
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Root Cause Analysis for Distributed Systems
Aoyang Fang

Abstract—Root Cause Analysis (RCA) is a crucial aspect
of incident management in large-scale cloud services. While
numerous studies have been proposed, existing surveys typically
focus on specific methods and datasets without considering the
difference in RCA task formulations across various works. Since
the scenarios and constraints vary, the input-output format of
these works is not unified, hindering the progress of this field.
Our insight is that while the task formulation of each work may
be unique, the final goal of their work is similar. To this end,
we propose a goal-driven framework that effectively categorizes
and integrates existing work based on their diverse “goals” of
RCA, e.g., identifying the current failure type, localizing the
ultimate root cause, etc. We also discuss open challenges and
future directions in RCA. To our knowledge, this is the first
survey that systematically defines the RCA task by summarizing
current research. We aim for this survey to establish a standard
framework for RCA that will benefit both academia and industry,
ensuring compatibility with existing work and setting guidelines
for future developments.

I. INTRODUCTION

Microservices have emerged as the favored architectural
style for cloud-native development in the era of cloud comput-
ing. Adopting a microservice architecture aims to break down
large, monolithic software applications into numerous smaller,
more manageable components. This division facilitates parallel
development across various software segments and enhances
overall agility and efficiency. However, unlike monolithic
applications, where components are tightly integrated and
easier to trace, microservices operate as separate entities
that interact through well-defined interfaces. This increases
the complexity of the interactions between services, making
it significantly more challenging to pinpoint the origin of
issues when things go wrong. Root Cause Analysis (RCA)
has emerged as a critical phase in identifying the underlying
reasons for system failures. Traditional approaches to RCA,
however, require substantial human effort to sift through
vast quantities of telemetry data, code, and other resources.
This task demands that operators possess extensive domain
knowledge, a comprehensive understanding of the operational
environment, familiarity with the codebase, and even insights
into the Linux kernel.

In recent years, various techniques have been proposed to
automate the localization of root causes for anomalies [1],
[2], [3], [4], [5], [6], [7], [8], [9]. However, most of these
studies have different formulations of the RCA task due to
the various scenarios. For example, to identify the failure
type and component, Déjàvu [6] localizes the failure unit and
corresponding abnormal metric based on the observation of
metrics and deployment architecture. In contrast, Onion [8]
identifies incident-indicating logs by comparing normal and
abnormal logs. In another instance, MicroRank[9] focuses
on localizing the root cause service using trace data, and

MULAN [2], Eadro [1] and TrinityRCL[7] utilize multi-modal
data to pinpoint the root cause. Some works [1], [9], [2]
produce service-level root causes, whereas others identify
more fine-grained root causes, such as resource type [7], [10]
or code region [7]. The fragmentation of current research
efforts can be attributed to the varying targets of different
teams involved in the software development process [11],
particularly during incident management.

1) The SRE (Site Reliability Engineering) team focuses on
detecting service anomalies and quickly taking action to
mitigate the impact of failures, reduce financial losses,
and identify the root cause(service) of the issue. Once
the root cause is determined, they notify the relevant
developer team to resolve it.

2) In contrast, the developer teams are not only concerned
with identifying the problematic service but also with
pinpointing the specific component within the service
that is causing the issue. This involves narrowing down
the potential sources, such as middleware, databases,
configurations, or code logic.

These ad-hoc formulations in RCA often lead to inconsis-
tencies, as various teams may define the ‘root cause’ differ-
ently, interpreting it as distinct elements within the system.
Specifically, the root cause varies, it can be any component
within the system’s hierarchical structure, or the specific
component within the service that is causing the issue (from
which service, which attribute, to which lines of code).

RCA aims to streamline failure diagnosis and mitigation.
However, the varying objectives of different teams have led
to ad-hoc solutions that achieve localized rather than holistic
optimizations. To understand why current research struggles to
align with a unified goal for RCA (with unified input type and
unified output type), we identified three key gaps by adhering
to one guiding principle: RCA seeks to minimize the vast
search space of an incident—both in identifying what caused
the incident and understanding how it occurred.

Gap1: Observation Blind Spots. More granular data is
essential for fine-grained root cause identification; however,
real-world limitations, such as storage and computation con-
straints, often lead to data sampling, creating observation blind
spots. [12]. The incompleteness of monitoring infrastructure
can lead to missing telemetry data, resulting in metric-only
based RCA methods [6], [13], [14], [15], trace-only based
RCA [9], and log-only based RCA [8]. Because of this, the
task formulations of previous papers are often ad-hoc, without
considering the generalizability, thus making the RCA task not
unified.

Gap2: Effectiveness/Performance Concern. Due to varied
task formulations, different modeling approaches, even with
identical telemetry data, produce inconsistent performance.
This phenomenon is often influenced by how well the model-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

ing methods incorporate domain-specific understanding, which
decides the granularity and interpretability of output. For
instance, Eadro [1] utilizes multi-modal data to enhance RCA
precision, achieving over 90% accuracy in localizing service-
level root causes, while Nezha [10] can localize more fine-
grained root causes at the code region and telemetry resource
type levels. The misalignment in modeling approaches—where
inputs and outputs do not consistently align—further con-
tributes to the fragmentation of the RCA task, preventing it
from being addressed as a unified problem.

Gap3: Algorithm Efficiency, Scalability, and Robust-
ness The efficiency and scalability of models are crucial,
especially when handling large observational datasets in real-
world contexts. Effective RCA applications require algorithms
that can scale with data growth while remaining robust to
ensure reliable outcomes, even with missing or incomplete
data. Current practices are often scenario-specific, limiting the
generalizability and the applicability of RCA models across
diverse contexts.

Previous surveys in the field, such as the one by Soldani
et al. [16] and Zhang et al. [17], have not approached root
cause analysis (RCA) from this particular perspective. Rather,
they tend to focus on categorizing the various models and
algorithms applied under different input conditions. While
useful, this method does not align with the inherently multi-
objective nature of RCA, which may limit a comprehensive un-
derstanding of the field’s overarching goals and future research
directions. In contrast, our survey adopts a more goal-oriented
framework for RCA. Specifically, we break down a primary
objective—accelerating failure diagnosis and mitigation—into
a series of more granular sub-goals: ensuring RCA results
are accurate, fine-grained, and interpretable. These sub-goals
are further linked to specific challenges in the field, and we
examine how recent works have addressed these challenges.
By organizing the discussion around specific objectives, we
aim to provide readers with a clearer and more holistic
understanding of the current state of RCA research and its
future possibilities. This approach helps readers quickly grasp
what the field is currently achieving and highlights what can
be pursued in the future. To this end, this work makes the
following contributions:

• Uncovering problem nature and challenges. We identify
that the primary reason for the ad-hoc nature of these
approaches lies in the inherent coupling between methods
and task modeling. This coupling fundamentally stems
from the fact that these papers are primarily focused
on solving specific problems rather than defining the
research topic from a broader perspective. We also outline
the fundamental challenges in RCA research.

• Categorization and formulation. We categorize existing
approaches based on their objectives and formulate the
problem in a structured manner.

• Comprehensive literature review of RCA. We provide an
exhaustive review of the literature on RCA, highlighting
key advancements and gaps.

• Summary of public datasets and open-source tools for
Root Cause Analysis. We provide a navigation for re-
searchers and practitioners interested in the field.

• Future Opportunities. We identify potential future direc-
tions and opportunities for further research in the field.

The structure of the paper is illustrated in Fig. 1, and the
detailed survey methodology is presented in Section IV.

II. BACKGROUND

A. MICROSERVICE

The microservice architecture divides a single application
into a collection of small, lightweight services, each running in
its process and communicating via lightweight methods, often
using an HTTP API. It emphasizes agile, DevOps practices,
decentralized data management, and governance [18].

Microservice architecture is supported by a series of infras-
tructure systems and techniques that work together seamlessly.
It begins with microservice development frameworks like
Spring Boot [19] and Dubbo [20], which facilitate the creation
of microservices by providing essential functionalities such as
REST clients, database integration, externalized configuration,
and caching. Once developed, these microservices are de-
ployed using containerization tools like Docker [21], which en-
hance portability, flexibility, efficiency, and speed. To manage
these containers effectively, runtime infrastructure frameworks
such as Spring Cloud [22], Mesos [23], Kubernetes [24], and
Docker Swarm [21] are employed, offering capabilities like
configuration management, service discovery, service registry,
and load balancing. Finally, to ensure efficient and reliable de-
velopment and deployment processes, continuous integration
and delivery tools like Jenkins [25] and GitLab CI/CD [26]
are used to support ongoing integration and delivery efforts.

