
An Offline Profile-Guided Optimization Strategy for Function Reordering on
Relational Databases

Weibin Chen1 and Yeh-Ching Chung2

Abstract— Profile-guided optimization (PGO) is an advanced
technique used to improve the performance of Relational
Databases (RDBs). However, the most common strategy is
to perform profiling on the production environment, which
can lead to instability and performance loss for the Database
System. To address this issue, we propose an offline profiling
strategy that uses a query reduction strategy to obtain a reduced
query set from the production environment’s log file. We then
run this sample on an offline test environment to collect profile
data and use it to conduct function reorder optimization.

To evaluate our approach, we compared the performance
improvements achieved by running a reduced query set and
a full query set on a MYSQL database. We generated func-
tion call graphs for both query sets and observed that the
performance improvement achieved by the reduced query set
was slightly lower than that of the full query set. These results
demonstrate the effectiveness of our approach and highlight the
potential benefits of offline profiling strategies for improving the
performance of RDBs in production environments, while also
avoiding performance losses and increasing stability.

Index Terms— Profile-guided Optimization, Query, Rela-
tional Databases, Function Reorder, Function Call Graph

I. INTRODUCTION

In recent years, Relational Databases (RDBs) have become
increasingly popular for a wide range of applications across
various industries, including Enterprise Information Systems
[1], Transportation Systems [2], and others. As the volume of
data processed by RDBs continues to grow, the performance
of low-performing databases can significantly impact the
quality of life. Therefore, there is an increasing demand to
optimize the performance of database operations to address
these challenges.

One promising approach to improving RDBs performance
is Profile-guided Optimization (PGO), which involves using
profiling data collected during database operation to guide
optimization of the database system. PGO is a technique
used to optimize the performance of software applications by
collecting and analyzing performance data through profiling.
This strategy aims to improve the efficiency of database
operations by identifying and addressing performance bot-
tlenecks. Numerous PGO tools have been developed with
the aim of enhancing code locality, including AutoFDO [3],
HFSort [4], PLTO [5] and BOLT [6]. These tools have
demonstrated the ability to improve software performance
by a range of 3% to 30%.

1Weibin Chen is with School of Science and Engineering, The
Chinese University of Hong Kong (Shenzhen), Shenzhen, China
weibinchen1@link.cuhk.edu.cn

2Yeh-Ching Chung is with School of Data Science, The
Chinese University of Hong Kong (Shenzhen), Shenzhen, China
ychung@cuhk.edu.cn

In the field of database systems, previous studies have
extensively explored the concept of online PGO [7] [8].
One such approach involved collecting profile data from a
full execution query set using a tool such as perf [9] and
extracting a function call graph from this profile data. This
function call graph was then used to generate a new function
order for program recompilation.

However, an alternative approach is offline PGO, which in-
volves performing profiling in a non-production environment.
There are two key reasons why an offline profiling strategy
for function reordering is necessary despite the potential
optimization loss compared to online method. Firstly, the
use of profiling for collecting data in a real production
environment may result in program instability, as perf adds
additional trace code in the kernel that can lead to unexpected
issues. Secondly, profiling requires system resources for data
collection, which can potentially impact the performance of
the production environment.

In this paper, we investigate the advantages of an offline
profiling optimization approach for function reordering in
the context of RDBs. We present the concept and method-
ology of our approach, which involves obtaining the query
execution log file from the original production environment
and identifying the number of queries for each template.
The template queries are those with the same predicate. We
select a subset of the template queries as the running queries
to collect the profiling data and perform the profiling with
function reordering. We evaluate the performance impact of
PH [10], C3 [4], and RL [11] on this offline profiling strategy.

The contributions of this paper are:
• Implementation of an offline framework that generates

template SQL queries for PGO.
• Evaluation of the impact of offline and online PGO

strategies for function reordering using three different
existing algorithms on MYSQL [12].

The paper is organized as follows. We first introduce the
optimization procedures of both traditional PGO and offline
PGO for databases in Section II. Next, in Section III, we
present the idea of graph similarity to support our assumption
that executing similar queries will result in a similar function
call graph. Section IV describes the experimental results of
full-data PGO and offline PGO on MYSQL. Finally, Section
V concludes the paper, and Section VI provides an overview
of previous research on RDBs performance optimization.

