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Abstract—Memristor crossbar-based computing-in-memory
(CIM) has garnered significant attention for accelerating deep
neural networks (DNNs). Although practical operation unit (OU)-
based designs incur abundant repetitive computations, recent
studies propose sharing mechanisms, where redundant computa-
tions are replaced with data transfers. However, existing sharing
approaches carry a heavy burden in terms of storage and energy
in practical implementation. To alleviate this problem, this paper
proposes a resource-efficient scheme for weight pattern sharing
(ReShare). A pattern reorder algorithm is introduced to facilitate
the asynchronous running of computations and sharing, which
circumvents the bottleneck posed by the output buffer in a
conventional sharing scheme. In addition, ReShare enables block
write operations to reduce write costs. Our evaluation across
four DNN models demonstrates that the proposed ReShare has
a lighter overhead in energy and storage while simultaneously
enhancing performance. Specifically, ReShare can achieve 𝟏.𝟔𝟔×
speedup, 30.7% energy saving, and 49.5% storage reduction
compared to the state-of-the-art weight sharing method.

Index Terms—Computing-in-memory, memristor, deep neural
networks (DNNs), weight pattern sharing (WPS).

I. INTRODUCTION

ReRAM crossbar has emerged as a prominent computing-
in-memory (CIM) technology and is widely applied in diverse
domains, such as image recognition [1], graph processing [2],
DNA alignment [3], Wave Simulation [4], etc. The widespread
adoption of ReRAM-based CIM can be attributed to its high
computational parallelism and the potential to overcome the
memory wall. ReRAM crossbars leverage Kirchoff’s Law to
perform parallel Matrix-Vector-Multiplication (MVM) directly
within the ReRAM cells, all while maintaining the area and
power both at a low level. Deep Neural Networks (DNNs),
dominated by MVM operations, can benefit greatly from CIM.

However, in the real world, the practical ReRAM-based
DNN accelerators grapple with challenges in ReRAM storage
and detracted parallelism. When solely utilizing ReRAM cells
to store an entire DNN model, the requisition for ReRAM
devices becomes significant. For example, the full-precision
VGG16 necessitates in excess of 66,000 single-level 128×128
crossbar arrays. With the expanding dimensions of DNN
models, this demand amplifies, leading to marked challenges
concerning ReRAM storage capacity. Concurrently, the pursuit
of high computational accuracy necessitates a reduction in
parallelism. Activating excessive ReRAM cells simultaneously
makes analog computation suffer from fluctuation due to

hardware variation [5]. Many studies [6]–[8] adopt Operation
Unit (OU) for better fault resilience, activating only 𝐻𝑂𝑈
wordlines and 𝑊𝑂𝑈 bitlines per cycle. Nonetheless, this re-
silient computation paradigm separates a complete MVM into
𝐻𝑀
𝐻𝑂𝑈

𝑊𝑀
𝑊𝑂𝑈

sub-MVMs, curtailing the inherent parallelism.
Many pruning methods have been proposed for ReRAM-

based accelerators, which leverage the inherent sparsity [6],
[9]–[13] and repetitiveness [14] of weights to reduce the
demand for ReRAM crossbars and shorten computation time.
CPR [11] densifies the subarray, pruning the model at
crossbar-grain. SRE [6] compresses weights at OU-row or OU-
column granularity. The approach in [12] clusters and prunes
the zeros in weights at OU-grain. APQ [13] finds a global
optimal pruning policy for weights in DNN models at the
OU-column level. Nonetheless, the above OU-based pruning
methods solely utilize weight sparsity but ignore the remaining
information in the model. Repetitiveness in non-zero weights
also holds the potential for compression. PattPIM [15] records
repeated OU patterns in weights and introduces an OU-level
repetition pruning method. RePIM [14] delves into the repe-
tition of OU-columns and uses an indexing table to share the
computation results. Further, PRAP-PIM [16] fine-tunes the
model to increase the ratio of repetition. The above methods
require index tables for the dispersion of computational results.
However, implementing index tables necessitates a task list
recording write addresses and a length list to provide the length
of each task. Moreover, the discontinuity in the destination
addresses of the disseminated write operations introduces the
under-utilization of block data transfer in write operations.
Furthermore, mutual dependency between computation and
sharing arises when a buffer serves dual roles as both the
write target for computational results and the read target for
distribution. It implies that an intensive distribution task can
obstruct the following computation on hold.