Microservice architecture offers several notable benefits,
making it a popular choice for modern application develop-
ment. By allowing each service to be updated independently,
it ensures that changes or failures in one service do not impact
the entire application. Additionally, it supports independent
scaling, which enhances system flexibility and optimizes re-
source utilization. This architecture also facilitates parallel
development, enabling multiple teams to work on different ser-
vices simultaneously, thereby accelerating development speed
[27].

However, as systems transition from monolithic to microser-
vice architectures, complexity shifts from internal code to
interactions between services. Modern applications, typically
involving hundreds of interconnected services, significantly
complicate monitoring efforts. Distinguishing between individ-
ual service failures and cascading effects from other service
failures becomes challenging. Additionally, many microser-
vice failures originate from external environments, like their
runtime environments, communication, or coordination issues.
These factors often obscure the root causes of failures, further
complicating the detection and diagnosis of issues.

Various solutions have been proposed to automate the detec-
tion of failures and determine their root causes [28], [8], [10].
However, current definitions of Root Cause Analysis (RCA)
are often case-specific, leading to significant differences in
inputs and outputs across different works. Additionally, the
outputs of these RCA methods are usually coarse-grained, such
as service or resource level. This makes them non-actionable

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

CostsEffective RCA

Observational Data

EO

EO

Root Cause Analysis

Introduction to
Root Cause

Analysis(Section 3)

Goal of Root Causes
Analysis

Definition of Root Cause

Definition of Root Cause
Analysis

Constraint of Root Cause
Analysis

Background
(Section 2)

Microservice

Incident Management

Organization of
related works

(Section 5&6&7)

Input oriented RCA
(observation)

Efficiency oriented
RCA(inference)

Output oriented RCA
(result)

Blind sopts in monitoring data

Complexity of data

Accuracy of the anomaly Detection

Diversity of ground truth

Analysis and
disscussion

(Section 8&9)

Research trends

Research Distributions

Research opportunities

Inference time

Cost effective(Robustness)

Scalability

Incremental training

Human in the loop

Granularity of results

Interpretability of results

SRE Team

QA Team

Dev Team

1. What type of failure is this?
2. What is the impact of this failure?
3. What action should I take to mitigate the issue?
4. Which team should I report this issue to?

1. Is this a logical error, performance issue, or an external dependency failure?
2. Where should I start investigating this issue?
3. What are the possible root causes of this failure?
4. Do I need to collaborate with other teams to resolve this issue?

vague

specific

Host

Virtual Machine

Container

Bare Metal

Hardware Virtualization

OS-Level Virtualization

Kubernetes

Host

Virtual Machine

Container

Container Orchestration Layer

Pods Pods Pods Pods

1:n1:n

1:n 1:n

managed by

provide

Code

Configuration

Pods

provide runtime resource

Svc

Mq

DB

request response

Pod/VM/Third Party

Fig. 1. Structure of the paper

and less valuable for practical industrial applications. Further-
more, many papers treat Anomaly Detection (AD) and Root
Cause Analysis (RCA) separately [29]. This separation hinders
application operators who aim to create a unified pipeline
for anomaly detection and root cause identification in multi-
service applications. To address these challenges, we propose a
general definition and pipeline for microservices RCA, which
integrates both AD and RCA tasks, overcoming the lack of
comparability, and non-actionability of previous methods, thus
making them more applicable to industrial scenarios.

B. INCIDENT MANAGEMENT

As illustrated in Fig.2, incident management primarily
consists of three phases: preparation, emergency response,
and review. Drawing on Google’s incident management prac-
tices [30], we further break down the process into six stages:
incident prevention, detection, localization, mitigation, reso-
lution, and improvement. Incident prevention involves tech-
niques like software testing, canary releases, and disaster re-
covery simulations to closely mimic real-world conditions and
prepare for potential issues. Once the product is deployed, it
enters the incident detection stage, where monitoring systems,
anomaly detection, and customer reports are used to identify
any abnormalities in runtime services. If an issue arises, the
process moves to the incident localization phase. Here, SREs

work to quickly determine which service is the root cause
and further pinpoint the specific underlying issues. To halt
the failure’s propagation, the next step is incident mitigation,
where common actions might include downgrading the service
or rolling back to a previous code version, depending on the
identified root cause. Following mitigation, the focus shifts to
incident resolution. During this phase, SREs and developers
collaborate to resolve the incident fully. Once the system is
fully restored, the final phase is a postmortem review, which
involves analyzing the incident to extract lessons learned and
implementing measures to prevent future occurrences.

Building on the abovementioned incident management pro-
cess, we can see that Root Cause Analysis (RCA) is critical
during the incident localization and resolution stages. RCA is
essential for accurately diagnosing the underlying issues that
trigger incidents, enabling effective mitigation, and ensuring a
thorough resolution. The ultimate goal of incident management
is to reduce the Mean Time to Repair (MTTR) and extend the
Mean Time Between Failures (MTBF). To achieve this, RCA
must identify how to mitigate and resolve incidents quickly.
Therefore, RCA itself needs to be swift, with a low rate of
false positives and false negatives (avoiding misdirection of
SREs and ensuring no root causes are overlooked), and it
must be interpretable (so that SREs can rapidly understand the
incident and decide on the appropriate actions for mitigation

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

表格 1
 MTTR: Mean Time to Repair
 • MTBF: Mean Time Between Failures
 • MTTD: Mean Time to Detec t
 • MTTI: Mean Time to Ident ify
 • MTTR: Mean Time to Resol ve (also mentioned previously as Mean Time to Repair)
 • MTTA: Mean Time to Ackno wledge
 • MTBF: Mean Time Between Failures (mentioned previously)

Mean Time to Repair (MTTR): The average time required to repair a system or component and return it to normal operation.
• Mean Time Between Failures (MTBF): The predicted elapsed time between inherent failures of a system during operation.
• Mean Time to Detect (MTTD): The average time it takes to detect a failure or defect.
• Mean Time to Identify (MTTI): The average time taken to identify the root cause of a failure.
• Mean Time to Acknowledge (MTTA): The average time taken to acknowledge that an incident has occurred.
• Mean Time to Resolve (MTTR): Similar to Mean Time to Repair, focusing on the total time taken to completely resolve a failure.

Incident
Recovery

Incident
Resolution

Incident
Preparation

Incident
Detection

Incident
Mitigation

Software Testing

Capacity stress
testing

Disaster Recovery

Grayscale Release

Fault Injection

Monitoring
Alerts

Anomaly
Detection

Situational

Log
Analysis

Tracing
Analysis

Metric
Analysis

Root Cause
Analysis

Disaster
Recovery

Service
Throttling

Drill Emergency Response Review

Incident
Localization

Service
Downgrade

Abnormal
Melt-off

Version
Rollback

Code
Repair

Configuration
Repair

Architecture
Redesign

Postmortem

Modification

Mean Time Between Failures Mean Time Between FailuresMean Time to Repair

Incident
Prevention

Incident
Detection

Incident
Localization

Incident
Mitigation

Grayscale Release Trace Analysis Abnormal Melt-off

Fault Injection

Customer Report

Automated RCA Version Rollback

Incident
Resolution

Incident
Improvement

Software Testing Monitoring Alerts Log Analysis Disaster Recovery Code Repair Architecture Redesign

Disaster Recovery Drill Anormaly Detection Metric Analysis Service Downgrade Configuration Repair Postmortem Analysis

Preparation Emergency Response Review

Mean Time Between Failures Mean Time to Repair Mean Time Between Failures

Fig. 2. Incident Management Loop

and resolution).
However, previous research, studies, and surveys have not

fully defined Root Cause Analysis from this perspective. For
example, a recent survey by Soldani et al. [16] mentions that
RCA involves identifying the reasons behind an application
or service-level anomaly, to explain the corresponding failure.
This definition, however, does not clarify the inputs and
outputs of RCA, nor does it explore its relationship with
downstream tasks like mitigation. Some papers attempt to
define RCA but are often limited to specific contexts. For
instance, ChangeRCA [5] formalizes identifying root cause
changes using a parameterized model, stating that the goal of
RCA is to identify the Root Cause Change. They introduce a
new task, Root Cause Change Analysis (RCCA), but focus ex-
clusively on code changes, overlooking other types of changes.
Similarly, Zhang et al. [17] treat RCA as a ranking problem,
where the root cause service or instance is ranked higher than
others, or the root cause component is prioritized over other
components. However, this approach does not consider the
primary objective of RCA in terms of rapid incident mitigation
and resolution.