II. OPTIMIZATION PROCEDURE

In this section, we present a detailed description of the im-
plementation process for the optimization procedure, aimed

2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
October 1-4, 2023, Oahu, Hawaii, USA

979-8-3503-3702-0/23/$31.00 ©2023 IEEE 967

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

ys
te

m
s,

 M
an

, a
nd

 C
yb

er
ne

tic
s (

SM
C)

 |
 9

79
-8

-3
50

3-
37

02
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SM
C5

39
92

.2
02

3.
10

39
40

26

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 28,2024 at 02:19:54 UTC from IEEE Xplore. Restrictions apply.

Profiling Code Analyzing
Data

Generate
Function

Order
Relink Binary

Fig. 1. Procedure of profile-guided optimizaiton for function reordering

BA C D20 30 40

Fig. 2. Example of function call graph

at improving the performance of RDBs by recompiling them
with a new function order. We first introduce the PGO
approach, which serves as the basic method for optimizing
the databases. Given the inherent features of RDBs, all
entries in the log comprise SQL queries. As most of these
queries are highly probable and may be repeated with slight
variations in certain values, we can take advantage of this
characteristic to minimize the profiling scale and perform
offline PGO, as proposed next.

A. Profile guided optimization for function reordering

Profile-guided optimization (PGO) is a software develop-
ment technique that aims to improve program performance
by analyzing the execution profile of the code. Function
reordering is a specific optimization approach that involves
changing the order of function execution to optimize branch-
ing and cache locality. In the context of PGO, function re-
ordering is based on profiling data collected during program
execution, which identifies frequently executed functions
and their execution order. This information is then used to
generate a new function order that can be applied to the code
to enhance its performance. The procedure for performing
function reordering using PGO typically involves several
steps, including profiling the code, analyzing the profile data,
generating a new function order, and applying the new order
to the code.

In our study, we utilized the Perf [9] profiling tool to gather
system and hardware performance metrics such as CPU
usage, memory usage, and disk I/O while the database was
running. The procedure for function reordering is depicted
in Fig. 1. After analyzing the profile data, we extracted the
function call graph, as shown in Fig. 2, which comprises a
set of functions (V) and arcs (A) with weights that indicate
the frequency of function calls. We applied state-of-the-art
function reordering algorithms to generate a new function
order. Finally, we utilized the LLVM [13] feature to relink
the program and generate a new binary.

This technique can improve the efficiency of the instruc-
tion translation lookaside buffer (I-TLB) by reducing the
number of I-TLB misses. The I-TLB caches page table
entries for recently accessed pages. If an entry is not present
in the I-TLB, it results in an I-TLB miss, and the processor
must access the page table from memory, which is a time-
consuming operation. By rearranging functions to maximize
the reuse of pages already loaded in the I-cache, the prob-
ability of I-TLB misses is reduced, resulting in improved

I-TLB efficiency. Enhancing the efficiency of the I-TLB can
lead to better program performance.

B. Offline Procedure

Based on the observation that executing similar queries
results in similar function calls, we have developed an offline
profiling strategy to guide the optimization of database
binaries. This strategy eliminates the need for profiling on the
production environment, thereby minimizing the impact on
system performance. An overview of our strategy is shown
in Fig. 3. Our strategy consists of three main parts. The
first step, ”generate templates,” involves aggregating a large
number of queries into a smaller set of template queries
and counting the number of queries that belong to each
template. The second part, ”collect call graph”, involves
running traditional PGO steps to collect function graphs and
generate a new function order. The third part, ”optimize
binary”, involves using the LLVM characteristic to relink
the database binary with the new function order.

In general workloads, SQL queries play a vital role in
controlling database operations. Users often interact with
dashboards or reporting tools that provide an interface to
construct queries with various predicates and input param-
eters. These queries often share similarities in terms of
execution frequency and resource utilization. By aggregating
a large number of queries with identical templates, we
can approximate the workload’s characteristics. This reduces
the number of queries needed to generate templates and
only requires maintaining a small set of templates, thereby
minimizing the impact on system performance.

The reduction process for each query involves two steps.
Firstly, we extract all constants from the query string and
replace them with value symbols. This step transforms
all queries into a template format. There are three types
of constants: those following WHERE clause predicates,
those in SET fields of UPDATE statements, and those
in INSERT statements. As illustrated in Fig. 3, for ex-
ample, UPDATE admin SET value = 1 is recognized
as UPDATE admin SET value = x, where we use the
symbol ’x’ to replace the values. This way, UPDATE admin
SET value = x is recognized as a template.

