
Isolate and Detect the Untrusted Driver with a Virtual Box
YongGang Li

ygli@cumt.edu.cn
School of Computer Science and
Technology, China University of

Mining and Technology;
Mine Digitization Engineering

Research Center of the Ministry of
Education;

Xuzhou, Jiangsu, China

ShunRong Jiang
jsywow@163.com

School of Computer Science and
Technology, China University of

Mining and Technology;
Mine Digitization Engineering

Research Center of the Ministry of
Education;

Xuzhou, Jiangsu, China

Yu Bao
baoy@cumt.edu.cn

School of Computer Science and
Technology, China University of

Mining and Technology;
Mine Digitization Engineering

Research Center of the Ministry of
Education;

Xuzhou, Jiangsu, China

PengPeng Chen
chenp@cumt.edu.cn

School of Computer Science and
Technology, China University of

Mining and Technology;
Mine Digitization Engineering

Research Center of the Ministry of
Education;

Xuzhou, Jiangsu, China

Yong Zhou
yzhou@cumt.edu.cn

School of Computer Science and
Technology, China University of

Mining and Technology;
Mine Digitization Engineering

Research Center of the Ministry of
Education;

Xuzhou, Jiangsu, China

Yeh-Ching Chung
ychung@cuhk.edu.cn

Chinese University of HongKong,
ShenZhen;

ShenZhen, GuangDong, China

ABSTRACT
In kernel, the driver code is much more than the core code, thus
having a larger attack surface. Especially for the untrusted drivers
without source code, they may come from the hot-plug hardware or
the user without security knowledge. Traditional isolation methods
require analyzing source code to set checkpoints in the driver for
control flow protection, which are not available for closed-source
drivers. Evenworse, the existing isolationmethods can only prevent
the hijacked control flows entering/existing drivers, while they
cannot discover the illegal control flows inside drivers. Although the
kernel address space location randomization (KASLR) can defend
against control flow hijacking, it can be bypassed by code probes. In
response to these issues, this paper proposes a novel method Dbox
to isolate and detect the untrusted drivers whose source code is
unavailable. Dbox creates a light hypervisor to monitor and analyze
the untrusted driver’s behavior without relying on source code. It
isolates the untrusted driver in a private space and dynamically
changes its virtual space through a sliding space mechanism. Under
the protection of Dbox, all control flows jumping to/from untrusted
drivers can be detected. Experiments and analysis show that Dbox
has good protection against code probes, kernel rootkits and code
reuse attacks, and the overhead introduced to the operating system
is less than 3.6% in general scenarios.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670269

CCS CONCEPTS
• Security and privacy→ Virtualization and security.

KEYWORDS
Memory Isolation, Driver Security, Code Reuse Attacks, Rootkits
ACM Reference Format:
YongGang Li, ShunRong Jiang, Yu Bao, PengPeng Chen, Yong Zhou, and Yeh-
Ching Chung. 2024. Isolate and Detect the Untrusted Driver with a Virtual
Box. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3658644.
3670269

1 INTRODUCTION
Linux drivers are loaded into the kernel in the form of loadable ker-
nel modules (LKMs). Drivers typically run with high privilege in the
kernel. In a driver, any malicious behavior can lead to catastrophic
consequences, such as kernel crash. The control flow hijacking is
one of the key threats faced by drivers. Kernel rootkits [19, 39]
and code reuse attacks (CRAs) [2, 5, 35, 37] are the main threats to
driver control flows. Kernel rootkits can hijack the control flow that
should flow to the core kernel into malicious drivers. In contrast,
CRAs can exploit vulnerabilities to hijack control flows to any code
locations.

To prevent drivers from triggering illegal control flows, they
need to be audited before being loaded into the kernel. The drivers
that have not been audited are untrusted. In practice, users may
directly load non-audited drivers into the kernel without any audit.
Such drivers pose serious threats to the operating system (OS). Even
worse, not all drivers are open-source. For example, Nvidia did not
disclose its driver source code until 2022. For the drivers whose
source code is unavailable (called untrusted drivers in this paper),
all methods relying on source code or compiler cannot prevent their

https://doi.org/10.1145/3658644.3670269
https://doi.org/10.1145/3658644.3670269
https://doi.org/10.1145/3658644.3670269

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongGang Li et al.

intentional or unintentional illegal activities. For security reasons,
all control flows jumping into untrusted drivers (entry_flow) and
all control flows jumping out of untrusted drivers (exit_flow) need
to be detected.

From the perspective of attack principles, the drivers with mali-
cious attributes can launch attacks during the loading and running
stages. For example, kernel rootkits [19] can tamper with kernel
data structures through their initialization functions at loading
stage. Afterwards, the illegal control flow can be triggered under
specific conditions, such as a system call. The most direct way to de-
fend against such attacks is to use a standardized control flow graph
(CFG) to detect the control flows. Although we can build a CFG
for the closed-source driver by analyzing its binary code, the CFG
will rapidly expand as the driver size increases. An expanded CFG
contains some paths that do not exist in real execution scenarios,
which will lead to misjudgment. In theory, ensuring the integrity
of all the data that can affect control flows can prevent control flow
hijacking launched by malicious drivers. However, such data is
distributed throughout the kernel space and is dynamically created.
Tracking all the data introduces significant overhead.

From the perspective of running modes, the drivers without
malicious attributes can also be used maliciously. For example,
CRAs can launch attacks through memory vulnerabilities in the
kernel, and use the instruction ret contained in drivers to chain
attack payloads (gadgets) [10, 15, 18]. For drivers, all entry_flows
and exit_flows should be transferred through specific interfaces.
Entry_flows are transferred to the driver by system calls, interrupts,
and operation functions of device files. In contrast, exit_flowswill be
transferred to the locations outside the driver through the functions
in core kernel and the exported functions in other LKMs. In theory,
forcing all control flows to enter/exit drivers from specific interfaces
can defend against control flow hijacking [11]. However, for the
untrusted drivers without source code, the existing methods cannot
accurately locate all specific interfaces by analyzing binary code.

Moreover, the traditional isolation methods can only restrict the
paths that control flows jump to/from drivers, and cannot prevent il-
legal control flows inside drivers. In real attack scenarios, except for
entry_flows and exit_flows, the control flows inside the untrusted
driver can also be hijacked. For example, attackers can exploit mem-
ory vulnerabilities in the driver to launch CRAs and only use the
driver code to build a complete gadget chain. Authough the existing
KASLR methods [6, 12, 28] can hide code addresses from attackers
to defend against illegal control flows, they need to pre-handle the
source code of drivers if they want to re-randomize the running
binary code in physical pages, which makes them invalid for the
closed-source drivers. In contrast, some other KASLR methods can
change the base address of the driver during the loading or linking
phase without analyzing source code, they cannot re-randomize
the driver code when the diriver is running. Even worse, existing
research indicates that code probes [3, 8, 24, 29, 33] can bypass
address space location randomization (ASLR).

To solve the above problems, we propose a method Dbox to
isolate and detect the untrusted drivers. Dbox detects the control
flows and changes the space locations of untrusted drivers at their
running stage. Both changing space locations and detecting control
flows are based on the execution logic of the untrusted drivers.

However, for the untrusted drivers without source code, their exe-
cution logic is unknown. Fortunately, the execution logic can be
obtained from the context of the running binary code of the driver.
Therefore, we can obtain drivers’ execution logic by capturing and
analyzing their context. For example, for the indirect control trans-
fer (ICT) instruction call *pointer, we can read the pointer to obtain
its accurate jump target when the instruction is being executed.
Based on real-time execution logic, we can check the legitimacy
of the control flow based on code logic and data logic. And we
can also ensure the driver code whose space locations have been
changed maintains the original calling relationship. In summary,
the contributions of this paper are as follows:

1) Create a lightweight hypervisor. Combining hardware-assisted
virtualization, we establish a lightweight hypervisor. Unlike existing
VMMs, our self-developed hypervisor does not provide complex
virtual machine management mechanisms, but tracks and monitors
running targets. It can monitor and control the data access and code
execution of closed-source drivers, thereby extracting the context
during their runtime. By analyzing the running context, we can
obtain accurate execution logic without building a complex CFG.

2) Propose a sliding space mechanism. This mechanism iso-
lates the untrusted driver in a private space. All entry_flows and
exit_flows can be captured by adjusting the private space. Moreover,
the driver space can be dynamically slid, which can defend against
code probes.

3) Propose a detection method for entry_flows and exit_flows.
Due to the sliding space, all control flows transferred to the un-
trusted drivers can be captured. Meanwhile, the control flows in-
side the driver space triggered by ICT instructions will be trans-
formed into exit_flows and they can be captured. All entry_flows
and exit_flows will be tracked and detected. This method can de-
fend against kernel rootkits and CRAs.