In this paper, we propose ReShare to avoid the mutual
dependency problem and exploit continuous writes in the
sharing process. Our contributions are as follows:

(1) We discuss the overhead and performance of the weight
sharing mechanism in recent works. Key challenges in-
clude the absence of block write support, the output
buffer acting as a bottleneck, and significant storage costs
of auxiliary lists. We conduct preliminary experiments
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revealing a dense distribution of weight patterns with the
weight matrix, further enhancing our discussion.

(2) We propose ReShare, which consists of a pattern re-
ordering algorithm to enable asynchronous running and
a block write-aware architecture design. In architecture,
we propose maintaining a task list containing the pattern
members of result blocks to facilitate block data transfer.

(3) We evaluate ReShare’s performance with popular DNN
models on the Imagenet dataset. ReShare achieves at
most 1.66× speedups than the ORC method in RePIM. In
the metric of energy consumption and storage overhead,
ReShare also outperforms the baseline methods.
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Fig. 1. Pruning repetitive weights in OU-grain and a practical design of the
index table. Here, the Weights of the four filters are split and combined into
single-bit matrices.

II. BACKGROUND AND MOTIVATION

Pruning repetitive weights and sharing MVM results of
weight patterns effectively reduces the ReRAM devices and
redundant computations [14]–[16]. A weight pattern is an OU-
column vector in a weight matrix. We set the OU in Fig. 1.’s
example as a 2 × 2 square, so there are four distinct weight
patterns, i.e., {0,0}, {0,1}, {1,0}, and {1,1}. The duplication
pruning strategy first maps the reduced weight matrices onto
crossbar arrays and stores key-value pairs of pattern and in-
dex:{{1,0}:{0,4,6}, {0,1}:{1,2,5}, {1,1}:{3}, {0,0}:{7}}. The
first MVM produces the results for patterns {1,0} and {0,1}
and writes to the output buffer. The sharing process forwards
the pattern results to the result buffer with respective target
addresses, i.e., {0,4,6} and {1,2,5}. Cutting off duplicate
computations saves 50% of computations and ReRAM cells
in this example, but it also reveals three problems: (1) heavy
write overhead, (2) inter-dependency between computation and
sharing, and (3) overhead of auxiliary lists.

The target addresses for result distribution are not contigu-
ous because each weight pattern potentially appears in various
columns of the weight matrix, and the storage of results is
consistent with the column order of the weight matrix. The
result buffer has a minimal unit for write operations, which
is larger than a single pattern result. However, the sharing
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Fig. 2. The flow chart of traditional weight pattern sharing scheme.
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Fig. 3. The occurring frequency of weight patterns in the four models.

scheme misses this advantage due to discontinuous writing
and induces a heavy writing burden.

Fig. 2. illustrates that the output buffer acts as a pivot,
functioning as the write target for MVM operations and
the originating source for sharing. The computation will be
blocked when the sharing is under a heavy burden. Such
inter-dependency turns the output buffer into a performance
bottleneck, increasing latency overhead, especially with busy
patterns. Alternatively, the design shall enlarge the output
buffer to enable asynchronous running between computation
and sharing, increasing the space overhead.

For the index table design, employing a fixed-size block
for each pattern to record target addresses leads to substantial
space wastage for infrequent patterns. This wastage is dictated
by the uneven distribution of patterns in the weight matrix,
coupled with the block size determined by the largest task
list. A practical implementation of the index table consists of
a column index list and a task length list. As shown in Fig.
1., once an MVM is completed, the pattern first accesses the
task length list to ascertain the task amount. Subsequently, it
navigates to the column index list to obtain respective target
addresses. The spatial complexity associated with the two aux-
iliary lists is 𝑂(𝐻𝑀𝑊𝑀 𝑙𝑜𝑔(𝑊𝑀 )) and 𝑂(𝐻𝑀𝑁𝑝𝑙𝑜𝑔(𝑊𝑀 )),
where 𝐻𝑀 ,𝑊𝑀 , 𝑁𝑝 are height and width of the weight
matrix, and the number of patterns, respectively.