Secondly, we count the number of occurrences of each
query under each template to determine the actual number
of queries associated with each template. In order to provide
users with more flexibility, our approach allows adjusting
the reduction percentage according to the characteristics of
different query sets. This feature enables users to fine-tune
the trade-off between accuracy and reduction ratio based on
their specific needs and requirements. In this paper, we select
the top 10 templates based on this count, and each query is
then attributed to one of the selected templates. We then
execute 10% of the queries belonging to the top template
queries to collect data.

III. GRAPH SIMILARITY

Because our optimization is based on the assumption that
the function call graph of similar query executions is similar,

968

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 28,2024 at 02:19:54 UTC from IEEE Xplore. Restrictions apply.

Target DBMS
SELECT * FROM admin

SELECT * FROM admin

Raw SQL

SQL Queries

UPDATE admin SET value = 1

Generate Templates Profiling Collect Graph

UPDATE admin SET value = x

SELECT * FROM admin

UPDATE admin SET value = 2

Template SQL

Generate New
Order

memcmp
memcpy

strchr

original binary

template
queries

runtime
profile data

execute

collect

Recompile

Fig. 3. procedure of offline profile-guided optimization for reordering on database

TABLE I
JACCARD SIMILARITY BETWEEN REDUCTION QUERY SET EXECUTION

CALL GRAPH AND FULL QUERY SET EXECUTION CALL GRAPH

Similarity Percentage
Jaccard similarity (nodes) 92.7%

Jaccard similarity (out-edges) 91.9%
Jaccard similarity (in-edges) 91.9%

in this section, we use Jaccard Similarity [14] to preliminarily
verify the similarity between a graph profile by running a
reduction and full sample.

Jaccard similarity is a measure of similarity between two
sets, defined as the size of the intersection of the sets divided
by the size of the union of the sets. In other words, it
measures the proportion of shared elements between two
sets out of the total elements in both sets. To calculate the
Jaccard similarity between two graphs, Algorithm 1 shows
the calculation process of Jaccard similarity of nodes, out-
edges, and in-edges. We first calculate the intersection and
union of the sets for each element type separately. Then, we
compute the Jaccard similarity coefficient as the size of the
intersection divided by the size of the union for each element
type. The output is Jaccard similarity of nodes (JN), out-edge
(Jout) and in-edge (Jin).

We evaluated the two function call graphs generated by the
queries presented in Table II, which were created using SYS-
BENCH [15], a MySQL test benchmark. The large dataset
contains three times as many queries as the small dataset,
and ”x” denotes queries with different values. Queries in the
small dataset were randomly selected from the large dataset.
By running the queries in both datasets, we collected over
4000 edges and 1500 functions. The results of the computa-
tion are shown in Table II, where the Jaccard similarity was
calculated for three different evaluation indexes. The Jaccard
similarity was found to be greater than 90%, indicating that
executing a small sample of the query dataset can gather a
function call graph that is similar to the one generated by
the large dataset.

IV. EXPERIMENT

A. Experiment Platform

Our experiments were executed on a Linux Ubuntu 18.4
server powered by an Intel Xeon E5-2640 CPU running at

Algorithm 1: Calculate Jaccard Similarity between
Graphs

Input: Two graphs G1 = (V1,E1) and G2 = (V2,E2),
where V1, V2 are sets of nodes, E1, E2 are
sets of edges

Output: Jaccard similarity between the two graphs
for nodes, out-edges, and in-edges

1 N1 = set of nodes in G1;
2 N2 = set of nodes in G2;
3 Eout,1 = set of out-edges in G1;
4 Eout,2 = set of out-edges in G2;
5 Ein,1 = set of in-edges in G1;
6 Ein,2 = set of in-edges in G2;

7 JN = |N1 ∩N2|/|N1 ∪N2|;
8 Jout = |Eout,1 ∩Eout,2|/|Eout,1 ∪Eout,2|;
9 Jin = |Ein,1 ∩Ein,2|/|Ein,1 ∪Ein,2|;

10 return JN , Jout , Jin;

2.4GHz, with 192 GB of random access memory. We used a
self-implemented tool to perform profile-guided optimization
(PGO) [11]. Profile data was collected using Linux’s perf,
version 5.3.18.