2 RELATEDWORK
To prevent drivers from breaking the control flow integrity (CFI) in
kernel, researchers have proposed various methods. These methods
can be divided into control data protection, memory isolation, and
KASLR. In this section, we introduce them separately.

Control data protection.Malicious drivers can hijack control
flows by tampering with control data. In theory, protecting control
data can prevent illegal control flows of malicious drivers. Based on
this principle, VTW [19] defend against kernel rootkits by checking
control data. However, the control data it can detect is fixed, which
results in poor detection on rootkit variants. To cover all legitimate
control flow paths, existing methods, such as Ge [7] and FINE-
CFI [16], establish accurate CFGs, which can be used to detect the
tampered control data. However, it’s impossible to establish a high-
precision CFG for the untrusted driver without source code before
it runs. The hardware technology ARM Pointer Authentication
can be used to protect the integrity of function pointers when the
binary code is running. It has been adopted by existing security
methods, such as PATTER[41] and PAL[42]. These methods require
analyzing the source code to locate all pointers when deployed, and
they are ineffective for closed-source drivers.

Isolate and Detect the Untrusted Driver with a Virtual Box CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Memory isolation.Memory isolation constructs an isolation
layer between the target driver and other objects, through which
only authorized access can pass. Gateway[34] hardens the kernel
API to drivers by isolating driver code in a different memory address
space. UnderBridge[9] moves the OS components of a microkernel
between user space and kernel space at runtime while enforcing
consistent isolation. LXFI[22] isolates kernel modules from the core
kernel so that vulnerabilities in kernel modules cannot lead to a
privilege escalation attack. MemCat[27] separates data based on
attacker control to mitigate the exploitation of memory corruption
vulnerabilities such as use-after-free and use-after-return. TDI [23]
isolates memory objects of different colors in separate memory
arenas and uses efficient compiler instrumentation to constrain
loads to the arena of the intended color by construction. TZ-RKP[1]
provides a complete and feasible isolation layer for kernel using
TrustZone. kRX̂ [30] is based on execute-only memory and code
diversification, and it can benefit from hardware support to opti-
mize performance. The above methods can detect the control flows
jumping to/from the target drivers. However, they have a same
limitation. That is they cannot detect the control flows inside the
drivers. In addition, compiler-based methods, such as LXFI [22]
and TDI [23], cannot construct an effective isolation layer during
binary code generation if their protection targets are closed-source
drivers.

KASLR. Traditional ASLR methods, such as fASLR [31], Point-
erScope [40], and Mardu [14], rely on source code analysis, which
makes them unable to be applied to closed-source objects. Renanz
[38] and RuntimeASLR [21] can randomize closed-source objects,
but they introduce significant overhead. KASLR can hide kernel
addresses, thereby preventing CRAs from chaining gadgets [18].
Adelie [28] enables efficient continuous KASLR for LKMs by us-
ing the PIC (position-independent code) model to make it hard
to inject ROP gadgets through modules regardless of gadget’s ori-
gin. KASLR-MT[36] is also a kernel randomization method for
multi-tenant cloud systems, which maximizes memory savings rate.
However, existing KASLR methods can be bypassed by code probes
[17]. Moreover, KASLR needs to be completed between the occur-
rence of code probes and CRAs. Otherwise, it is invalid and can
only incur overhead. How to choose an appropriate randomization
time point is a challenge faced by all KASLR methods.

Compared with existing methods, our method Dbox is a method
specifically designed to detect illegal control flows caused by closed-
source drivers. Dbox captures the execution context in real-time by
monitoring the data access and code execution of running drivers.
The call relationships between different code blocks can be obtained
by analyzing the captured context. Based on this design, we can
avoid building a high-precision CFG for the closed-source drivers.
Meanwhile, Dbox does not randomize physical code like existing
KASLR methods, but dynamically changes the virtual space of the
running drivers. Therefore, we don’t need to maintain complex
calling relationships for the randomized code.

3 ASSUMPTIONS AND ATTACK VECTORS
First, we assume attackers can inject untrusted drivers into the OS.
In practice, untrusted drivers come from the hot-plug hardware
or the closed-source objects installed by users. An open OS does

not prevent root users from installing untrusted drivers. Second,
we assume attackers can exploit memory vulnerabilities to launch
control flow attacks. Overflow vulnerabilities are widely distributed
in C++/C programs, which can be used to tamper with control data,
such as return addresses or function pointers. Third, we assume
attackers can use the techniques [8, 29, 33] to probe driver code. For
example, attackers can directly read driver code and filter out the
code snippets that match specific gadget forms. The threat model
used in this paper includes the following 5 attack vectors:

Vector 1: Kernel rootkits. kernel rootkits are loaded into the
kernel as LKMs, which can modify kernel control data, such as
system call tables, and hijack kernel control flows.

Vector 2: The CRAs whose gadgets are located in different ob-
jects. The gadgets used by such CRAs are partly from untrusted
drivers, and partly from the core kernel and other LKMs.

Vector 3: The CRAs whose gadgets are located in a same driver.
That is, attackers can build a complete gadget chain using the code
snippets in a single driver.

Vector 4: Code reading probes. Attackers can bypass KASLR by
directly reading the driver code.

Vector 5: Code pointer probes. Attackers can bypass KASLR
by reading the return address stored on the stack and the pointers
stored in data structures.

4 MOTIVATION
The purpose of Dbox is to isolate the untrusted driver and discover
the illegal control flows related to it without analyzing or compiling
its source code. The defense targets include kernel rootkits, code
probes, and CRAs. In summary, the motivations of this paper are
as follows:

1) Get rid of dependence on source code. The execution logic
of a closed-source driver is unknown. The unknown execution
logic can hinder KASLR methods from maintaining the original
calling relationship after re-randomizing driver code. Moreover,
the unknown logic prevents traditional CFI methods from pre-
collecting instruction boundaries to detect illegal control flows. For
the untrusted drivers without source code, we can obtain accurate
execution logic by capturing and analyzing their execution context.

2) Isolate the untrusted driver dynamically. The untrusted driver
will be isolated in a private space, which can capture code probes. If
there is a code probe, the driver space will slide dynamically. Unlike
the existing KASLR methods, we change the untrusted driver’s
virtual space instead of its physical space, which can avoid frequent
memory operations.

3) Filter out illegal control flows related to untrusted drivers.
We prevent attackers from redirecting illegal control flows to un-
trusted drivers and hijacking control flows in untrusted drivers.
Compared with existing methods, it does not use fixed instruction
boundaries to constrain control flows, but detects control flows
based on runtime context.

5 METHODOLOGY
The overall design of Dbox is shown in Figure 1. Dbox isolates
the untrusted driver in a private space. This space is not fixed.
It will dynamically slide along with the driver execution, which
can defend against code probes. Moreover, all incoming/outgoing

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongGang Li et al.

current
space

previous
space

next
space

sliding

kernel code LKM code

jum
p to

jum
p toisolation layer

ICT ICTtarget target

transfer site

captured captured

redirect redirect

sliding

Figure 1: The overall design of Dbox

control flows need to pass through an isolation layer, and only legal
control flows can jump to the target locations. Meanwhile, to ensure
the control flows inside the untrusted driver are not hijacked, all
internal control flows triggered by ICT instructions need to go
through a transfer site to jump to the right locations. Under the
protection of Dbox, code probe attacks cannot locate the executable
code, and the illegal control flows can also be detected.

Our detection targets are the untrusted drivers without source
code. We cannot obtain their behavior characteristics through static
analysis, nor can we preset checkpoints in appropriate locations.
Faced with these challenges, we build a lightweight hypervisor [20],
as shown in Figure 2. Similar to KVM, it is loaded into the kernel
as an LKM. Unlike the KVM, its main function is not to manage
virtual machines, but to utilize EPT (Extended Page Tables), VMX
(Virtual Machine Extension), and VT-d (Virtualization Technology
for Directed I/O) to monitor and control drivers. Moreover, the
hypervisor utilizes VMX root and VMX non-root to divide the
running modes of the original OS into two types: host and guest.
Under normal scenarios, the OS runs in the guest mode. When a
specific event occurs, the running mode switches from guest to host,
which is called a system trap. Combining EPT and VMX, multiple
trap events can be set, including memory permission violation,
page directory switching, breakpoint setting, execution of specific
instructions (such as int3, vmcall), interrupts, single step debugging,
and exception protection, etc. In addition, the CPU context can also
be rewritten by modifying the fields in VMCS (Virtual Machine
Control Structure) to achieve execution control. For example, by
modifying the guest rip in VMCS, control flow redirection can be
achieved. Based on the above designs, Dbox canmonitor and control
the behaviors of untrusted drivers without relying on source code.