We conduct pre-experiments to investigate the distribution
of weight patterns in the models (i.e., AlexNet, ResNet50,
VGG16, and GoogLeNet) where OU is set as a 8 × 8 square.
As shown in Fig. 3., all four models exhibit that more
than 21% and 38% of OU-columns are dominated by the
most frequently occurring eight (top-8) patterns and top-32
weight patterns. The numbers will increase to 33% and 59%
when only non-zero patterns are considered. The observed
concentration of patterns enhances the previously discussed
spatial inefficiencies and reaffirms the output buffer’s role as a
pivotal bottleneck, obstructing subsequent computations. We
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are then motivated to propose ReShare, a sharing scheme
supporting asynchronous running and block writing.
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Fig. 4. Data flow of ReShare. (1) Order patterns; (2) Compute pattern results;
(3) Distribute from pattern buffer to result buffer;

III. PROPOSED WEIGHT PATTERN SHARING SCHEME

A. Data Flow
Fig. 4 shows the idea and data flow of the proposed

ReShare. 1) An offline ordering process is applied to weight
patterns according to their capability of constructing complete
blocks. 2) MVM units perform computation on the ordered
patterns and forward results to the pattern buffer in the ordered
sequence. 3) Pattern Buffer (PB) receives distribution tasks
from the task list and writes goal data blocks to Result Buffer.
Race conditions are avoided in ReShare because the blocks of
PB that originate the sharing data were written in prior cycles
and will not be overwritten by subsequent pattern results.

B. Pattern Reordering Algorithm
ReShare proposes an algorithm for reordering weight pat-

terns, detailed in Algorithm 1, which prioritizes the compu-
tation of patterns that play a more significant role in forming
complete blocks. We define the value of a pattern as the
summation of weighted frequencies in all blocks (Line 9):

Value(𝑥) =
∑

block
𝛽 ⋅ freq(𝑥, block),

where 𝛽 = 1∕count(candidate patterns in block)
(1)

The weight coefficient 𝛽 is calculated as the reciprocal of the
number of candidate patterns appearing in the current block
(Line 6). And freq(x, block) returns the showing times of
pattern x in the block. After iterating all blocks, the pattern in
the unselected list with the highest value will join the selected
pattern list (Line 10,11). Each iteration would recalculate the
pattern value. The proposed weighted design ensures that
patterns contributing significantly to block write operations
are accorded higher precedence in ranking.

C. Architecture Design
Fig. 5. illustrates the architecture for ReShare. It is com-

posed of a global controller generating control signals to

Algorithm 1: Pattern Reordering Algorithm
Input : OU-column set 𝑆𝑐𝑜𝑙, #Pattern in 𝑆𝑐𝑜𝑙 N
Output: Reordered weight patterns 𝑃𝑜𝑟𝑑𝑒𝑟

1 Init dynamic value list 𝐿𝑣𝑎𝑙 as all-zero, selected
pattern list 𝐿𝑠𝑒𝑙 as empty.

2 for i = 0 to N do
3 for each non-zero block in 𝑆𝑐𝑜𝑙 do
4 if 𝑏𝑙𝑜𝑐𝑘 ⊈ 𝐿𝑠𝑒𝑙 then
5 Count unselected patterns in block 𝑛𝑢𝑛𝑠𝑒𝑙
6 coeff ← 1∕𝑛𝑢𝑛𝑠𝑒𝑙
7 for col in block do
8 if col≠ 0 and col ∉ 𝐿𝑠𝑒𝑙 then
9 𝐿𝑣𝑎𝑙[𝑐𝑜𝑙] += coeff

10 𝑃𝑎𝑡𝑡𝑚𝑎𝑥 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝐿𝑣𝑎𝑙)
11 Append 𝑃𝑎𝑡𝑡𝑚𝑎𝑥 to 𝐿𝑠𝑒𝑙
12 /* 𝐿𝑠𝑒𝑙 is ordered by patterns’

contribution, so 𝐿𝑠𝑒𝑙 is 𝑃𝑜𝑟𝑑𝑒𝑟. */
13 return 𝐿𝑠𝑒𝑙
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Fig. 5. Hierarchical illustration of the architecture design.

all components, a global buffer storing input feature maps
and output data, activation units and pooling units handling
intermediate outputs, and multiple Processing Engines (PEs)
consisting of multiple Compute Units (CUs) conducting com-
putation and sharing. The input dispatcher and task buffer
receive signals from the controller. The shared pattern results
are written to the result buffer and are accumulated by the
shared accumulators. The pattern buffer and task buffer are
the fundamentals of ReShare’s sharing scheme. The task
buffer records each pattern result’s task details, including the
block index (write address to result buffer) and pattern index
(read address of pattern buffer). Since the block is fixed-size
globally, accessing the task buffer doesn’t need the auxiliary
lists we discussed previously. The specific cost reduction will
be presented in the Evaluation section.