III. PRELIMINARIES

A. TERMINOLOGIES

a) Goal of RCA: The primary objective of Root Cause
Analysis (RCA) in microservices is to enable Site Reliability
Engineers (SREs) to swiftly and efficiently identify both the
“what” and the “how” behind a given anomaly. This involves
determining what specifically caused the current situation
and understanding the mechanisms that led to the anomaly.
Additionally, RCA aims to provide actionable insights on how
to resolve the issue. The results of the analysis should be
easily verifiable, ensuring that the conclusions drawn and the
recommendations provided can be confirmed and validated
with confidence.

b) Telemetry Data: Telemetry data is inherently het-
erogeneous, multi-source, and multi-dimensional, capturing
diverse aspects of system behavior, including logs, metrics,

traces, events, alerts, and profiling information. Despite all
describing the same runtime system, each type of telemetry
data focuses on different components, offering a fragmented
but complementary view of the system’s operation. Due to
the distributed and complex nature of microservices, telemetry
data can sometimes be inaccurate or incomplete, making it
difficult to obtain a fully reliable depiction of the system state
at all times. Moreover, failure-related data is typically sparse,
complicating efforts to detect and diagnose issues. The vol-
ume of telemetry data generated is often exceptionally large,
particularly in large-scale systems, which poses significant
challenges for real-time processing and analysis. Additionally,
telemetry data is highly dynamic, continuously evolving as
the system operates, and reflecting rapid changes in system
behavior. These characteristics highlight the complexity of
telemetry data, necessitating sophisticated techniques for ef-
fective monitoring and analysis.

c) Incident: An incident encompasses four stages: De-
tection, Triaging, Diagnosis, and Mitigation [4], [31], [32].
It refers to an overall description of a service’s performance
when the service quality does not meet expectations.

d) Event: An event describes a change in a resource or
object. It includes a timestamp, a context (location), an action,
and an entity, indicating what happened, where, when, and
who.

e) Root cause: Similar to telemetry data, root cause is
also complex. The complexity of root cause comes from the
fact that it is a relative and abstract concept, and in different
contexts, it can have different meanings. For example, in the
context of a cloud incident, the Site Reliability Engineering
(SRE) team might prioritize identifying which service acted
as the root cause of cascading failures that impacted other
dependent services. Their focus is typically on diagnosing
system-level interactions and understanding which service
failure propagated anomalies throughout the infrastructure.
However, from a developer’s perspective, the root cause could
be more granular. Developers are often more interested in
pinpointing the specific component, such as a misconfigured
library or faulty code segment, that triggered the service’s

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

failure. Thus, while the SRE team seeks to understand which
service disrupted overall operations, the development team
focuses on identifying the internal component responsible for
the service disruption.

f) Root Cause, Trigger, and Result: A root cause and
a trigger are specific types of events. An event can serve
as both a root cause and a trigger, although they pertain to
different aspects. For instance, Example III-A0f illustrates a
configuration change as the root cause and an unusually high
volume of requests as the trigger, leading to an Out of Memory
(OOM) result. The key difference between a root cause and a
trigger is that there can be a significant time gap between the
root cause and the resulting incident, whereas the trigger and
the result typically occur in closer succession.

Illustration of Root cause and Trigger [33]

Incident name: Out of Memory (OOM)
Root cause: A config file change that introduces a
memory leak
Trigger: A surprisingly high volume of requests
Incident: OOM

g) Incident Propagation Graph.: An Incident Propaga-
tion Graph is a composite of single or multiple failures,
illustrating the relationships between events. It indicates which
events are root causes and which are triggers, thereby mapping
the complex interactions and dependencies between events
during an incident.

RootCause
trigger(optional)−−−−−−−−−→ Result (1)

The basic unit of the Incident Propagation Graph is called
the incident propagation chain, as illustrated in Equation 1. We
use chemical reaction equations to illustrate the chain, which
contains a root cause, a trigger, and a result. For example,
a configuration change (root cause), combined with a high
volume of requests (trigger), causes another observed result:
OOM III-A0f. The trigger is optional since, in some cases,
the root cause and trigger are the same. For example, a wrong
deployment command can lead to the server being down;
in this case, the deployment operation can be described as
the root cause, resulting in the server being down. The Inci-
dent Propagation Graph combines many incident propagation
chains that collectively describe the changing system.

B. DEFINITION OF RCA

The standard Root Cause Analysis (RCA) process, as shown
in Fig. 3, comprises three key parts: Observation, Inference,
and Result.

a) Observation: The Observation part entails collecting
and telemetry data from various sources. In this service
runtime model, the inputs to RCA include a dependency
graph of monitoring units, where each unit represents an
individual service along with its static code, configurations,
and runtime resources. Once deployed with global configu-
rations, these services produce telemetry data, which consists
of logs, traces, metrics, and events. In addition to real-time

data, historical telemetry data, and incident tickets are often
employed to compare with current observations, such as iden-
tifying failure patterns based on past behavior [6]. This data is
crucial for understanding service behavior across different sce-
narios. It is important to note that capturing a complete obser-
vation is nearly impossible due to several constraints. Factors
such as storage limitations, data loss during transmission, and
bugs in monitoring tools all impact the comprehensiveness of
telemetry data. Furthermore, observations are highly dynamic.
Changes in the code, configuration, or deployment architecture
can significantly alter the observed telemetry data, rendering
previously identified patterns obsolete, and finding the root
cause change is also studied [5], [34].

b) Inference: The Inference part involves analyzing the
collected data to pinpoint potential root causes of incidents.
Various RCA techniques, including machine learning, deep
learning, and heuristic methods, are applied to process teleme-
try data, software changes, and operational data. The perfor-
mance of these methods is typically measured using metrics
such as recall, precision, F1 score, and their variations. The
objective is to localize root causes at different levels of
granularity and interpretability, providing actionable insights
into the underlying issues. As mentioned earlier, the highly dy-
namic nature of the input data presents a significant challenge.
To maintain effective performance, RCA algorithms must be
robust enough to handle changes in data patterns and mitigate
the effects of data loss, while adapting to the evolving system
environment.

c) Result: The Result part ideally produces an incident
propagation graph that visualizes the relationships between
root causes, triggers, and outcomes across one or multiple
failures. This graph highlights multiple potential root causes
and associated triggers, offering a comprehensive view of
how incidents propagate through the system. For example, a
configuration change (root cause) may not immediately cause
an incident, but when combined with an increase in the number
of requests (trigger), it could result in an out-of-memory
(OOM) condition (outcome) III-A0f. The OOM condition,
in turn, may lead to additional problems, such as a rise in
error rates or the introduction of new issues following the
deployment of features, creating a complex chain of causality.

The incident propagation graph identifies the ultimate root
causes and their triggers and provides a clear, interpretable
visualization for both operators and developers. Operators
can address triggers quickly to mitigate immediate incidents,
while developers can focus on resolving the underlying root
causes. Additionally, the graph structure supports root cause
identification at various levels of granularity, from coarse to
fine, helping connect disparate root cause candidates into a
cohesive understanding of the incident.

