46] or even a single-threaded implementation [30].

Besides, the graph processing can also be offloaded to disks when
the dataset can not fit into the memory [23, 34], which is defined
as the external-memory system. The disk stores partial graph data
and intermediate results during the execution of programs. A main
design concern for such system is the efficient utilization of disk
(e.g., improving disk I/O bandwidth) for data streaming [29].

8 CONCLUSION
In this paper, we investigate the computing pattern of link analysis
algorithms with skewed graphs on shared-memory multicore sys-
tems. We identify the strengths and weaknesses of conventional
methods for executing link analysis algorithms, as well as the re-
dundancies and inefficiencies resulting from the inherent irregular
connectivity within the skewed graphs.

Then, we propose Mixen, a framework designed to optimize
link analysis algorithms for skewed graphs. Mixen firstly filters the
graph based on node connectivity and encodes subgraphs with a
mix of CSR and CSC. The filtered subgraphs are then rescheduled
and processed under selectively tailored paradigms. In particular, a
Scatter-Cache-Gather-Apply (SCGA) execution model is devised
for the regular nodes, which avoids redundant computations and
traffic.

The performance of Mixen is evaluated on diverse graph datasets
and algorithms. The experimental results demonstrate that Mixen
significantly outperforms contemporary works, not only for skewed
graphs and link analysis algorithms, but also for non-skewed graphs
and sparser algorithms such as BFS.

In the future, Mixen can be extended to contemporary graph
systems, such as GraphMat [38] and Graphit [45], for performance

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Chen and Chung, et al.

improvement. Also, it is worth to explore the effectiveness of block-
ing technique and the SCGA model on GPUs.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Develop-
ment Program of China (No. 2018YFB1003505).

REFERENCES
[1] Hartwig Anzt, Terry Cojean, Chen Yen-Chen, Jack Dongarra, Goran Flegar, Pratik

Nayak, Stanimire Tomov, Yuhsiang M Tsai, and Weichung Wang. 2020. Load-
balancing sparse matrix vector product kernels on GPUs. ACM Transactions on
Parallel Computing (TOPC) 7, 1 (2020), 1–26.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In The
semantic web. Springer, 722–735.

[3] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

[4] Scott Beamer, Krste Asanović, and David Patterson. 2017. Reducing pagerank
communication via propagation blocking. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 820–831.

[5] Ronald F Boisvert, Ronald F Boisvert, and Karin A Remington. 1996. The matrix
market exchange formats: Initial design. Vol. 5935. US Department of Commerce,
National Institute of Standards and Technology.

[6] Allan Borodin, Gareth O Roberts, Jeffrey S Rosenthal, and Panayiotis Tsaparas.
2005. Link analysis ranking: algorithms, theory, and experiments. ACM Transac-
tions on Internet Technology (TOIT) 5, 1 (2005), 231–297.

[7] Daniele Buono, Fabrizio Petrini, Fabio Checconi, Xing Liu, Xinyu Que, Chris
Long, and Tai-Ching Tuan. 2016. Optimizing sparse matrix-vector multiplication
for large-scale data analytics. In Proceedings of the 2016 International Conference
on Supercomputing. 1–12.

[8] Peter J Carrington, John Scott, and StanleyWasserman. 2005. Models and methods
in social network analysis. Vol. 28. Cambridge university press.

[9] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[10] YuAng Chen and Yeh-ching Chung. 2021. HiPa: Hierarchical Partitioning for
Fast PageRank on NUMA Multicore Systems. In 50th International Conference on
Parallel Processing. 1–10.

[11] YuAng Chen and Yeh-Ching Chung. 2021. Workload Balancing via Graph Re-
ordering on Multicore Systems. IEEE Transactions on Parallel and Distributed
Systems 33, 5 (2021), 1231–1245.

[12] YuAng Chen and Yeh-Ching Chung. 2023. An Unequal Caching Strategy for
Shared-Memory Graph Analytics. IEEE Transactions on Parallel and Distributed
Systems (2023).

[13] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API
for shared-memory programming. IEEE computational science and engineering 5,
1 (1998), 46–55.

[14] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law
relationships of the internet topology. ACM SIGCOMM computer communication
review 29, 4 (1999), 251–262.

[15] Goran Flegar and Hartwig Anzt. 2017. Overcoming load imbalance for irregular
sparse matrices. In Proceedings of the Seventh Workshop on Irregular Applications:
Architectures and Algorithms. 1–8.

[16] Joseph L Greathouse and Mayank Daga. 2014. Efficient sparse matrix-vector
multiplication on GPUs using the CSR storage format. In SC’14: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 769–780.