To filter out the illegal control flows, we must capture the activi-
ties of control flow transfers. Control flow hijacking often occurs
at the moment when the control flow enters or exits an untrusted
driver. The differences between illegal control flows and legal con-
trol flows are reflected in the execution context at this moment. For
example, the VFS (virtual file system) function pointer used by the
kernel rootkit adore-ng no longer points to the original kernel code
but rather to rootkit code. As a result, we can detect illegal control
flows by analyzing the execution context. However, after this mo-
ment, the tampered control data (such as return addresses) may be

LKM1 LKM2 LKM3unprotected code unprotected code

virtual memory virtual CPU

memory access
control

code execution
control

direct
connection

direct
connection

The binary code in memory

Virtual
resource

pool

Hypervisor

Physical
resource

pool

Figure 2: The overall design of the customized hypervisor

recycled, which results the malicious action cannot be prevented
in a timely manner. Therefore, we need to capture the entry_flows
and exit_flows and extracts their context in real time.

To capture entry_flows and exit_flows, we propose a sliding
space mechanism, which dynamically adjusts the space and per-
missions of the driver. Dbox allocates redundant virtual spaces for
untrusted drivers. The real address space of the untrusted driver
can randomly slide among redundant spaces. At any time, there is
only one space (called current space) that will be mapped to real
code pages through EPT. Other redundant spaces and the original
space of the untrusted driver are mapped to a trap page that is non-
readable, non-writable, and non-executable. Therefore, all control
flows that jump to the original space can be captured due to trigger-
ing system traps. In the same way, by remapping the core kernel
and other LKMs and adjusting their code permissions, all control
flows that jump out of untrusted drivers can also be captured.

In practice, the control flow enters untrusted drivers through
specific points (such as syscall). Dbox creates an isolation layer.
Based on the layer, all entry_flowsmust pass through specific points
to enter untrusted drivers. Otherwise a system trap will be triggered
and the control flowwill be checked according to security strategies.

In theory, legal control flows can exit the driver through direct
transfer instructions, indirect transfer instructions, and return in-
structions. In the real world, drivers only use call address, call *xx,
and ret to transfer control flows to other LKMs or core kernel, as
shown in Table 1. In real attack scenarios (such as ROP and JOP),
CRAs transfer illegal control flows to the next gadget through ICT
instructions or return instructions[32]. The code snippets contain-
ing call *pointer or ret in untrusted drivers are key components to
build gadget chains. To defend against CRAs, all exit_flows driven
by ICT instructions and ret should be detected and analyzed. For
legal control flows, Dbox uses a transfer site to transfer them to
right locations.

Both kernel rootkits and CRAs can tamper with the control data
to make it point to an absolute location. Kernel rootkits hijack the
control flow that should be transferred to the kernel to an untrusted
driver, while CRAs redirect the control flow to the gadgets that

Isolate and Detect the Untrusted Driver with a Virtual Box CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 1: Number of control flow transfer instructions in common drivers.

type driver size(MB) ret call *pointer call *register call address jmp *pointer jmp *register jmp address

network driver

e1000.ko 2.9 242 13 0 1514 0 0 2764
e1000e.ko 5.8 532 7 0 5156 0 0 4743
igb.ko 5.1 553 17 0 3136 0 0 4460
fm10k.ko 5.4 364 18 0 1282 0 0 2280
igc.ko 2.9 223 11 0 1170 0 0 1593

file driver

xfs.ko 29 2409 288 0 11642 0 0 16349
ext4.ko 13 1076 171 0 6850 0 0 11445
fat.ko 1.8 160 16 0 742 0 0 1276
nfs.ko 10 616 129 0 2905 0 0 4212
gfs2.ko 8.5 764 202 0 4808 0 0 6414

GPU driver

nvidia.ko 30 11301 42 0 66614 0 0 87915
ttm.ko 2.9 235 50 0 1030 0 0 1586
drm.ko 15 1151 70 0 4543 0 0 6360
i915.ko 82 4554 305 0 26129 0 0 31896
amdgpu.ko 122 7298 159 0 37410 0 0 49575

have no calling relationship with the current code snippets. Illegal
control flows inevitably violate code logic or data logic. For example,
a tampered function pointer no longer points to the function header,
but rather points to the interior of another function, which violates
data logic; the instruction ret, whose machine code is c3, is not an
opcode in binary code but an operand, which violates the code
logic. Based on the above designs, Dbox can detect illegal control
flows and discover tampered control data by analyzing the code
logic and data logic. Meanwhile, the private space can detect code
probes, which will trigger the sliding space mechanism.

6 IMPLEMENTATION
6.1 Build dynamic spaces
The dynamic spaces can be used to defend against code probes.
The space sliding mechanism proposed in this paper is essentially
a runtime randomization method, as shown in Figure 3. The real
address space of the untrusted driver can slide within multiple areas
in the 64-bit kernel space. In addition, the spaces of core kernel and
LKMs depended by the untrusted driver can also dynamically slide.

For the untrusted driver being loaded, Dbox maps it to a new
address space after it is loaded into kernel (module->state is MOD-
ULE_STATE_LIVE) and before it is called. The kernel function
do_mmap is used to create redundant spaces for the untrusted dri-
ver. One of the redundant spaces will be selected as an executable
area. The handling steps are as follows.

First, we read all addressing items related to the untrusted driver
and filter out the last item that can address the entire driver space
(called last item). In the 64-bit space, each item in four level page
tables can address 512GB, 1GB, 2MB, and 4KBmemory, respectively.
For example, if the driver size is 1MB, the last item is located in
PMD (Page Middle Directory). The page table pointed to by last
item is called last table. Second, we allocate private page tables
for untrusted drivers. In private page tables, the last items corre-
sponding to the original space, current space, and redundant space
point to different last tables. The last table of the current space can
address all code and data of untrusted drivers. In contrast, all items
in the last table of redundant spaces point to the trap page. Finally,
taking the virtual address’s bits corresponding to the last item as

the lower boundary, the high-order address of the redundant space
can slide freely in the kernel, thereby changing the driver space.

However, the sliding spaces face two issues. One is the com-
munity Linux OSes restrict their KASLR range to 32 bits due to
architectural constraints, which makes them vulnerable to even
unsophisticated brute force ROP attachments due to low entropy
[28]. Another issue is that the sliding spaces cannot hide return
addresses on the stack, and the attacker (Vector 5) can bypass the
sliding space by reading them. To address these issues, we propose
a control flow redirection method, as shown in Figure 4.

To overcome the limitation of 32-bit address width in the driver
code and hide return addresses, we rewrite all relative addresses
related to the instruction call in binary code. Before the untrusted
driver is loaded, the executable file will be analyzed to extract all
call xx. After driver loading, the operand address of the call address
in memory will be rewritten with a value pointing to the sliding
window. The code in the sliding window rewrites the return address
on the stack to make it point to an ICT instruction (jmp *target_2).
Afterwards, another ICT instruction (jmp *target_1) transfers the
control flow to the target function (func1) of the original instruction
(call addr), which ensures the original control flow can be trans-
ferred to the right location. When the target function returns, the
instruction ret uses the modified return address (addr_6) on the
stack to transfer the control flow to the pre-designed ICT instruction
(jmp *target_2). Finally, the ICT instruction transfers the control
flow to the original return address (addr2). Unlike call address, the
pointer in the call *pointer is not fixed. The function address (func_2)
pointed to by the pointer will be modified to point to the address of
the sliding window. The subsequent operation is the same as the
processing method of handling call address. It should be noted that
all the operands used by ICT instructions mentioned in the above
point to a function pointer table (target), which stores the absolute
addresses of all target functions of the instruction call.

Through the above operations, all real return addresses have
been rewritten. Therefore, attackers cannot calculate the sliding
space based on the return address. At the same time, the sliding
window is unreadable, which can hide the target that stores real
function pointers. In addition, the target is non-writable, which
ensures function pointers cannot be tampered with. The sliding

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongGang Li et al.