IV. EVALUATION

A. Experimental Setup
Based on MNSIM [17], we implement a prototype of

ReShare. The latency delay of the eDRAM buffers, such as
Pattern Buffer and Result Buffer, are modeled using CACTI

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on July 16,2024 at 10:32:14 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
HARDWARE CONFIGURATION

CU configuration (16 CUs per PE)
Memristor Array number: 8; size: 32 × 128

bits-per-cell: 1 bit; OU-size: 8 × 8
0.51mW

DAC Number: 8 × 32; Resolution: 1 bit 1.0 mW
ADC Number: 8; Resolution: 6 bit

Frequency: 1 GSps
12.1 mW

S+A Number: 4 0.2mW
S+H 8 × 128 10 uW

eDRAM Buffer size: 32KB 14.3 mW

[18] at the 32-nm process. The configuration is set to meet
the requirements of four benchmark DNN models: Alexnet,
GoogleNet, ResNet50, and VGG16. Table I summarizes the
hardware configuration of the architecture. Each PE has 16
CUs, and each CU groups 8 Single-Level-Cell (SLC) ReRAM
crossbar arrays. The result buffer, pattern buffer, and task
buffer are assembled in the on-chip buffer of each CU.

Tasks and Baselines: We choose the ImageNet [19] classi-
fication task as the benchmark, involving a large volume of in-
termediate OU-input data. We select four representative DNN
models, i.e., Alexnet, GoogleNet, ResNet50, and VGG16, to
evaluate the performance. Weights are quantized to 8-bit using
a post-training quantization algorithm [20]. All evaluations
adopt an 8×8 OU design. The block size for memory write is
set to 16B. We compare the performance of ReShare against
two state-of-the-art weight pruning approaches, i.e., OU-row
compression (ORC) in SRE [6] and repetitive weight sharing
(RWS) in RePIM [14], on four metrics: latency, ReRAM
compression rate, energy consumption, and storage overhead.
All the results are normalized to the ORC method or RWS.

B. Experimental Results

1) Speedup: Fig. 6 (a) presents the execution time of
ReShare and baseline methods. ReShare achieves at most
1.66× speedup compared with RWS. The crossbar array con-
figuration with fewer rows increases the MVM parallelism for
OU-based computation, contributing to the performance. This
improvement also illustrates that leveraging block data trans-
fers, combined with asynchronous computation and sharing,
effectively conceals transfer duration behind computation time.

2) ReRAM reduction: Considering that RePIM utilizes
crossbar arrays to store both weights and the indexing table,
we assess the ReRAM requirement based solely on weights to
ensure a fair comparison. Fig. 6 (b) shows that ReShare and
RWS have almost the same demand on ReRAM cells because
they only perform the MVMs on limited weight patterns. In
other words, the ReRAM demand does not vary with the
matrix width. ReShare exhibits a superior compression rate on
AlexNet, ResNet50, and VGG16 in comparison to GoogLeNet.
This is attributed to the layers in GoogLeNet having fewer
columns than the others, leading to suboptimal utilization of
the sharing scheme.
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Fig. 6. Performance speedup and ReRAM device reduction.
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3) Energy saving: The energy consumption of ReShare
normalized to RWS is shown in Fig. 7(a). Though RWS
adopts low-power ReRAM devices to store the indexing table,
ReShare saves at most 30.7% of energy in comparison with
RWS, which demonstrates the benefit of block data transfer.
Nonetheless, when the weight matrix is wide, e.g., AlexNet,
the sharing process requires longer execution time and more
energy consumption.

4) Storage overhead: The main storage cost is comprised
of the result buffer, pattern buffer, and task buffer. Fig. 7(b)
illustrates the normalized storage overhead of the four models.
It shows that, in practice, ORC needs more storage than
original weights, especially when the sparsity in the weight
matrix is rather non-ideal due to the quantization algorithm.
In summary, ReShare decreases the storage overhead by 49.5%
in comparison with ORC.

V. CONCLUSION

This paper discusses the performance bottleneck and storage
overhead inherent in recent repetitive weight sharing mecha-
nisms for memristive DNN, highlighting the substantial costs
of execution time, storage, and energy consumption associated
with the sharing process in practical implementation. We
propose ReShare to mitigate this problem, including a pattern
reordering algorithm and a tailored architecture. We discover
the computation flow supporting asynchronous execution and
block data transfers, reducing overall overhead with minor
hardware costs. Evaluations show that ReShare achieves at
most 1.66× speedups over the representative weight sharing
method while improving storage and energy efficiency.
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