C. RCA CONSTRAINT (CEO CONSTRAINT)

In the definition of RCA, we describe an ideal framework
that involves the comprehensive input, and expected result
format. However, this target is not easy to realize. This is
because in the context of RCA for microservices, a chain
constraint exists involving three critical aspects:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

OOMConfig
Change

New
Feature

#Requests↑

Error
 Rate ↑

Multiple
Request

Design
Fault

IO
outage …

Dependencies

Requests(input)

Response(output)

…

Service Runtime Model Incident Propagation Graph

Machine Learning Models

Deep Learning Models

Heuristic Methods

RCA Methods

F1 Score

PrecisionRecall

Eval Metrics

Graph
Coverage

Cost
Effective

…

Observation Inference Result

Code

Configuration

Runtime
Resource

Monitoring Unit

Operations Global Config

Monitoring Unit
(Service/Infrastructure)

environments

Monitoring Unit
(Service/Infrastructure)

…

2 Trovato and Tobin, et al.

is typically high (around 90%), major incidents continue to occur in companies that have implemented
well-designed AIops systems. Previous studies [TODO] claim their methods can localize the root
cause with precision rates as high as 90% to 99%. However, despite these high-precision claims,
several high-pro�le incidents have occurred in recent years, illustrating the gap between academic
�ndings and industry reality. For instance, Alibaba Cloud experienced two signi�cant outages,
each resulting in �nancial losses estimated at around 1 million CNY. The impact of these incidents
extended beyond direct �nancial loss, disrupting service for thousands of users and damaging the
company’s reputation. Similarly, DiDi faced three major disruptions, each causing considerable
operational delays and undermining customer trust. Bilibili also su�ered from a notable service
interruption, which not only a�ected its user base but also led to substantial recovery costs and
potential revenue losses during the downtime. These examples highlight the challenges faced
by companies even when equipped with advanced AIops tools, underscoring the necessity for
enhanced root cause analysis methodologies that are robust and adaptable to the complexities
of real-world environments. (2)The root causes identi�ed by academic methodologies often do not
align with those recognized in industry incidents. Speci�cally, previous studies suggest that incidents
can stem from a variety of sources including code errors, con�guration mistakes, or operational
errors. However, the majority of current research focuses predominantly on identifying root causes
at the service or metric level. This means these methodologies typically pinpoint a problematic
service or metric but do not delve deeper into more precise origins such as speci�c code blocks or
con�guration settings. Only a handful of studies claim the capability to identify root causes at the
code level. This gap means that operational teams in companies are still burdened with the task
of completing the detailed analysis necessary to pinpoint the exact issue. Consequently, despite
using advanced analytical tools, operators must engage in signi�cant manual e�orts to bridge the
last mile of root cause analysis, thereby maintaining a heavy workload and potentially delaying
resolution times.

To bridge this signi�cant gap between academic research and industry practice, and help re-
searchers have a comprehensive understanding of the current research works, this paper aims to
explore the following research questions to clarify and enhance the real-world applicability of Root
Cause Analysis (RCA) methodologies for diagnosing industry incidents:

• RQ1: What data are used in existing SOTA methods, and what are the respective characteristics
within the data?

• RQ2: What techniques are used in existing SOTA methods, and what kind of results does
each output?

• RQ3: Does this result meet the needs of the industry and why didn’t it meet the needs of the
industry?

• RQ4: What can we do to minimize the gap between academia and industry?
To the best of our knowledge, this is the �rst comprehensive study on the RCA gaps between

academia and industry, and the �rst one which formally de�nes the comprehensive Root Cause
Analysis task. This study highlights the existing gaps between academia and industry and identi�es
new avenues for research. We conducted a comprehensive survey of the current literature to
determine the nature and extent of these gaps (RQ1, RQ2, RQ3). Speci�cally, we focused on
Root Cause Analysis and Fault Localization, as both topics aim to identify the causes of bugs or
incidents. We manually labeled the collected literature to identify the characteristics of each paper,
including the root cause, dataset, and precision, as well as the types of data contained in each
dataset. Additionally, we reviewed literature and news on the topic of "incidents/bugs" to gather
information on common root causes in the industry. Our �ndings indicate that current research
processes do not adequately address the industry’s needs for identifying root causes(RQ4).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: June 2024.

RCA Paper PoolConference
Website

Datasets Unified Format

Root Cause
Paper Pool

1v1 interview

Models
Evaluation

Metrics

Input

Evaluate

Root
Causes

① ②

③

④

⑤⑥

Solutions

Telemetry
Data

1. Log
2. Trace
3. Metric
4. Event
5. …

Fig. 3. Overview of Root Cause Analysis

• Computational Costs (C): The resources required for
processing and storing observational data.

• Effective RCA (E): The accuracy and efficiency of iden-
tifying the root causes of issues, are described as the goal
of RCA in the terminologies.

• Observational Data (O): The quantity and qual-
ity(including the granularity, accuracy etc.) of telemetry
data available for analysis.

The RCA Chain Constraint posits that achieving Effective
RCA (E) requires sufficient Observational Data (O), which
increases Computational Costs (C). Thus, a trade-off exists
between these aspects: (1) Effective RCA (E) necessitates
more Observational Data (O); (2) More Observational Data
(O) results in higher Computational Costs (C). Balancing
these aspects involves making strategic trade-offs to achieve
an optimal solution. Consequently, current research focuses on
three main areas:

• Introducing new type(granularity) of observation data.
Since if there is more information that can be extracted
from the original observation, the model can output a
more fine-grained root cause, and a more confidential
explanation of the result, like how the error is propagated,
and causes the current issue.

• Making the RCA model better use the existing data, learn-
ing the complex relation between the data, and inferring
the root cause among the data and even beyond. Since
we cannot get all the detailed runtime information of the
microservice system, we must fully utilize the current
information to infer precise and explainable results, and
give feedback to the observation data collection.

• Improve the efficiency of the model, like improving the
inference speed, scalability, robustness, and interpretabil-
ity.

These three areas correspond to the gaps mentioned in the
introduction. To achieve the goals of RCA and overcome its
constraints, this paper categorizes current research into three
perspectives: input-oriented, efficiency-oriented, and output-
oriented RCA.

a) Input-oriented RCA: The input-oriented RCA per-
spective examines the types of inputs current methods uti-

lize, the associated challenges, and the solutions proposed to
address these challenges. This perspective allows systematic
examination and comparison of inputs and the corresponding
methods. For example, unsupervised methods are considered
input-oriented as they target large amounts of unlabeled data
in daily operations.

b) Efficiency-oriented RCA: The efficiency-oriented
RCA perspective focuses on the model’s efficiency, such
as inference speed (essential for quick incident response
by SREs), incremental training (reducing training overhead),
robustness(robust to data loss), and model generalizability
(adapting to changing observational data over time).

c) Output-oriented RCA: The output-oriented RCA per-
spective focuses on the outputs generated by different methods.
It categorizes and analyzes research based on output types,
challenges in generating these outputs, and approaches to over-
come them. This perspective helps understand the effectiveness
of RCA methods in achieving desired outcomes. For example,
methods that produce more interpretable and fine-grained data
are considered output-oriented as they focus on providing
detailed and explainable information for downstream tasks like
mitigation.

Note that papers can focus on multiple challenges, we
discuss them separately in each section.

IV. SURVEY METHODOLOGY
This section outlines the scope and the paper collection

process for our survey.

A. SURVEY SCOPE

Root cause analysis is a broad topic, applicable in a wide
range of scenarios where it is essential to determine the
causes behind a particular situation and how that situation
arises. Examples include questions such as “why an individual
may have a high income”[35], “why intermittent slow queries
occur in databases”[36], and “why failures happen in microser-
vices” [15], [2], [3].

In this survey, we focus specifically on research that inves-
tigates the identification of root causes and how these causes
contribute to observed behaviors in microservice systems,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

typically in the form of violations of expectations such as
Service Level Objectives (SLOs). These systems are often
characterized by complex environments with intricate service
interactions. We exclude papers centered on fault localization,
as this is a more specific task that involves identifying vulner-
able parts of the code.

B. PAPER COLLECTION

We collected RCA papers from various top conferences and
journals, including the ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD), the ACM SIGSOFT
Symposium on the Foundations of Software Engineering/Eu-
ropean Software Engineering Conference (FSE/ESEC), the
International Conference on Very Large Data Bases (VLDB),
the International World Wide Web Conference (WWW), the
International Conference on Software Engineering (ICSE), the
IEEE International Conference on Software Testing, Verifica-
tion and Validation (ISSTA), and the International Conference
on Automated Software Engineering (ASE), among others.