EPT

update
sliding

Sliding
space

Jump
table

Physical
mapping

Virtual
mapping

kerlnel
code

Update
and

sliding executable
pages

trap page

new map

original map

trap map

Physical
space

update

Figure 3: Dynamic space sliding mechanism

target(3, 4)
target_3: func_2
target_4: addr_4

stack bottom
 next_ins_1

addr_6
rewrite

stack bottom

 next_ins_2

addr_8
rewrite

func_1: …
 ret

func_2: …
 ret

target(1, 2)
target_1: func_1
target_2: addr_2

driver code

next_ins_2

addr_1:

addr_2:

addr_3:

addr_4:

addr+(addr_5
-addr_1)

rewrite
call addr

next_ins_1

call *point_1
…

sliding window
add (addr_6 - addr_2), rsp
jmp *target_1
jmp *target_2

…

add (addr_8 - addr_4), rsp
jmp *target_3
jmp *target_4

addr_5:

addr_7:

addr_6:

addr_8:

1

2

34

a
b

cd

providing control data

providing control data

func_2 addr_7point_1:

Figure 4: The redirection method of control flows

window and target will slide along with the driver space. Therefore,
after the driver space is changed, we only need to update the func-
tion pointers in the table target, which ensures all control flows can
be transferred to right locations.

The probe technology based on reading code (Vector 4) is a basic
way to obtain code snippets that conform to gadget forms. To ad-
dress this issue, Dbox uses EPT to set the code pages of untrusted
drivers to be unreadable. For mixed pages, we migrate the data to a
new readable page and redirect data accesses to the page. Moreover,
we use VT-d to hide driver code pages, thereby preventing attackers
from obtaining driver code through DMA (direct memory access).
However, unreadable code can only prevent attackers from obtain-
ing code forms, while cannot prevent attackers from probing code
addresses. Because the exception thrown by reading code indicates
that the pages being read are code pages. In response to this issue,
we slide the driver space when capturing code reading, which can
make the code address obtained by the attacker unusable.

6.2 Detect control flows
To filter out illegal entry_flows and exit_flows, we isolate the un-
trusted driver in a private space, as shown in Figure 5. We allo-
cate private EPTs (D-EPT) and private page tables (D-CR3) for
untrusted drivers. In the original EPT (O-EPT), all redundant spaces
including the real space of the untrusted driver are mapped to
a non-executable trap page, while other spaces keep their origi-
nal mapping relationships. It should be noted that although the
original space of the untrusted driver is mapped to real code, it is
non-executable with O-EPT. So, when the entry_flow is transferred
to an untrusted driver, a system trap will be triggered. In D-EPT,
the original space is mapped to a non-executable trap page, while
the kernel sliding space and current driver space are mapped to
executable code pages. In addition, when an untrusted driver uses
call *register/pointer to transfer control flows to other functions of
the driver, it will also trigger system traps. The reason is the pointer
in register/pointer still points to the original driver space, which is
mapped to a trap page.

Based on the above designs, when ICT instructions and ret in the
driver attempt to transfer exit_flows to the kernel, LKMs, or original

Isolate and Detect the Untrusted Driver with a Virtual Box CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

PGD

PUD

PMD PT

…

item-1

item-2

item-1
item-2

item-1

item-1

PUD
item-1
item-2

item-1
item-1

item-1

item-1

item-1
item-1

…
item-0
item-0

item-0

…
item-0
item-0

item-0

kernel code
and related
LKM code

original kernel space

sliding kernel space

executable

original driver space

sliding driver space

item-1
item-2

item-3
item-4

trap page

non-executable

…

item-1

item-2
item-3

driver code

non-executable

trap page

non-executable

kernel code
and related
LKM code

executable

trap page

non-executable

driver code

executable

trap page

non-executable

PMDPT

…

item-1

item-1

item-1
item-1

item-1

item-1

item-1
item-1

…
item-0
item-0

item-0

…
item-0
item-0

item-0

original kernel space

sliding kernel space

original driver space

sliding driver space

item-1
item-2

item-3
item-4

…

item-1

item-2
item-3

item-1
item-2

PUD
item-1
item-2

PUD

PGD

item-1

item-2

Physical
pages

Physical
pages

D-CR3O-CR3

O_EPT D_EPT
VMFUNC

mapped by O_EPT mapped by D_EPT

searched by O_CR3 searched by D_CR3

Figure 5: The Isolation Mechanism

driver space, the control flows can be captured due to system traps.
In contrast, the relative instruction call/jmp address that cannot
be used as gadgets can transfer control flows to right locations
through sliding spaces without triggering any system traps. After
the call address is executed and before the control flow returns,
if the kernel/LKM uses call *xx to transfer control flows to the
original space, a system trap will also be triggered. In this scenario,
we redirect the control flow of call address to a specific module to
switch the current page table to O-EPT and O-CR3 (see section 6.3
for the method) by fixing address. Meanwhile, the return address of
call address will be replaced with a pointer pointing to a module
to switch back to D-EPT and O-CR3. This design can reduce the
frequency of system traps.
A. Detect entry_flows
Kernel rootkits (Vector 1) can hijack control flows by tampering
with control data, such as system call tables and VFS pointers, and
redirect them to untrusted drivers. CRAs can exploit memory vul-
nerabilities to redirect illegal control flows to gadgets (Vector 2)
in untrusted drivers. In response to these threats, we propose a
detection mechanism for entry_flows, as shown in Figure 6. En-
try_flows can only enter the real driver code through source checker,
EPT switch, and redirector. For entry_flows, the legal paths entering
driver code include system calls, interrupts, exported functions, de-
vice files, and return instructions, as shown in Table 2. Entry_flows
can only enter the untrusted driver through these paths, otherwise
they are illegal.

When the entry_flow enters an untrusted driver for the first time,
it will be transferred to the original space that has been mapped
to a trap page. Therefore, a system trap will be triggered and the
entry_flow can be captured. Then, the callee instruction, callee
address, caller instruction, caller address, and control data will be
recorded one by one, which are the basis for checking the legiti-
macy of control flows. To detect entry_flows, we backup the system

kernel code

LK
M

 code

original space

driver space

Source checker

EPT switch

Redirector(from, to) (from, to)

direct
jump direct

jump

sliding
window

sliding
window

jump
to

jump
tocall xxxx call xxxx

O_EPT→D_EPT D_CR3← O_CR3

from_table from_table

Interruptions System call Ret VFS Export functions

redirect

redirect

Figure 6: The detection mechanism for entry_flows

call table (sys_call_table), interrupt vector table (IDT), interrupt de-
scriptor (struct irq_desc), and registered driver functions (irq_desc-
>action->handler) during OS startup. After that, we update and
backup these contents again before the untrusted driver loading.
The detection method for entry_flows is shown in Algorithm 1,
which adopts the following security strategies.

(1) If the caller instruction is in the kernel function __han-
dle_irq_event_percpu, it indicates that the control flow is caused by
an interrupt. If the original IDT has been tampered with, the control
flow is illegal. If there is a function registered by a driver that no
longer points to the original driver, but points to an untrusted driver,
it indicates that the original function pointer has been tampered
with by the untrusted driver. At this point, the control flow is also

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongGang Li et al.

Table 2: The information of entry_flow

events caller instruction caller function control data data type
interruption call *pointer __handle_irq_event_percpu *pointer struct irqaction
syscall call *pointer do_syscall_64 *pointer sys_call_table
ret ret __switch_to rsp stack
export function call xx LKM functions xx struct kernel_symbol
VFS call *pointer kernel functions *pointer sstruct file_operations

Algorithm1: The processing method of enter_flow.

Input: the instruction jumping to the driver—Ins
Output: null
1. if Ins ∈__handle_irq_event_percpu then
2. if (check_idt(idt)==1) then
3. if ∃ old_irq_desc[i]->action->handler ! =
 new_irq_desc[i]->action->handler then
4. goto Error
5. else goto Trans
6. else goto Error
7. else if Ins ∈ do_syscall_64 then
8. if j<syscall_num, ∃ old_sys_table[j] != new_ sys_table[j] then
9. goto Error
10. else goto Trans
11. else if Ins==ret then
12. if Ins∈ __switch_to then
13. goto Trans
14. else goto Error
15. else if Ins∈ LKM functions then
16. if Ins∈ module->kernel_symbol then
17. goto Trans
18. else goto Error
19. else if Ins∈ other kernel functions then
20. if ∃ init_func ⊆ {cdev_add, __device_add_disk,

 _register_netdev } || (check_ops(Ins)==0) then
21. goto Error
22. else goto Trans
23. end if
24. Error:
25. Insert_GP();
26. Trans:
27. Transfer(Ins);

illegal. In contrast, legal control flows will be transferred to the
untrusted driver through the control data in a new irq_desc.

(2) If the caller instruction is in the kernel function do_syscall_64,
it indicates that the control flow is caused by a system call. In this
scenario, the control flow can only enter the driver through a newly
added system call. Otherwise, the control flow is illegal.