B. Benchmark

For validation, we used the popular open-source database
program MYSQL, version 8.0, compiled with GCC 7.5 [16]
at the -O2 optimization level. We generated the experiment
queries and data using SYSBENCH. To test the performance
of MYSQL, we used two sets of queries: a small set
consisting of 780,000 queries, and a large set with 1,800,000
queries. For the small query set, we used three client threads
to execute queries on five tables with 500,000 records each,
generated by SYSBENCH. For the large query set, we
used 20 tables with 500,000 records each. We evaluated the
performance of MYSQL using SYSBENCH’s transaction per
second (TPS) metric.

C. Algorithm

We evaluated the performance of three algorithms, which
are introduced as follows:

• Pettis-Hansen (PH): The Pettis-Hansen algorithm [10]
is a classic ”bottom-up” function reorder algorithm

969

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 28,2024 at 02:19:54 UTC from IEEE Xplore. Restrictions apply.

TABLE II
NUMBERS OF QUERIES IN.THREE TEMPLATE

Full Queries Set Reduced Queries Set
SELECT c FROM sbtest2 WHERE id=x; 281916 93972

SELECT SUM(K) FROM sbtest2 WHERE id BETWEEN x AND x; 28188 9396
SELECT c FROM sbtest4 WHERE id BETWEEN x AND x; 28080 9360

that works by iteratively swapping adjacent pairs of
functions in a sequence until a desirable ordering is
achieved. The algorithm evaluates the effectiveness of
each swap by comparing the sum of the distances
between adjacent functions before and after the swap.
The process continues until no further improvements
can be made.

• Call-Chain Cluster (C3): The Call-chain cluster (C3)
[4] algorithm is the latest ”bottom-up” method used
for function reordering in software optimization. This
algorithm is designed to store functions in clusters with
a limit on the page size. If both clusters are larger than
the page size, they are not merged. Before placing each
function in a cluster, C3 sorts all functions in the call
graph in descending order of hotness. The hotness of
clusters is judged based on the sum of the weights
of the clusters’ incoming arcs, as determined by C3.
Subsequently, C3 starts appending the function to the
end of the cluster of its most common caller. C3 stops
merging clusters when the size of any two clusters that
can be merged is greater than the page size. Finally, C3

sorts the final cluster based on its ”density”.
• Reinforcement Learning (RL): The reinforcement

learning algorithm [11] is the first ”top-down” approach
for function reordering. It uses Q-learning, which is
a popular reinforcement learning algorithm. In Q-
learning, the agent maintains a Q-table, which stores
the estimated values (Q-values) for each possible action
(i.e., selecting the next function to visit) in each possible
state (i.e., the current function visited). The agent selects
actions based on the highest Q-value for the current state
and updates the Q-values based on the rewards received
and the maximum Q-value of the next state. Through
repeated iterations of exploration and exploitation, the
agent learns an optimal policy for selecting actions that
result in new function order with the maximum call
frequency.

D. Result
We evaluated two different types of query sets, and all

experiments were conducted five times. The middle three
values were taken as the result, and we set the profiling
frequency as 9999 samples per second for perf in order to
collect full data for better performance improvement. Due
to the I/O limitations typically imposed on queries involving
inserts and updates, performance variance in testing is often
significant. Therefore, all queries tested in this study were
select statements.

Fig. 4 and Fig. 5 show the results of the two different sizes
of query sets. Both experiment results were compared using

PH C3 RL
0

2

4

6

8

Reorder Algorithm

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t (

%
)

template graph

real graph

Fig. 4. Performance improvement in the execution of 780000 queries
relative to the baseline.

two function call graphs: one was the real graph profiling
the original size of the query set, and the other was the
template graph profiling the reduced query set, as described
in Section II. For the reduced query set, we only selected the
top 10 template queries and used only 10% of the queries
that belonged to these queries. Table III shows the number of
queries for each experiment. The results show that using our
optimization strategy on the smaller query set with 780,000
queries can result in a performance improvement of about
2% to 6%. However, running our optimization strategy on a
larger query set resulted in a better performance improvement
of about 6% to 9%. The performance improvement achieved
using the template graph is mostly less than 2% compared
to the improvement achieved using the real graph. It is
interesting to note that the C3 algorithm was slightly better
than RL, while PH always had the worst improvement.

If the program conducts online profile-guided optimiza-
tion, the program may suffer a performance reduction.
Therefore, we also considered the performance loss when
profiling. We conducted two performance profiling frequency
settings on Perf: one was 9999 samples per second, and the
other was 99 samples per second. Setting a higher profiling
frequency can collect more profile data. The results show
that profiling with a frequency of 9999 samples per second
resulted in an 8.8% performance reduction, which is greater
than the performance improvement on PGO. Therefore, using
a frequency of 9999 samples per second greatly affects the
program running in a production environment. The other set-
ting, with a profiling frequency of 99 samples per second, is a
common profiling frequency in production environments and
resulted in about a 0.8% performance reduction. While this
is more reasonable, it still results in performance reduction.