To identify relevant literature, we initially conducted a man-
ual search of the DBLP database, focusing on key conferences
and using specific keywords such as “Root Cause”, “Fault Lo-
calization,” “Micro-Service”, “Detection”, and “Localization”.
Recognizing the diverse nature of the RCA community, with
its publications scattered across various venues and employing
different terminologies, we aimed to ensure comprehensive
coverage of the field. To achieve this, we adopted a snow-
balling approach as recommended in [37]. This involved both
backward and forward snowballing techniques:

• Backward Snowballing: We reviewed the reference lists
of each collected paper to identify additional relevant
papers within our scope.

• Forward Snowballing: Using Google Scholar, we iden-
tified papers that cited our initially collected papers,
thereby expanding our pool of relevant literature.

This iterative process was repeated until we reached a
saturation point where no new relevant papers were identified.
To maintain a high standard of quality, we ceased searching
papers from non-top conferences and those with low citation
counts from further reference list searches.

Furthermore, we limited our search to publications from the
last ten years, as microservices have only gained significant
traction after Google opensource Kubernetes [24]. Through
this comprehensive search methodology, we identified and col-
lected 106 top papers directly related to Root Cause Analysis.

C. PAPER ANALYSIS

To ensure a thorough and rigorous analysis of the collected
papers, the first two authors undertook an extensive reading
and examination of the full text of each paper. This process
aimed to extract comprehensive information on several key
aspects of the research presented. Specifically, for each paper,
we identified the scenarios addressed by the research, the
inputs and outputs of the proposed methodologies, and the
evaluation methods used to assess the results. Additionally, we
documented the datasets utilized in the study, noted whether

the code and datasets were available as open-source, and
highlighted the specific challenges the research aimed to
tackle. Finally, we detailed the methods or models employed
in the research.

Through careful manual analysis, the first two authors
extracted and organized relevant information, identifying re-
curring patterns and themes across the papers. These themes
were then used to categorize and systematically organize the
papers, providing a coherent structure for the survey. This
thematic organization helps readers navigate the survey and
understand the key insights and findings derived from the
analyzed papers.

When the two primary authors had differing interpretations
or findings, they conducted discussion sessions with additional
co-authors. These discussions were instrumental in resolving
disagreements and ensuring a consensus on the extracted
data and the categorization of papers. The involvement of
co-authors, who possess extensive expertise in RCA and
microservices, helped maintain the accuracy and integrity of
the analysis.

All authors independently reviewed the content to ensure
the reliability and consistency of the survey’s findings. This
review process was designed to identify and correct any po-
tential errors, inconsistencies, or omissions. By employing this
rigorous multi-step analysis and review process, we ensured
the credibility and robustness of our survey.

V. CHALLENGES OF INPUT

In this section, we discuss the challenges associated with
input data for RCA. As illustrated in Sec. III-C, achieving
effective RCA requires sufficient observational data, which
increases computational/storage costs. Starting from the con-
straint, we divide the challenges of input into two main parts:
(1) The first part deals with the case that there are always
blind spots that we cannot observe due to various reasons
(Section V-A). (2) The second part focuses on how to model
the complexity of the input since the input data of RCA
can be heterogeneous, multi-source, and multi-dimensional
(Section V-B). They all describe the same runtime system,
but each focuses on different components. Unlike the first
part, this part discusses the challenges encountered when
most observational data are collected without considering the
computational/storage constraints.

Additionally, since Anomaly Detection (AD) is a precursor
to the RCA process, the quality of AD results is crucial for
ensuring accurate RCA. In Sec. V-C, we presented previous
works addressing AD inaccuracies.

A. REDUCING BLIND SPOTS THROUGH INFERRING UN-
OBSERVED DATA

The limitations in the input data arise from two main factors.
The first is the absence of topology information. Since failures
propagate across services, tracing error propagation typically
requires constructing a graph to infer dependencies. However,
in some cases, the service topology (or the associated tracing
data) is either unavailable or difficult to obtain. For instance,
there may be a lack of appropriate monitoring tools, leaving

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Category SubCategory Paper

Blind Spots
Causal Discovery

Constraint-based

PC-based [38], [39], [28], [40], [41], [42], [43]

Granger-based [44], [45], [46], [47], [48], [49], [50]

Other [51], [52], [53]

Learning-based [54], [2], [55], [56], [11], [57], [58]

Causal Inference [59]

Data Complexity

Intricate Service Dependencies [5], [57], [60], [61], [38], [62], [63], [64], [42], [65], [66], [47], [67]

Multidimensional Data Complexity [68], [13], [40], [2], [63], [69], [70], [71], [72], [67], [38], [46]

Data Path Ambiguity [73], [74], [75], [76]

Scarcity of Incident-Related Data [9], [77], [72]

Difficulty in Obtaining Labeled Data [78], [29], [55], [15], [59], [8], [10], [56]
TABLE I

CHALLENGES OF INPUT

only service metrics as available data. In such cases, inferring
or constructing possible relationships based on the observed
data (e.g., metrics) is necessary. The second factor is the
incomplete availability of telemetry data. For example, direct
telemetry data for a specific component under monitoring may
be missing, leaving only indirect observations, such as data
from third-party services. In such scenarios, causal inference
techniques are employed to infer the unobserved data.

1) Construct Graph by Causal Discovery: In microservice
architectures, dependencies between services can cause issues
to propagate along service chains, leading to unpredictable
degradation in Quality of Service (QoS). Therefore, iden-
tifying these dependencies is crucial for accurately diag-
nosing the root causes of microservice issues. By learning
the causal structures within microservice topologies, we can
capture these dependencies and infer how disruptions in one
microservice affect the entire system. [55]. Causal discovery
methods can be divided into constraint-based and learning-
based approaches. Constraint-based methods excel in smaller,
well-defined microservice systems with clean data, offering
high interpretability through statistical tests [51]. In contrast,
learning-based methods are better suited for large-scale, dy-
namic environments with complex, nonlinear dependencies,
handling noisy or incomplete data more effectively and scaling
to higher dimensions [56].

Statistical-based graph construction. Statistical-based
graph construction refers to a set of techniques that use sta-
tistical methods to infer causal relationships between different
components in a system. By analyzing data—most commonly
time series metrics—these methods construct causal graphs
that represent how variables influence one another. These
graphs help in diagnosing system failures by identifying
potential root causes through causal dependencies.

PC-based methods. The PC (Peter-Clark) [79] algo-
rithm is a widely used constraint-based method that con-
structs causal graphs step-by-step through a series of con-
ditional independence tests. It systematically removes edges
between conditionally independent variables, leaving only
the most likely causal connections. This method is par-
ticularly effective in high-dimensional data environments,
such as large-scale microservice systems with complex
operational metrics. Examples of PC-based methods in-

clude Microscope [38], CloudRanger [39], CauseInfer [28],
MicroCause [40], HRLHF [41], ServiceRank [42], and
CloudRCA [43]. MicroCause [40] improves the traditional
PC algorithm by addressing its limitations in handling time
series data. The PCTS (Path Condition Time Series) algorithm
enhances the PC algorithm by capturing the propagation delays
between different monitoring metrics, which the original PC
algorithm overlooks by assuming data is independent and
identically distributed (iid). Additionally, PCTS simplifies the
causal graph by representing each node as a monitoring metric,
rather than individual time points, making the graph more
manageable for root cause analysis.

Granger-based methods. Granger causality is primarily used
for time series data. It tests whether the past behavior of
one microservice helps predict another, allowing the iden-
tification of time-dependent causal relationships. For exam-
ple, DyCause [44] uses Granger causality testing to analyze
dependencies between microservices. It collects performance
metrics like request latency, and when an anomaly is detected,
it applies a sliding window to the time series data. In each
window, Granger causality testing checks if the historical data
of one service can improve the prediction of another service’s
future state. If so, it indicates a causal relationship between
the services, helping to build a dynamic causality map over
time. This method is beneficial when the system involves
microservices whose interactions evolve over time. Granger-
based techniques include DyCause [44], Sieve [45], Mi-
croCU [46], FRL-MFPG [47], LOUD [48], GrayScope [49],
and TS-InvarNet [50].