(3) If the instruction ret that triggers a system trap is in the
__switch_to, it indicates that the kernel thread of the untrusted
driver is being scheduled, and the driver space has been slid. After-
wards, we redirect the control flow to the current driver space. It
should be noted that, if the driver space remains unchanged, ret will
not trigger any system traps. In addition, the ret in the kernel/LKM

function called by the untrusted driver does not trigger a system
trap. The reason is the return address on the stack has been replaced
with a pointer pointing to the sliding window. As a result, if the ret
is not in the __switch_to, the control flow is illegal.

(4) If the caller instruction that triggers a system trap is in another
LKM, it indicates that the control flow is driven by an exported
function (recorded bymodule->kernel_symbol). Only the LKMs with
dependencies on the untrusted driver are allowed to transfer control
flows to the the driver space through exported functions. Otherwise,
the control flow is illegal.

(5) If the caller instruction is in other kernel functions, it indi-
cates that the control flow is caused by a device file (i.e. VFS) access.
Kernel functions can utilize VFS function pointers in the data struc-
tures file_operations, block_device_operations and net_device_ops to
enter character device drivers, block device drivers, and network
device drivers, respectively. Attackers can hijack control flows by
tampering with their function pointers. To prevent such attacks,
we should locate the registered VFS functions and check the le-
gitimacy of function pointers after a system trap occurs. In the
driver initialization phase, we set breakpoints at the functions
cdev_add, usb_register_dev, __device_add_disk and _register_netdev.
Then, we can locate the registered VFS functions based on the their
parameters (the data structures cdev, usb_class_driver, gendisk, and
net_device). After a system trap occurs, if the caller function is not
the VFS function registered by the untrusted driver, it indicates that
the control flow is illegal.

For illegal control flows, we inject a regular protection exception
into the current execution object to prevent its control flows from
continuing to flow. For legal control flows, we transfer them to the
current space of the untrusted driver. Meanwhile, the callee address,
caller address, control data, and data address will be recorded, which
can be used to avoid the legal control flows being detected again
when they enter the untrusted driver. We propose an algorithm to
transfer legal control flows, as shown in Algorithm 2.

If the legal control flow enters the untrusted driver through the
instruction call *pointer, we rewrite the transfer target in the pointer
with the address of a detectionmodule. If the caller instruction is call
address, wemodify the addresswith a pointer pointing to a detection
module. The detection module can check the caller instruction
based on the recorded addresses and data. If the address has been
recorded and the control data has not been changed, it indicates
that the control flow is legal. Afterwards, the return address on the
stack will be rewritten to make it point a function that can switch
EPTs and page tables. Next, the original EPT will be switched to
the private EPT through vmfunc, and the page tables will also be
switched to the private page tables through mov to cr3. Finally,
the detection module searches for the right jump target based on

Isolate and Detect the Untrusted Driver with a Virtual Box CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm2: The transfer method of legal control flow.

Input: the transfer instruction—Ins; the address of Ins--α; the target
of Ins in memory--τ; the return address--γ; he offset between the
original space and the current space--σ;
Output: null
1. if Ins ⊆ {__handle_irq_event_percpu, do_syscall_64, VFS

functions, LKM functions } then
2. rewrite_tar(τ, check_addr)
3. rewrite_rip(Ins, τ+σ)
4. end if
5. if Ins ∈ __switch_to || Ins==ret then
6. rewrite_rip(Ins, τ+σ)
7. end if
8. check_addr:
9. if (check_source(α, τ)==1)
10. rewrite_ret(γ, switch_addr)
11. switch(o_ept, d_ept, o_cr3, d_cr3)
12. jmp_table(α)
13. else goto Error
14. switch_addr:
15. switch (d_ept, o_ept, d_cr3, o_cr3)
16. Error:
17. Insert_GP();

the instruction address (stored in the non-writable jmp_table), and
uses the instruction jmp *xx to transfer the control flow to the real
space of the driver. After the driver space is changed, we only need
to update the jmp_table that can transfer control flows to right
locations. When the control flow attempts to jump to an untrusted
driver using the recorded instruction call *pointer/address again,
it will be redirected to the detection module without triggering a
system trap. When the control flow returns, the EPT will switch
back to the original EPT through vmfunc, and the page tables will
also switch back to the original page tables. The above designs
can avoid legal control flows repeatedly triggering system traps,
thereby reducing overhead.
B. Detect exit_flows
The above designs can prevent attackers from transferring illegal
entry_flows to untrusted drivers, but it cannot prevent attackers
from transferring illegal exit_flows to the core kernel, other LKMs,
and the untrusted driver’s own code. In real attack scenarios, at-
tackers can use dispatcher-gadgets [4] in the untrusted driver to
transfer illegal exit_flows, which can be Vector-1/2/3. The instruc-
tions that can be used as dispatcher gadgets include ret, call *pointer,
call *register, jmp *pointer, and jmp *register. These instructions in
the driver may be legal instructions or non-aligned operands (such
as the data c3 used as an instruction ret) caused by vulnerabilities.
Therefore, each exit_flow caused by the ICT instruction or ret needs
to be captured for detection.

The scenario where the control flow jumps out of the driver
can be divided into three categories. The first is the control flow
returns its caller function through the instruction ret in an untrusted
driver when the task is completed. The second is the untrusted
driver transfers control flows to kernel or other LKMs through the

instruction call (almost without involving jmp). The third is the
CPU of the current kernel thread is preempted by another thread.

Due to the sliding space, when ICT instructions and ret use the
original control data or probed code addresses to transfer exit_flows,
a system trap will be triggered. We use the following security strate-
gies to check the legitimacy of exit_flows.

1) If the return address used by ret no longer points to the slid-
ing window (shown as Figure 4), the exit_flow is illegal. Under
the sliding mechanism, the modified instruction call will transfer
legal control flows to the sliding window. And the original return
address has been rewritten to make it point to the sliding window.
In contrast, CRAs tamper with the return address with a pointer
pointing to the original space or probed space, rather than the slid-
ing window. As a result, the illegal control will trigger a system
trap and be detected.

2) If the caller instruction is jmp *xx, the exit_flow is illegal.
Under normal circumstances, the driver uses call xx to call kernel
functions or exported functions. In contrast, jmp *xx can transfer
exit_flows to any locations.

3) If the caller instruction is call *xx, the exit_flow must jump
to the header of an LKM exported function or a kernel function.
Otherwise, it is illegal. Moreover, call *xx must match the opcode
and operand in the executable file (.ko), otherwise it is illegal.

4) From the OS perspective, it needs to locate the kernel function
based on the symbols in the driver during the module loading. The
function addresses will be filled to the operands of all instructions
call address or the data area of the driver. In benign drivers, all
transfer targets of call *pointer are in driver’s data area. In contrast,
the transfer target of call *register may be in the data area or may
be from the return value of the function kallsyms_lookup_name.
From the attacker’s perspective, it can only tamper with the point-
ers stored in writable pages rather than registers. Nevertheless,
the call *register can still be used as a dispatcher gadget. The rea-
son is function pointers are not always stored in registers and
may be temporarily stored in writable memory (such as the stack)
during parameter transfer. When the untrusted driver calls kall-
syms_lookup_name, we record the return value in rax, which can be
achieved by replacing the caller’s return address with a recording
function address. In a word, all pointers will be rewritten to make
them point to the sliding window. All rewritten pointers are stored
in a table, which records the pointer addresses, original pointers,
and current pointers. After the system trap triggered by call *xx
is captured, we check whether the pointer address is recorded in
the table. The unchanged pointer will point to the sliding window,
which can avoid triggering any system traps. If the pointer address
has been recorded but the exit_flow still triggers a system trap, it
indicates that the pointer stored in the original memory has been
changed. Then, we can determine the current control flow is illegal.

7 EVALUATION
We conduct all experiments on a dell server equipped with 2 Xeon
silver CPUs@2.4Ghz, Intel E1000E 1GbE, and 64GB Samsung 970
NVMe. The performance test is performed on an Ubuntu-21.04 with
kernel 5.2, and all results are averaged after 10 runs.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongGang Li et al.

7.1 Security evaluation
Vector 1. To verify Dbox’s defense effect on kernel rootkits, we
deploy 7 kernel rootkits (Vector 1) in different Linux OSes (such as
Ubuntu 12.04 and Centos-6.10), as shown in Table 3. The results
show that kernel rootkits will violate the security strategies when
they hijack control flows. Compared with VTW [27], Dbox can
capture and detect all entry_flows without frequent system traps,
resulting in less overhead on target drivers.