[17] Roger G Grimes, David R Kincaid, and David M Young. 1979. ITPACK 2.0 user’s
guide. Center for Numerical Analysis, Univ.

[18] Jeremy Kepner and John Gilbert. 2011. Graph algorithms in the language of linear
algebra. SIAM.

[19] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[20] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM) 46, 5 (1999), 604–632.

[21] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[22] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web. 1343–1350.

[23] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. Graphchi: Large-scale
graph computation on just a {PC}. In 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12). 31–46.

[24] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna. 2020. GPOP:
A Scalable Cache-and Memory-efficient Framework for Graph Processing over

Parts. ACM Transactions on Parallel Computing (TOPC) 7, 1 (2020), 1–24.
[25] Kartik Lakhotia, Rajgopal Kannan, and Viktor Prasanna. 2018. Accelerating

pagerank using partition-centric processing. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18). 427–440.

[26] Oliver Lehmberg, Robert Meusel, and Christian Bizer. 2014. Graph structure
in the web: aggregated by pay-level domain. In Proceedings of the 2014 ACM
conference on Web science. 119–128.

[27] Ronny Lempel and Shlomo Moran. 2001. SALSA: the stochastic approach for
link-structure analysis. ACM Transactions on Information Systems (TOIS) 19, 2
(2001), 131–160.

[28] Min Li, Yulong Ao, and Chao Yang. 2020. Adaptive SpMV/SpMSpV on GPUs for
input vectors of varied sparsity. IEEE Transactions on Parallel and Distributed
Systems 32, 7 (2020), 1842–1853.

[29] SteffenMaass, ChangwooMin, Sanidhya Kashyap,Woonhak Kang,MohanKumar,
and Taesoo Kim. 2017. Mosaic: Processing a trillion-edge graph on a single
machine. In Proceedings of the Twelfth European Conference on Computer Systems.
527–543.

[30] Frank McSherry, Michael Isard, and Derek G Murray. 2015. Scalability! But at
what {COST}?. In 15th Workshop on Hot Topics in Operating Systems (HotOS
{XV}).

[31] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2015.
The graph structure in the web–analyzed on different aggregation levels. The
Journal of Web Science 1 (2015).

[32] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[33] Ryan A Rossi and Nesreen K Ahmed. 2016. An interactive data repository with
visual analytics. ACM SIGKDD Explorations Newsletter 17, 2 (2016), 37–41.

[34] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 472–488.

[35] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.
[36] Sebastian Schelter and Jérôme Kunegis. 2016. Tracking the trackers: A large-scale

analysis of embedded web trackers. In Tenth International AAAI Conference on
Web and Social Media.

[37] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. 135–146.

[38] Narayanan Sundaram, Nadathur Rajagopalan Satish, Md Mostofa Ali Patwary,
Subramanya R Dulloor, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep
Dubey. 2015. Graphmat: High performance graph analytics made productive.
arXiv preprint arXiv:1503.07241 (2015).

[39] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments. In 2010 39th
International Conference on Parallel Processing Workshops. IEEE, 207–216.

[40] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phi™. Springer, 167–188.

[41] Vincent M Weaver. 2013. Linux perf_event features and overhead. In The 2nd
International Workshop on Performance Analysis of Workload Optimized Systems,
FastPath, Vol. 13. 5.

[42] Biwei Xie, Jianfeng Zhan, Xu Liu, Wanling Gao, Zhen Jia, Xiwen He, and Lixin
Zhang. 2018. Cvr: Efficient vectorization of spmv on x86 processors. In Proceedings
of the 2018 International Symposium on Code Generation and Optimization. 149–
162.

[43] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware graph-
structured analytics. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 183–193.

[44] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and
Matei Zaharia. 2017. Making caches work for graph analytics. In 2017 IEEE
International Conference on Big Data (Big Data). IEEE, 293–302.

[45] Yunming Zhang,Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and
Saman Amarasinghe. 2018. Graphit: A high-performance graph dsl. Proceedings
of the ACM on Programming Languages 2, OOPSLA (2018), 1–30.

[46] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A computation-centric distributed graph processing system. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 301–316.

Received 22 April 2023; revised 1 June 2023; accepted 16 June 2023

	Abstract
	1 Introduction
	2 Background
	2.1 Structural Property of Skewed Graphs
	2.2 Link Analysis Algorithms

	3 Motivation
	4 Mixen
	4.1 Graph Filtering and Relabeling
	4.2 Graph Partitioning and Binning
	4.3 Graph Scheduling and Propagating

	5 Performance Analysis
	6 Evaluation
	6.1 Setup and Implementation Details
	6.2 Execution Time
	6.3 Memory and Cache Utility
	6.4 Block Size
	6.5 Preprocessing Overhead

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