Other methods. Chain-of-Event [51] uses the Chain-of-
Event (CoE) model for causal discovery, automatically learn-
ing causal relationships between events from historical data. It
first generates a naive event-causal graph (NEG) that connects
all potentially related events. Then, the CoE model automat-
ically learns the causal link weights and event importance
scores, avoiding manual configuration and improving accuracy.
By tracing event chains, the model calculates root cause scores
for each event, identifying the most likely root cause. CauseR-
ank [52] introduces G-GES (Group-based Greedy Equivalent
Search), a causal discovery algorithm that is part of the
CauseRank method, designed to tackle performance diagnosis
challenges in Online Transaction Processing (OLTP) systems.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

G-GES groups related metrics and uses these groups as nodes
to build a simpler causal graph. By incorporating domain
knowledge, such as DBAs’ expertise and known system
dependencies, G-GES improves the accuracy of identifying
failure paths. It addresses three key challenges: 1) managing
large numbers of abnormal metrics, 2) modeling complex
failure propagation, and 3) ensuring efficient and accurate
fault localization. In IPCCC’16 [53], the initial causal graph
is built using the FP-Growth algorithm. The system mines his-
torical monitoring data to find associations between symptom
events, identifying potential causal rules. These frequent co-
occurrences form the initial causal graph, which is then used
for root cause analysis. At this stage, the graph is purely data-
driven, relying on patterns in historical data without requiring
prior knowledge.

Learning-based graph construction. Traditional methods
like the PC algorithm fail to handle cyclic dependencies
and unclear relationships common in enterprise networks
and microservices. Murphy [54] employed Markov Random
Field [80](MRF), a probabilistic model that allows cycles
and bidirectional dependencies in the graph. By learning
joint distributions from historical data and applying Gibbs
sampling for inference, the MRF model effectively captures
complex interactions, improving the accuracy of root cause
analysis in these environments. MULAN [2] uses the Vec-
tor Autoregression (VAR) model to capture dynamic causal
relationships between system entities from historical time-
series data. The VAR model is well-suited for handling multi-
modal data, like system logs and performance metrics, as it
can model the interactions between different data sources.
It also predicts future values based on past observations.
Causal Bayesian Networks (CBN) are graphical models that
represent causal relationships using Directed Acyclic Graphs
(DAGs), where nodes are variables and edges show causal
dependencies. CBN constructs causal graphs by analyzing data
or system structures, leveraging conditional independence to
simplify complex relationships. CBN-based techniques include
Sage [55], Sleuth [56] and ExplainIt [11]. The Topological
Causal Discovery (TCD) in REASON [57] uses hierarchical
graph neural networks to construct causal graphs between
system entities. It captures both within-level and cross-level
causal relationships, creating a comprehensive map of how
system components are interconnected causally. CORAL [58]
uses an Incremental Disentangled Causal Graph Learning
method for causal discovery. It separates causal relations into
“state-invariant” and “state-dependent” types. As new data
comes in, the causal graph is updated incrementally, adjusting
only the state-dependent relations while keeping the state-
invariant ones unchanged. This approach efficiently handles
real-time data, enabling quick updates to the causal graph for
root cause identification.

2) Infer Beyond Observation by Causal Inference: Previous
causal inference methods rely on good observability [15],
[59], [55], [54], [56], [14]. For example, CIRCA [15] uses
Regression-based Hypothesis Testing (RHT) to detect causal
relationships between metrics and identify faults. However,
its effectiveness is limited because it requires all relevant
variables to be observable, which is often not feasible in

complex microservice environments where data can be missing
or incomplete.

LatentScope [59] overcomes the limitations of previous
causal inference methods. In complex microservice environ-
ments, full visibility is often unfeasible due to missing or
incomplete data. To address this, LatentScope models root
cause candidates (RCCs) as latent variables and infers their
states through related observable metrics. It constructs a dual-
space graph that separates latent RCCs from observable met-
rics, allowing it to effectively manage heterogeneous and un-
observable RCCs. LatentScope also introduces the Regression-
based Latent-space Intervention Recognition (RLIR) algo-
rithm, which quickly infers and identifies root causes by ana-
lyzing the causal relationships between latent and observable
variables. While Sage [55] also mentions latent variables, it
primarily uses them to capture system randomness, such as
server performance fluctuations or network delays, and still
heavily depends on observable data for causal inference. This
reliance means that Sage’s effectiveness diminishes signifi-
cantly when data is incomplete or missing. In Sage, latent
variables are mainly used to explain performance fluctuations
rather than to solve the problem of unobserved root causes.
In contrast, LatentScope places latent variables at the core of
its causal inference process. By modeling unobservable RCCs
as latent variables and inferring them with observable data,
LatentScope directly addresses the challenges of missing or
unobservable data. Its dual-space graph and RLIR algorithm
further enhance its ability to connect and separate latent
RCCs from observable metrics, providing accurate root cause
analysis even with limited observability.

B. CHALLENGES DUE TO DATA COMPLEXITY
Even when sufficient observational data is available, sev-

eral challenges persist due to the complexity inherent in
the data. To begin with, tracing causal fault propagation is
particularly difficult because of the intricate cross-layer service
dependencies involved [5]. Moreover, the multi-dimensional
nature of the data, including the complex relationships between
system metrics and logs, further complicates the analysis
process [13], [68]. In addition, complex datasets often result
in the construction of graphs with ambiguous data paths,
where this ambiguity in call graphs can lead to inaccurate
root cause identification [73]. Furthermore, incident-related
data tends to be much scarcer than normal operational data,
especially within the same timeframe, making it difficult to
gather sufficient information for effective analysis. Finally,
even if adequate incident-related data is collected, ground
truth labels for root cause analysis are typically unavailable in
industry settings. Such information is usually only obtainable
post-incident after the SRE team has detected and resolved
the issue, and telemetry data has been stored for subsequent
post-mortem analysis.

1) Intricate Service Dependencies: In microservice archi-
tectures, intricate and dynamic dependencies between services
create significant challenges for anomaly detection, fault prop-
agation analysis, and root cause identification. These depen-
dencies are complex and multifaceted, shaped by several fac-
tors such as frequent updates, asynchronous interactions, and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

the lack of centralized control. Additionally, the complexity
is further exacerbated by diverse and evolving business logic
dependencies, heterogeneous communication protocols, and
the high degree of service autonomy. This makes it difficult
to maintain accurate, up-to-date models of the system, further
complicating efforts to ensure system reliability and timely
issue resolution. To address these challenges, researchers have
proposed various methods, which can be grouped into two
main categories based on how they tackle issues related to
intricate service dependencies.

Maintaining an accurate model of service dependencies.
Static dependency graphs quickly become outdated, hindering
effective monitoring and diagnosis. To overcome this, several
approaches focus on dynamically constructing or updating
service dependency models that reflect the current state of the
system in real-time. ServiceRank [42] constructs an Impact
Graph based on real-time monitoring data, dynamically deter-
mining causal relationships between services without relying
on a static system topology. This method adapts to the evolving
nature of microservices, capturing current service interactions
and enhancing the accuracy and efficiency of root cause
identification. FacGraph [66] captures the system’s changing
topology during both normal and abnormal states by using
correlation graph construction. Employing a PC-algorithm-
based correlation graph, FacGraph dynamically maps out
service dependencies as they evolve and utilizes Frequent
Subgraph Mining to identify recurring anomaly patterns. This
approach allows for pinpointing root causes without con-
stant centralized monitoring, reducing overhead and improving
efficiency. Microscope [38] automatically discovers service
dependencies by analyzing network-related system calls, such
as socket() and connect(). This method accurately
captures real-time dependencies without modifying source
code or relying on potentially error-prone statistical inference.
By directly monitoring system interactions, Microscope [38]
ensures precise dependency mapping, enhancing the effective-
ness of performance diagnostics. FRL-MFPG [47] proposes
the Microservice Fault Propagation Graph (MFPG-FC), which
combines current microservice dependencies with historical
fault data to create a propagation graph that accurately rep-
resents fault paths and their impacts. By integrating historical
patterns, FRL-MFPG [47] ensures accurate modeling of fault
propagation even as the environment evolves, improving the
stability and efficiency of fault diagnosis. ChangeRCA [5] in-
tegrates service dependency analysis with layered differential
analysis to track both the direct and indirect effects of service
changes. By comparing behaviors before and after changes and
incorporating historical data, ChangeRCA effectively identifies
root causes that might be missed by methods focusing solely
on individual service changes. This comprehensive approach
provides more accurate fault localization and insights into the
system’s underlying interactions.