Vector 2.CRAs can transfer illegal entry_flows from kernel/LKMs
to untrusted drivers. And they can also transfer illegal exit_flows
from untrusted drivers to kernel/LKMs (Vector 2). Due to the iso-
lation layer, the entry_flow/exit_flow must pass through specific
entries to enter/exit an untrusted driver. Otherwise, a system trap
will be triggered and the illegal entry_flow/exit_flow can be cap-
tured. For example, a ROP attack initiated in kernel space will be
blocked due to violating security strategy (3) when redirecting the
return control flow to an untrusted driver.

Vector 3. To verify Dbox’s defense effect on Vector 3, we simu-
late a specific ROP in the driver e1000. During e1000 running, we
periodically capture the running function in the driver and manu-
ally modify the return address to make it point to the original driver
space. In this experiment, all illegal exit_flows can be captured by
Dbox due to violating security strategy 1). For JOP, we select the
instruction call *pointer in the function e1000_down as a dispatcher
gadget. Then, we modify the pointer with a random address in
the original driver space. The test result shows that the exit_flow
violates security strategy 4).

Vector 4. To verify Dbox’s defense effect on code probes, we
trigger the sliding space mechanism by reading driver code. After
code reading, the spaces mapped to real code pages are shown in
Table 4. The results show that the executable code of the driver
will be mapped to a different space after a code probe occurs. At
the same time, the original space and the probed space remain
non-executable. Therefore, neither the code in the original space
nor the probed code can be used as gadgets.

Vector 5. Since the return addresses have been modified to make
them point to the sliding window, attackers cannot calculate the
addresses of available gadgets based on them. For function pointers
in data area, they generally appear as member variables in specific
data structures, such as struct file_operations. These data struc-
tures are initialized at driver loading stage and remain unchanged
throughout the driver’s lifecycle. Once such function pointers are
changed, system traps will be triggered when they are dereferenced,
which can be captured and analyzed by Dbox. Therefore, they are
difficult to be used for control flow hijacking. In addition, after

Table 3: The detection effect on kernel rootkits. P: process, F:
file, M: module, N: network port.

rootkit attack target affected objects violated strategy detect?
z-rootkit VFS P, F, M, N (5) yes
enyelkm syscall, idt P, F (1)(2) yes
ivyl VFS P, F, M (5) yes
kbeast syscall, idt P, F, N (1)(2) yes
adore-ng VFS P, F, M, N (2)(5) yes
f00lkit VFS P, F, M (5) yes
syslogk VFS P, F, M, N (5) yes

the sliding window is enabled, such pointers do not point to the
original functions, but to a detection module. So, even if attackers
combine the known binary code with the pointers, they cannot
calculate any available gadgets.

In summary, Dbox has good defense against code probes, kernel
rootkits, and CRAs. However, Dbox still has the potential for false
positive and false negative. First, when a root user performs online
debugging on a running driver, he will read the driver code. Such
a legal activity will be misjudged as a code probe. Second, if an
attacker can build a complete gadget chain using relative jump
instructions (such as call/jmp address), Dbox will misjudge such
an attack as a benign activity. In practice, such attacks do exist.
For example, in the code snippet "if (val==0) call func-1; else call
func-2", if the non-control data val is stored in the memory that
can be tampered with (such as the stack), an attacker can set the
calling order of fun-1 and fun-2 arbitrarily by tampering with val.
Fortunately, such attacks have significant limitations, making them
difficult to achieve practical attack effects. Third, Dbox cannot
prevent kernel rootkits from tampering with kernel data in real-
time. It can only prevent them from hijacking control flows when
the tampered data is dereferenced.

7.2 Performance evaluation
Impact on the OS When Dbox is working, it will preempt the CPU,
which causes overhead to the OS. To observe the impact of Dbox
on OS under different CPU loads, both stress-ng and SpecCPU2006
run simultaneously. In this period, we gradually increase CPU
usage using stress-ng and observe the overhead caused by Dbox.
The experiment results are shown in Figure 7. All results in the
figure have been normalized using the original OS as the standard.
The results show that the overhead introduced by Dbox gradually
increases as the CPU load increases. When the CPU usage is less
than 40%, the average overhead introduced by Dbox is less than
3.6%. When the CPU is close to full load (the limit of stress-ng is
99%, not 100%), the average overhead is about 10%.

In addition to CPU overhead, Dbox has an impact on system
latency and bandwidth. We use Lmbench to measure the system
latency and bandwidth attenuation caused by Dbox, as shown in
Figure 8. During the test, we inject different numbers of untrusted
drivers with a code size of 1MB into the OS. The results show
that when the number of drivers monitored by Dbox is 0, both the
average system latency and average bandwidth attenuation are
less than 2%. As the number of monitored drivers increases, both
system latency and bandwidth attenuation will increase. When the
number of monitored drivers reaches 40, the both increase to 8.6%
and 7.6%, respectively.

During running, Dbox can trigger system traps, which affects
the OS. System traps can be divided into unconditional traps and
conditional traps. The former are triggered by specific instructions
and they are inevitable. In guest mode, the instructions CPUID,
gettsec, invd, xsetbv, and all VMX instructions except vmfunc will
cause unconditional traps. Therefore, even if Dbox does not mon-
itor any drivers, it incurs some overhead. The conditional traps
are triggered by specific events set by Dbox. When a control flow
enters/exits the untrusted driver for the first time, a system trap will
be triggered. Additionally, both the control flow transfer violating

Isolate and Detect the Untrusted Driver with a Virtual Box CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 4: The executable space of the driver. Pn: The executable space of the driver after the 𝑛𝑡ℎ probes.

Driver P0 P1 P2 Physical pages
start end start end start end start end

iptable_nat ffffffffa0425000 ffffffffa04282d3 ffff888010000000 ffff8880100032d3 ffffc00041110000 ffffc000411132d3 b0af4000 b0af72d3
e1000e ffffffffa0200000 ffffffffa023bf9c ffffaff0a3010000 ffffaff0a304bf9c ffff9110b2010000 ffff9110b204bf9c 9ecb0000 9ecebf9c
bluetooth ffffffffa052f000 ffffffffa058d875 ffffc121d40d0000 ffffc121d40e248b ffffaa1140000000 ffffaa114001248b aa130000 aa14248b
iptable_filter ffffffffa0202000 ffffffffa020520a ffffa00031215000 ffffa0003121820a ffffb110a0805000 ffffb110a080820a 910f0000 9101320a
kvm_intel ffffffffa0342000 ffffffffa0364e79 ffffb102d5110000 ffffb102d5132e79 ffff9a1954f10000 ffff9a1954f32e79 c1a10000 c1a32e79
lp ffffffffa006d000 ffffffffa007155f ffffc00400210000 ffffc0040021455f ffff891011032000 ffff89101103655f a0b20000 a0b2455f

41
0.b

wav
es

41
6.g

am
ess

43
3.m

ilc

43
4.z

eu
sm

p

43
5.g

rom
acs

43
6.c

act
usA

DM

43
7.l

esl
ie3

d

44
4.n

am
d

44
7.d

eal
II

45
0.s

op
lex

45
3.p

ov
ray

45
4.c

alc
uli

x

45
9.G

em
sF

DTD

46
5.t

on
to

47
0.l

bm

48
1.w

rf

48
2.s

ph
inx

3

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

benchmarks

0%

5%

10%

15%

ov
er

he
ad

5% 10% 20% 40% 60% 80% 99%

Figure 7: The test results of SpecCPU2006

nu
ll

ca
ll

nu
ll

IO st
at

op
en

/c
lo

se

sl
ct

 tc
p

si
g

in
st

si
g

hn
dl

fo
rk

 p
ro

c

ex
ec

 p
ro

c

sh
 p

ro
c

in
tg

r a
dd

in
tg

r m
ul

in
tg

r d
iv

flo
at

 a
dd

flo
at

 m
ul

flo
at

 d
iv

2p
/0

K

2p
/1

6K

2p
/6

4K

8p
/1

6K

8p
/6

4K

16
p/

16
K

16
p/

64
K

pi
pe

af
 u

ni
x

ud
p

tc
p

tc
p

co
nn

0k
 c

re
at

e

0k
 d

el
et

e

10
k

cr
ea

te

10
k

de
le

te

m
m

ap
 la

nt
en

cy

pr
ot

 fa
ul

t

10
0f

d
se

le
ct

pi
pe

af
 u

ni
x

tc
p

fil
e

re
re

ad

m
m

ap
 re

re
ad

bc
op

y
lib

c

bc
op

y
ha

nd

m
em

 re
ad

m
em

 w
rit

e

L1 L2

m
ai

n
m

em

re
ad

 m
em

benchmarks

0%

5%

10%

ov
er

he
ad

0 1 10 20 40

Figure 8: The test results of Lmbench

security strategies and the memory access violating EPT configura-
tion can also trigger system traps. During handling system traps,
Dbox suspends the running function to check the legitimacy of the
current control flow, which affects the running speed of the target.
Moreover, during the detection period, Dbox needs to occupy CPU
time slices, which in turn affects the execution of other processes.