970

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 28,2024 at 02:19:54 UTC from IEEE Xplore. Restrictions apply.

PH C3 RL
0

5

10

15

Reorder Algorithm

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t (

%
)

template graph

real graph

Fig. 5. Performance improvement in the execution of 1800000 queries
relative to the baseline.

TABLE III
NUMBERS OF QUERIES IN TWO BENCHMARKS INCLUDING THE

TEMPLATES QUERIES AND THE ORIGINAL QUERIES

Small Query Set Large Query Set
Select Queries 780000 1800000

Templates 25 55
Template Select Queries 66056 117484

V. CONCLUSION

In this paper, an offline profiling strategy is proposed for
optimizing the performance of relational database systems.
The technique is evaluated on the open-source MYSQL
database using two different query sets, and compared with
the commonly used online profiling strategy. Experimental
results show that both methods can improve the performance
of the database system by 3% to 9%, with the offline
method achieving slightly lower improvement compared to
the online method. Especially in the case of C3 and RL,
which have a better optimization effect, the performance
improvement between the template graph and real graph is
less than 2%. Furthermore, it is shown that the high sampling
frequency used in the online method can lead to up to 8.8%
performance loss on the production environment, while the
low sampling frequency can cause a loss of up to 0.8%.
Therefore, the offline profiling strategy offers a promising
alternative that can not only achieve similar performance
gains without impacting the production environment but also
profile with a high profiling frequency.

Future work could explore the use of prediction techniques
to forecast the future query set and improve profile-guided
optimization, potentially leading to better adaptation to the
production environment.

VI. RELATED WORK

In recent years, optimizing the performance of relational
databases has become a critical research topic in the field
of database management. As data complexity and the need
for faster query processing continue to grow, it has become
essential to improve the performance of relational databases.
In this section, we present a summary of previous work

on relational database optimization, focusing on both tuning
and index optimization. These methods, including the PGO
optimization method employed in this article, are specifically
designed to improve query performance.

Tuning techniques are methods that aim to enhance the
throughput or decrease the latency of a particular workload
by adjusting a set of configurable parameters known as tun-
ing knobs. Database configuration tuning can be performed
through hard-coded rules or heuristics, which can be recom-
mended by database vendors or provided by dedicated tuning
tools. These tools aim to determine the optimal allocation
of resources [17] [18] or identify bottlenecks caused by
misconfigurations [19]. For instance, BestConfig [20] adopts
several heuristics to find a suitable configuration.

Another important development is the use of indexing
techniques. Indexing is a way of organizing data in a
database to improve query performance. By creating indexes
on specific columns, the database can quickly locate the data
that matches the query criteria. Choenni et al. created a set of
candidate columns that includes all possible single columns
to gain pure benefit [21]. During each iteration, one candidate
is dropped, and the cost of processing the workload is
evaluated until a specific index number is reached. To obtain
per storage benefit, Valentin implemented a DB2 advisor.
The proposed method utilizes the optimizer and hypothetical
indexes to generate the set of candidate indexes. This set
is sorted in decreasing order of benefit-per-space, and a
greedy selection process is applied until the storage budget
is reached. Further, random substitutions of the selected
indexes are performed to identify lower costs due to index
interactions. The approach aims to improve the performance
of relational databases by efficiently using indexes while
staying within the given storage budget [22].

Machine learning has emerged as the predominant ap-
proach for query optimization in recent years. It also repre-
sents a future direction for our work, as we plan to explore
the potential of applying machine learning techniques to
predict SQL queries and subsequently execute these queries
to gather predictive profile data for conducting PGO in
relational databases. Ding et al. proposed a novel approach to
optimizing index recommendation using a machine learning
model for cost comparison of two execution plans. To
vectorize the plans, they utilized a few feature channels that
measured the amount of work and encoded the structure. The
machine learning model was trained to take the difference
between two plans as input and output, which plan had a
lower cost. This approach allowed for more efficient index
recommendation by reducing the need for costly evaluation
of all possible indexes. The effectiveness of the method was
demonstrated through experiments conducted on real-world
datasets [23].