Tracing anomaly propagation through service dependencies.
The service dependency is complex and indirect at some times,
including asynchronous interactions, caching, and queues.
Anomalies can spread via indirect paths, making propagation
unpredictable and difficult to model with traditional meth-
ods. To address this, several approaches focus on modeling

these complex interactions and anomaly propagation paths.
MicroRCA [64] employs attributed graphs to model anomaly
propagation paths, capturing both service call relationships and
shared host dependencies. This comprehensive view allows
MicroRCA to focus on critical nodes in the propagation path,
narrowing down the scope of root cause analysis and managing
complexity effectively. AutoMAP [63] utilizes an Anomaly
Behavior Graph to dynamically generate service correlations
and map out intricate propagation routes, including indirect
paths through shared resources. GAMMA [62] addresses bot-
tleneck detection challenges due to complex interactions by
employing an attention-based Graph Convolutional Network
(GCN). This method effectively captures dependencies arising
from asynchronous calls, caching, and queues. By weighting
information from neighboring services, the GCN focuses on
critical interactions, enabling accurate and efficient identifica-
tion of bottlenecks. TraceAnomaly [60] uses Deep Bayesian
Networks to learn normal trace patterns, handling complex
dependencies without supervision. By creating a unified trace
representation that encodes both invocation paths and response
times, TraceAnomaly [60] considers the entire trace context,
improving anomaly detection accuracy and effectively dealing
with intricate service call relationships. Wu et al. [61] propose
a two-stage approach based on a service dependency graph to
diagnose performance issues in highly distributed microservice
architectures with complex dependencies. The first stage iden-
tifies potentially problematic services, while the second stage
employs an autoencoder to detect specific anomalous metrics
related to service abnormalities. This approach captures rela-
tionships between services and precisely identifies abnormal
metrics through reconstruction errors, aiding in pinpointing
specific performance bottlenecks. REASON [57] introduces a
hierarchical Graph Neural Network (GNN) to capture both
intra-level and inter-level non-linear causal relationships in
interdependent networks spanning multiple levels. This en-
ables accurate modeling of fault propagation across different
layers of the system, enhancing the precision of root cause
analysis by effectively handling the complexities of multi-layer
dependencies. MonitorRank [65] combines a random walk
algorithm on the call graph with pseudo-anomaly clustering to
handle unreliable call graphs and dynamic dependencies. The
random walk explores possible root causes without assuming
static dependencies, offering flexibility in handling changing
system interactions. Pseudo-anomaly clustering identifies cor-
relations caused by external factors, supplementing missing
information in the call graph. This combination makes root
cause identification more precise and adaptive to the dynamic
nature of microservices.

2) Data Complexity: In microservice architectures, deal-
ing with the complexity of multidimensional data is another
significant challenge. These complexities arise from multidi-
mensional data and varying data modalities.

a) Multidimensional Data: Multidimensional data refers
to various system-level performance metrics, including CPU
usage, memory usage, network input/output, and disk read-
/write [69]. These metrics together represent the system’s
overall performance. Handling these data presents a significant
challenge in fault diagnosis due to the complexity of relation-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

ships between various metrics. Several approaches have been
proposed to address this challenge by leveraging dependency
modeling, dynamic adjustment, and automated learning.

Dependency Modeling and Adaptive Learning MS-
RANK [70] models relationships between multiple perfor-
mance metrics using a dependency graph. By dynamically
adjusting the weight of each metric through adaptive learning,
it captures evolving dependencies, leading to more accurate
diagnoses. FChain [69] learns the normal fluctuation patterns
of these metrics and identifies abnormal changes. FChain
then uses these changes, combined with the propagation paths
and inter-component dependencies, to accurately pinpoint the
faulty component. Similar to MS-RANK, it models dependen-
cies between multiple metrics, allowing it to handle complex
multidimensional data and improve fault localization without
relying on predefined dependency graphs. CMMD [13] takes
this further by using Graph Neural Networks (GNNs) to
automatically learn complex dependencies between metrics
and services from historical data. Unlike MS-RANK, CMMD
doesn’t rely on predefined dependency graphs. It also employs
genetic algorithms to efficiently identify anomalous metric
combinations, improving root cause detection.

Time Series and Causal Analysis MicroCU [46] uses a
time-sensitive approach, dividing the anomaly period into
intervals and applying Granger causality tests to capture
changing dependencies between services. It corrects sparse
data through causal unimodalization, reducing bias and im-
proving fault propagation accuracy. FluxRank [71] addresses
the challenge of handling diverse metrics in real-time. Using
a non-parametric approach, it combines absolute derivatives
and Kernel Density Estimation (KDE) to efficiently detect
significant changes, making failure localization more practical
without complex tuning.

Pattern Mining and Dimensionality Reduction TraceCon-
trast [68] focuses on analyzing microservice traces by treating
them as sequences with multiple attributes. It uses contrast
sequence pattern mining to detect rare, critical combinations
of attributes linked to anomalies and applies spectral analysis
to reduce dimensionality for efficient root cause detection. Mi-
croscope [38] reduces the complexity of multidimensional data
by capturing real-time service dependencies through system
calls. Processing fewer metrics and using statistical methods to
handle non-communication dependencies, it enhances causal
inference across diverse system data.

b) Heterogeneous Data: As systems became more com-
plex and data more varied, methods needed to adapt to the het-
erogeneity of data types and system components. Researchers
developed approaches to effectively integrate different data
modalities and address system heterogeneity.

Data Integration and Representation. This category focuses
on unifying different data types such as metrics, logs, and
traces into a common model. AutoMAP [63] addresses this by
integrating metrics like CPU, memory, and I/O into a unified
model through an anomaly behavior graph. It dynamically
builds relationships between services and uses weighted multi-
metric learning to select the most relevant metrics based
on historical data, improving diagnostic accuracy. Similarly,
DiagFusion [72] leverages event embedding techniques like

FastText to map logs, metrics, and trace data into a uni-
fied vector space. By using lightweight pre-processing and
representation learning, it effectively integrates diverse data
types, utilizing their complementary information to enhance
fault diagnosis. MULAN [2] further advances this approach
by using contrastive learning to extract both modality-invariant
and modality-specific features from heterogeneous data such
as system logs and performance metrics. It employs a KPI-
aware attention mechanism to fuse these features into a unified
causal graph, improving the accuracy of causal relationship
modeling. MicroCause [40] uses the PCTS algorithm to
integrate different types of monitoring data, such as KPIs
and metrics, into a unified causal graph. It fully leverages
the time delays and causal relationships between these data
types to build an accurate dependency graph. Additionally, the
TCORW (Temporal Cause Oriented Random Walk) algorithm
combines causal relationships, anomaly information (e.g., time
of occurrence and severity), and domain-based metric priori-
ties to rank and infer the root causes of failures.

Group-based analysis. This category organizes similar ele-
ments or data types into groups to avoid direct comparisons
across heterogeneous elements, thereby improving the preci-
sion of anomaly detection. WinG [67], for instance, groups
elements with similar call characteristics—such as virtual
machines, operating systems, and containers—to avoid direct
comparisons between these different types of elements. It then
evaluates anomaly scores within these groups, allowing for
more precise detection and root cause localization.

In addition to the traditional telemetry data(log, trace,
metric), Raccoon [34] takes the user-reported incident ticket
and the change history as the input, and wants to find which
change is the root cause of the incident. They design a
causal knowledge representation method at the user-perceived
functional level, leveraging fault tree and software product line
frameworks, while incorporating multiple knowledge sources
and employing a Tree GNN model for causal inference.
ChangeRCA [5] further uses the telemetry data and change
history to find the erroneous change.

3) Data Path Ambiguity: In microservice architectures,
accurately tracing the flow of data and control across numer-
ous interconnected services is challenging due to data path
ambiguity. This ambiguity arises from asynchronous commu-
nications, lack of global transaction identifiers, interleaved
logs from concurrent transactions, and redundant or irrelevant
components in service dependency graphs. These issues make
it difficult to construct precise models of service interactions,
hindering effective RCA. To address this, TraceDiag [75]
proposes a framework that employs reinforcement learning
(RL) to automatically learn optimal pruning strategies. By
learning from historical data, RL effectively identifies and
removes redundant components, enhancing RCA efficiency
and reducing manual intervention. This adaptive approach
balances the pruning process to prevent both over-pruning and
under-pruning, ensuring that essential components are retained
while irrelevant ones are discarded.