Dbox needs to allocate redundant spaces for untrusted drivers.
At the same time, it also needs to add some code for control flow
detection. Therefore, compared to the original driver, the untrusted
driver needs to occupy more memory. To observe the memory
overhead introduced by Dbox, we manually compiled and loaded
some common drivers. Dbox takes them as untrusted drivers and
allocates different numbers of redundant spaces for them. The
memory overhead is shown in Figure 9.

The results show that the number of redundant spaces does not
incur significant overhead on memory. When the number of redun-
dant spaces is 10 and 100, Dbox increases the untrusted driver by
an average of 5.6% and 5.8%, respectively. Due to the fact that re-
dundant page tables are shared and they are mapped to a same trap
page, they do not occupy too much physical pages. In contrast, EPT
occupies more pages. To reduce unnecessary memory overhead,
we only map the pages related to the current driver when creating
private EPTs. The objects mapped by a private EPT include the un-
trusted driver, the core kernel, and the LKMs needed by the driver.
In general, a private EPT occupies no more than 5MB memory.

Impact on the driver During the running of an untrusted dri-
ver, Dbox needs to track and detect all entry_flows and exit_flows,

0 50 100 150 200

e1000
e1000e

igb
fm10k

igc
i40e
xfs

ext4
fat
nfs

gfs2
nvidia

ttm
drm
i915

amdgpu
ast

nouveau

ne
tw

or
k

dr
iv

er
fil

e
dr

iv
er

G
PU

 d
riv

er

size(MB)

1000 500 400 300
200 100 10 Orig.

Figure 9: The memory overhead

which can slow down the running speed of the driver. The sliding
mechanism adopted by Dbox essentially is to a re-randomization
method[28, 43]. We manually install NVMe and E1000e and see
them as untrusted drivers. Afterwards, an LKM reads the driver

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongGang Li et al.

code at regular intervals (1ms, 10ms, and 50ms) to trigger the sliding
space mechanism.

When testing NVMe, we use the same method as Adelie [28] to
open and read a file stored on the NVMe storage. The file is opened
with O_DIRECT and O_SYNC flags, and a block size of 32 bytes
is repeatedly read from the beginning of the file in a tight loop
[28]. Afterwards, we set the block size to 64 bytes, 128 bytes, and
256 bytes, respectively. At the same time, we test the file reading
throughput and CPU usage every 1 minute and compared them
with Adelie’s test results. The results are shown in Figure 10.

When testing E1000e, we run ApacheBench to test network per-
formance. During the experiment, we test the network throughput
and CPU usage at 0, 1, 5, and 10 minutes after the driver is loaded.
The test results are shown in Figure 11.

In the above experiments, the I/O waiting time exceeded the CPU
running time. Therefore, they cannot verify the running status of
the driver under CPU constraints. Similar to Adelie [28], we also
create a dummy device driver that implements a null ioctl operation.
We repeatedly execute the syscall ioctl to call the driver code and
measure the number of ioctl operations performed per second. The
results are shown in Figure 12.

The above results show that Dbox incurs significant overhead in
the early stage of driver running. As the driver runs, the overhead
gradually decreases. The reason is that all ICT instructions will
trigger system traps when they enter/exit the untrusted driver for
the first time. Then, the instructions triggering system traps will be
analyzed by Dbox. For the legal instructions, they will be recorded
and rewritten, which can prevent them from triggering system
traps when they are called again. As the driver runs, more and more
legal ICT instructions are captured and recorded. Therefore, the
number of system traps will decrease, which can reduce overhead
gradually. However, the overhead incurred by Dbox is still more
than Adelie, especially when the re-randomization interval is very
small. The reason is our targets are untrusted drivers without source
code instead of the open-source drivers protected by Adelie. As a
result, Dbox cannot construct a control flow transfer table offline
by analyzing the source code like Adelie. In addition, compared
to Adelie, Dbox can detect entry_flows and exit_flows, which also
increases more overhead.

Fortunately, Dbox is a event-triggered method. It does not ran-
domize the untrusted driver periodically like Adelie. Although we
periodically trigger the space slidingmechanism, the randomization
frequency is not as high as that in the experiment in real execution
scenarios. The current space of the untrusted driver will slide to an
random location only when a code probe occurs. Moreover, it can
also provide strong protection for the control flows of the running
drivers, which is a capability not available in other KASLR meth-
ods. More importantly, Dbox can detect untrusted drivers without
source code, which is impossible for the methods [13, 25, 26] relying
on source code.

8 CONCLUSION
To isolate and detect the untrusted drivers without source code, this
paper proposes a method Dbox. It isolates the untrusted drivers
in a private space. Unlike existing KASLR methods, Dbox does
not fix the untrusted driver in a driver space. It builds a sliding

space mechanism for untrusted drivers and dynamically adjusts
their code permissions. Based on our designs, all entry_flows and
exit_flows can be captured and analyzed. The experiment results
and analysis show that Dbox has good defense against code probes,
kernel rootkits, and CRAs. In addition, as the untrusted driver runs,
the impact of Dbox on the untrusted driver will gradually decrease.
As a result, Dbox does not introduce too much overhead to the
protected drivers.

However, Dbox still has some limitations. First, it is only effective
for drivers that are loaded after the OS starts. For the drivers that
start with the OS, Dbox cannot perform binary rewriting before
they run. Fortunately, developers do not set untrusted drivers as
the LKMs that start with the OS, let alone compile them into the
kernel. Second, Dbox is only effective for the open-source Linux
that is running on x86 processors equipped with VMX and EPT.
Third, due to the limitation of the number of entries in the EPT list,
Dbox can only detect up to 511 untrusted drivers at the same time.
According to our observation, the total number of drivers does not
exceed 511 in most scenarios, let alone untrusted drivers.

9 ACKNOWLEDGMENTS
This research was supported by the Fundamental Research Funds
for the Central Universities (2023QN1078)

REFERENCES
[1] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad

Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: Real-time
kernel protection from the arm trustzone secure world. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 90–102.

[2] Davi L et al Biondo A, Conti M. 2018. The Guard’s Dilemma: Efficient {Code-
Reuse} Attacks Against Intel {SGX}. In Proceedings of the 27th USENIX Security
Symposium. 1213–1227.

[3] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking blind. In 2014 IEEE Symposium on Security and Privacy. IEEE,
227–242.

[4] Bramwell Brizendine and Austin Babcock. 2021. Pre-built JOP Chains with the
JOP ROCKET: Bypassing DEP without ROP. Black Hat Asia (2021).

[5] Bigelow R et al Brown M D, Pruett M. 2021. Not so fast: understanding and
mitigating negative impacts of compiler optimizations on code reuse gadget sets.
In Proceedings of the ACM on Programming Languages. 1–30.

[6] Haubenwallner M et al. Canella C, SchwarzM. 2020. KASLR: Break it, fix it, repeat.
In Proceedings of the 15th ACM Asia Conference on Computer and Communications
Security. 481–493.

[7] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-grained
control-flow integrity for kernel software. In 2016 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 179–194.

[8] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. 2017.
ASLR on the Line: Practical Cache Attacks on the MMU.. In NDSS, Vol. 17. 26.

[9] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, and Haibo Chen.
2020. Harmonizing performance and isolation in microkernels with efficient
intra-kernel isolation and communication. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 401–417.

[10] Polychronakis M et al. Göktaş E, Athanasopoulos E. 2014. Size Does Matter:
Why Using {Gadget-Chain} Length to Prevent {Code-Reuse} Attacks is Hard.
In Proceedings of the 23rd USENIX Security Symposium. 417–432.

[11] C. Harini and C. Fancy. 2020. A study on the prevention mechanisms for kernel
attacks. In Artificial Intelligence Techniques for Advanced Computing Applications:
Proceedings of ICACT 2020. Springer, 11–17.

[12] Williams D Holmes B, Waterman J. 2022. KASLR in the age of MicroVMs. In
Proceedings of the Seventeenth European Conference on Computer Systems. 149–
165.

[13] Detweiler D et al Huang Y, Narayanan V. 2022. KSplit: Automating Device Driver
Isolation. In Proceedings of the 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22). 613–631.

[14] Christopher Jelesnianski, Jinwoo Yom, Changwoo Min, and Yeongjin Jang. 2020.
Mardu: Efficient and scalable code re-randomization. In Proceedings of the 13th
ACM International Systems and Storage Conference. 49–60.