REFERENCES

[1] N. N. Annisa, D. I. Sensuse, and H. Noprisson, “A systematic literature
review of enterprise information systems implementation,” in 2017
International Conference on Information Technology Systems and
Innovation (ICITSI). IEEE, 2017, pp. 291–296.

971

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 28,2024 at 02:19:54 UTC from IEEE Xplore. Restrictions apply.

[2] Q. Ren, K. H. Kang, and I. T. Paulsen, “Transportdb: a relational
database of cellular membrane transport systems,” Nucleic acids
research, vol. 32, no. suppl 1, pp. D284–D288, 2004.

[3] D. Chen, T. Moseley, and D. X. Li, “Autofdo: Automatic feedback-
directed optimization for warehouse-scale applications,” in 2016
IEEE/ACM International Symposium on Code Generation and Op-
timization (CGO). IEEE, 2016, pp. 12–23.

[4] G. Ottoni and B. Maher, “Optimizing function placement for large-
scale data-center applications,” in 2017 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO). IEEE, 2017,
pp. 233–244.

[5] B. Schwarz, S. Debray, G. Andrews, and M. Legendre, “Plto: A link-
time optimizer for the intel ia-32 architecture,” in Proc. 2001 Workshop
on Binary Translation (WBT-2001), 2001.

[6] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: a practical
binary optimizer for data centers and beyond,” in 2019 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO).
IEEE, 2019, pp. 2–14.

[7] R. Lavaee, J. Criswell, and C. Ding, “Codestitcher: inter-procedural
basic block layout optimization,” in Proceedings of the 28th Interna-
tional Conference on Compiler Construction, 2019, pp. 65–75.

[8] M. Annavaram, J. M. Patel, and E. S. Davidson, “Call graph prefetch-
ing for database applications,” ACM Transactions on Computer Sys-
tems (TOCS), vol. 21, no. 4, pp. 412–444, 2003.

[9] “perf: Linux profiling with performance counters,”
https://perf.wiki.kernel.org/.

[10] K. Pettis and R. C. Hansen, “Profile guided code positioning,” in
Proceedings of the ACM SIGPLAN 1990 conference on Programming
language design and implementation, 1990, pp. 16–27.

[11] W. Chen and Y.-C. Chung, “Profile-guided optimization for function
reordering: A reinforcement learning approach,” in 2022 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC). IEEE,
2022, pp. 2326–2333.

[12] “MySQL,” https://www.mysql.com/.
[13] L. Project, “The llvm compiler infrastructure,” http://llvm.org/.
[14] S. Bag, S. K. Kumar, and M. K. Tiwari, “An efficient recommendation

generation using relevant jaccard similarity,” Information Sciences,
vol. 483, pp. 53–64, 2019.

[15] A. Kopytov, “Sysbench: Cross-platform benchmarking tool,”
https://github.com/akopytov/sysbench.

[16] “GCC, the GNU Compiler Collection.” [Online]. Available:
https://gcc.gnu.org/

[17] K. Kukich, “Techniques for automatically correcting words in text,”
Acm Computing Surveys (CSUR), vol. 24, no. 4, pp. 377–439, 1992.

[18] D. Narayanan, E. Thereska, and A. Ailamaki, “Continuous resource
monitoring for self-predicting dbms,” in 13th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems. IEEE, 2005, pp. 239–248.

[19] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani, and G. Wood,
“Automatic performance diagnosis and tuning in oracle.” in CIDR,
2005, pp. 84–94.

[20] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and
Y. Yang, “Bestconfig: tapping the performance potential of systems
via automatic configuration tuning,” in Proceedings of the 2017
Symposium on Cloud Computing, 2017, pp. 338–350.

[21] S. Choenni, H. Blanken, and T. Chang, “Index selection in relational
databases,” in Proceedings of ICCI’93: 5th International Conference
on Computing and Information. IEEE, 1993, pp. 491–496.

[22] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and A. Skelley, “Db2
advisor: An optimizer smart enough to recommend its own indexes,”
in Proceedings of 16th International Conference on Data Engineering
(Cat. No. 00CB37073). IEEE, 2000, pp. 101–110.

[23] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. R.
Narasayya, “Ai meets ai: Leveraging query executions to improve
index recommendations,” in Proceedings of the 2019 International
Conference on Management of Data, 2019, pp. 1241–1258.

972

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 28,2024 at 02:19:54 UTC from IEEE Xplore. Restrictions apply.