Isolate and Detect the Untrusted Driver with a Virtual Box CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

10

15

20

25

Th
ro

ug
ho

ut
(M

B
/s

)

32 bytes

10

15

20

25
64 bytes

10

15

20

25
128 bytes

10

15

20

25
512 bytes

0 2 4 6 8 10
Time(min)

4%

6%

8%

10%

12%

14%

C
PU

 u
sa

ge

0 2 4 6 8 10
Time(min)

4%

6%

8%

10%

12%

14%

0 2 4 6 8 10
Time(min)

4%

6%

8%

10%

12%

14%

0 2 4 6 8 10
Time(min)

4%

6%

8%

10%

12%

14%

Orig.

Adelie-1

Adelie-10

Adelie-50

DriverBox

DriverBox-1

DriverBox-10

DriverBox-50

Figure 10: The throughput and CPU usage of NVMe

20

30

40

50

60

Th
ro

ug
ho

ut
(M

B
/s

)

0min-1kb

20

30

40

50

60
1min-1kb

20

30

40

50

60
5min-1kb

20

30

40

50

60
10min-1kb

20 40 60 80 100
Concurrency

20%

30%

40%

50%

C
PU

 u
sa

ge

20 40 60 80 100
Concurrency

20%

30%

40%

50%

20 40 60 80 100
Concurrency

20%

30%

40%

50%

20 40 60 80 100
Concurrency

20%

30%

40%

50%

Orig.

Adelie-1

Adelie-10

Adelie-50

DriverBox

DriverBox-1

DriverBox-10

DriverBox-50

Figure 11: The throughput and CPU usage of E1000e

0 5 10
Time(min)

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
ho

ut
(M

B
/s

)

0 5 10
Time(min)

6%

8%

10%

12%

14%

C
PU

 u
sa

ge

Orig.

Adelie-1

Adelie-10

Adelie-50

DriverBox

DriverBox-1

DriverBox-10

DriverBox-50

Figure 12: The throughput and CPU usage of ioctl

[15] Groß S et al. Lekies S, Kotowicz K. 2017. Code-reuse attacks for the web: Breaking
cross-site scripting mitigations via script gadgets. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 1709–1723.

[16] Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma. 2018. Fine-cfi: fine-
grained control-flow integrity for operating system kernels. IEEE Transactions
on Information Forensics and Security 13, 6 (2018), 1535–1550.

[17] YongGang Li, Yeh-Ching Chung, Jinbiao Xing, Yu Bao, and Guoyuan Lin. 2022.
MProbe: Make the code probing meaningless. In Proceedings of the 38th Annual
Computer Security Applications Conference. 214–226.

[18] YongGang Li, GuoYuan Lin, Yeh-Ching Chung, YaoWen Ma, Yi Lu, and Yu Bao.
2023. MagBox: Keep the risk functions running safely in a magic box. Future
Generation Computer Systems 140 (2023), 282–298.

[19] Yong-Gang Li, Yeh-Ching Chung, Kai Hwang, and Yue-Jin Li. 2020. Virtual wall:
Filtering rootkit attacks to protect linux kernel functions. IEEE Trans. Comput.
70, 10 (2020), 1640–1653.

[20] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
memory disclosure with efficient hypervisor-enforced intra-domain isolation. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. 1607–1619.

[21] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. 2016. How to
Make ASLR Win the Clone Wars: Runtime Re-Randomization.. In NDSS.

[22] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and
M Frans Kaashoek. 2011. Software fault isolation with API integrity and multi-
principal modules. In Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles. 115–128.

[23] Alyssa Milburn, Erik Van Der Kouwe, and Cristiano Giuffrida. 2022. Mitigating
information leakage vulnerabilities with type-based data isolation. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 1049–1065.

[24] Wei-Loon Mow, Shih-Kun Huang, and Hsu-Chun Hsiao. 2022. LAEG: Leak-based
AEG using Dynamic Binary Analysis to Defeat ASLR. In 2022 IEEE Conference on
Dependable and Secure Computing (DSC). IEEE, 1–8.

[25] Jacobsen C et al Narayanan V, Balasubramanian A. 2019. LXDs: Towards isola-
tion of kernel subsystems. In Proceedings of the 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 269–284.

[26] Tan G et al Narayanan V, Huang Y. 2020. Lightweight kernel isolation with
virtualization and VM functions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS
international conference on virtual execution environments. 157–171.

[27] Matthias Neugschwandtner, Alessandro Sorniotti, and Anil Kurmus. 2019. Mem-
ory categorization: Separating attacker-controlled data. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 16th International Conference, DIMVA
2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings 16. Springer, 263–287.

[28] Ruslan Nikolaev, Hassan Nadeem, Cathlyn Stone, and Binoy Ravindran. 2022.
Adelie: continuous address space layout re-randomization for Linux drivers. In

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA YongGang Li et al.

Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 483–498.

[29] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano
Giuffrida. 2016. Poking holes in information hiding. In 25th USENIX Security
Symposium (USENIX Security 16). 121–138.

[30] et al Pomonis, Marios. 2017. kRX̂: Comprehensive kernel protection against
just-in-time code reuse. In Proceedings of the Twelfth European Conference on
Computer Systems. 420–436.

[31] Xinhui Shao, Lan Luo, Zhen Ling, Huaiyu Yan, Yumeng Wei, and Xinwen Fu.
2022. fASLR: Function-based ASLR for resource-constrained IoT systems. In
European Symposium on Research in Computer Security. Springer, 531–548.

[32] et al Shrivastava, Rajesh Kumar. 2022. Securing Internet of Things devices
against code tampering attacks using Return Oriented Programming. Computer
Communications 193 (2022), 38–46.

[33] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time code reuse: On the
effectiveness of fine-grained address space layout randomization. In 2013 IEEE
symposium on security and privacy. IEEE, 574–588.

[34] Abhinav Srivastava and Jonathon TGiffin. 2011. EfficientMonitoring of Untrusted
Kernel-Mode Execution.. In NDSS. Citeseer.

[35] Göktas E. et al Van Der Veen, V. 2016. A tough call: Mitigating advanced code-
reuse attacks at the binary level. In Proceedings of the IEEE Symposium on Security
and Privacy (SP). 934–953.

[36] Fernando Vano-Garcia and Hector Marco-Gisbert. 2020. KASLR-MT: Kernel
address space layout randomization for multi-tenant cloud systems. J. Parallel

and Distrib. Comput. 137 (2020), 77–90.
[37] Wenhao Wang, Guangyu Hu, Xiaolin Xu, and Jiliang Zhang. 2021. CRAlert:

Hardware-assisted code reuse attack detection. IEEE Transactions on Circuits and
Systems II: Express Briefs 69, 3 (2021), 1607–1611.

[38] ZheWang, ChenggangWu, Jianjun Li, Yuanming Lai, Xiangyu Zhang,Wei-Chung
Hsu, and Yueqiang Cheng. 2017. Reranz: A light-weight virtual machine to miti-
gate memory disclosure attacks. In Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. 143–156.

[39] Cui W et al Wang Z, Jiang X. 2009. Countering kernel rootkits with lightweight
hook protection. In Proceedings of the 16th ACM conference on Computer and
communications security. 545–554.

[40] Mengfei Xie, Yan Lin, Chenke Luo, Guojun Peng, and Jianming Fu. 2022. Point-
erScope: Understanding Pointer Patching for Code Randomization. IEEE Trans-
actions on Dependable and Secure Computing (2022).

[41] Yutian Yang, Songbo Zhu, Wenbo Shen, Yajin Zhou, Jiadong Sun, and Kui Ren.
2019. ARM pointer authentication based forward-edge and backward-edge
control flow integrity for kernels. arXiv preprint arXiv:1912.10666 (2019).

[42] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim. 2022. {In-
Kernel}{Control-Flow} Integrity on Commodity {OSes} using {ARM} Pointer
Authentication. In 31st USENIX Security Symposium (USENIX Security 22). 89–106.

[43] Changwei Zou, Xudong Wang, Yaoqing Gao, and Jingling Xue. 2022. Buddy
stacks: Protecting return addresses with efficient thread-local storage and runtime
re-randomization. ACM Transactions on Software Engineering and Methodology
(TOSEM) 31, 2 (2022), 1–37.

	Abstract
	1 Introduction
	2 Related Work
	3 Assumptions and Attack Vectors
	4 Motivation
	5 Methodology
	6 Implementation
	6.1 Build dynamic spaces
	6.2 Detect control flows

	7 Evaluation
	7.1 Security evaluation
	7.2 Performance evaluation

	8 Conclusion
	9 ACKNOWLEDGMENTS
	References