Another significant challenge is dealing with ambiguities
in call data within complex, interdependent microservices.
Even with a well-constructed, ambiguity-free call graph, in-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

correct traversal and interpretation can lead to inaccurate root
cause identification. To tackle this issue, CMDiagnostor [73]
integrates the AmSitor algorithm, which uses a regression-
based method to accurately determine associations between
upstream and downstream calls, particularly in ambiguous
situations. AmSitor models the relationship between upstream
and downstream traffic using linear regression, estimating
weights that represent the expected number of downstream
calls per upstream call. By filtering out connections with
low or negligible coefficients and iteratively applying regres-
sion across different time slices of call data, it retains only
those upstream-downstream pairs that consistently show strong
connections. This results in a clear and accurate call graph.
Building upon this, CMDiagnostor employs a series of pruning
strategies—such as AmSitor-based, Metric Similarity-based,
and Anomaly Detection-based Pruning—to effectively navi-
gate the call graph. These strategies filter out false positives
and focus on the most relevant paths, ensuring that the root
cause localization process remains precise and effective, even
in large-scale systems with complex interdependencies.

Moreover, instead of using a snapshot of the entire system
for incident detection, traditional methods often neglect the
importance of issue extraction. This approach can lead to
outdated analysis, high false alert rates, and difficulties in inte-
grating information from various sources. GIED[74] addresses
this by automatically extracting the issue impact topology
early in incident management, considering both symptoms and
affected services. By focusing on the specific parts of the
system impacted by an issue, GIED allows for more accurate
incident detection and efficient root cause localization. It
utilizes a Graph Neural Network (GNN)-based model and
the PageRank[81] algorithm to analyze the extracted topology,
improving detection accuracy and reducing false positives.

Finally, in scenarios without transaction IDs, extracting con-
trol flow graphs from multi-threaded logs presents a challenge
due to interleaved logs from different threads. This inter-
leaving makes it difficult to separate actual execution paths
from noise, leading to confusion where logs from different
transactions may appear falsely related. To overcome this,
Jia et al. [76] propose a two-stage edge mining algorithm.
The first stage identifies frequent successor groups—logs that
frequently occur close together in time—to uncover potential
true relationships. The second stage refines these groups to
find immediate successors, removing redundant and incorrect
links. This approach leverages statistical associations between
log entries, capturing real relationships within execution paths
and reducing confusion caused by interleaved logs. By broad-
ening the search for potential connections and then narrowing
it down to the most relevant ones, the method effectively
minimizes noise and reconstructs accurate control flow graphs.

4) Scarcity of Incident-related Data: The lack of high-
quality incident-related data can lead to several issues in both
supervised and unsupervised RCA methods. In unsupervised
approaches, noise in the data often poses a significant chal-
lenge, as normal patterns can be misinterpreted as anomalies
due to their variability, which reduces the precision of anomaly
detection. In supervised methods, an imbalance between nor-
mal and abnormal data leads to models favoring the more

common normal data, which results in missed anomalies or
false alarms. This imbalance can reduce the overall accuracy of
both anomaly detection and root cause localization, making it
difficult to effectively diagnose incidents in complex systems.

Sample scarcity is a challenge for root cause analysis
in cloud computing platforms, as there are often too few
failure events to train effective models. To address this,
CloudRCA [43] uses cross-platform transfer learning, sharing
data between Alibaba’s different cloud platforms (MaxCom-
pute, Realtime Compute, Hologres), especially for common
modules like hosts and networks. By pooling data from these
platforms, the method compensates for the lack of data on
individual platforms, improving the model’s ability to gener-
alise and accurately identify new failures. This approach is
especially helpful as cloud-native architectures become more
unified

One of the major challenges MicroCBR [77] faces is the
lack of incident-related data. In microservice environments,
data like logs, metrics, and traces can be incomplete due
to deployment configurations, security constraints, or perfor-
mance requirements. This missing data makes it difficult for
traditional diagnostic methods, which often rely on specific
homogeneous data types, to effectively identify faults. To
address this issue, MicroCBR [77] integrates heterogeneous
data sources, including metrics, logs, traces, and command
outputs. This approach improves data coverage by allowing
available sources to fill in for missing data. Command data,
in particular, serves as a customizable post-incident source,
providing additional insights when other types are unavailable.
By combining multiple data types, MicroCBR enhances sys-
tem diagnosis, ensuring that even with incomplete data, useful
insights can still be obtained, making the process more robust
and effective.

In Microrank [9], the imbalance in the coverage of normal
and abnormal traces in the data makes traditional spectrum-
based methods less effective, as some requests frequently
cover the same service instances while others do not. To
address this imbalance, MicroRank [9] incorporates a per-
sonalized PageRank algorithm that assigns different weights
to traces based on their ability to localize root causes. The
algorithm considers both the scope of the traces (i.e., how
many service instances they cover) and the frequency of
different types of traces. By doing so, MicroRank [9] balances
the influence of frequently and infrequently occurring traces,
ensuring that the spectrum analysis accurately reflects the
importance of each trace in diagnosing root causes. This
approach enhances the precision of root cause localization by
mitigating the bias introduced by unbalanced trace coverage.

Diagfusion [72] uses a data augmentation mechanism that
generates more samples for rare failure types by randomly
selecting and modifying events from the original data. This
approach helps balance the training data, allowing the model
to better learn the characteristics of all failure types and
improving its ability to diagnose rare failures accurately.

5) Difficulty in Obtaining Labeled Data: Obtaining labeled
data for RCA is inherently challenging, since there are no
ground truth labels for RCA in the industry, only if a failure
is detected and resolved by the SRE, and the telemetry data are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

stored for post-mortem analysis. Thus, unsupervised methods
are important in industry because they reduce the human effort
for labeling data, and the need for storing historical telemetry
data of a failure. Given the inherent difficulty of obtaining la-
beled data, various unsupervised methods have been proposed
to address this challenge from different perspectives, such as
statistical analysis [78], [29], causal inference [55], [59], and
pattern mining [8], [10], [56].

Statistical Methods. Statistical methods primarily rely on
detecting changes in data distributions, often without the need
for pre-labeled datasets or prior assumptions about system
behaviors. These methods are particularly useful in real-time
settings where timely anomaly detection is crucial. Instead of
relying on labeled data, ϵ-Diagnosis [78] uses unsupervised
two-sample hypothesis testing and time series similarity analy-
sis to identify root causes. By comparing abnormal and normal
samples, the algorithm efficiently detects significant changes in
metrics, providing a practical solution to the labeled data chal-
lenge, particularly in real-time diagnosis scenarios. BARO [29]
builds on this idea by employing a more sophisticated ap-
proach for multivariate time series. It incorporates Multivariate
Bayesian Online Change Point Detection to effectively detect
anomalies in complex time series data without relying on
labeled datasets. Additionally, BARO uses a nonparametric
hypothesis testing method, RobustScorer, which is robust to
inaccuracies in anomaly detection and does not require pre-
labeled data.

Causal Inference-Based Methods. In contrast to statistical
methods, causal inference-based approaches aim to uncover
the underlying causal relationships between variables, offering
a deeper understanding of how system anomalies emerge from
complex interdependencies. These methods are particularly
powerful when dealing with latent variables and missing
information. Sage [55] utilizes Conditional Variational Au-
toencoders (CVAE) to model the distribution of latent variables
from historical tracing data collected by cloud monitoring sys-
tems. By generating counterfactual scenarios, Sage simulates
how different conditions might affect system performance,
allowing it to infer the root causes of QoS violations without
relying on pre-labeled data. This process involves using the
observed data to train the model and then applying it to gener-
ate hypothetical cases where potential issues could arise, thus
enabling the system to diagnose problems based on the learned
patterns from historical data. Unlike Sage [55], CIRCA [15]
addresses the challenge of limited labeled data by constructing
a CBN and using regression techniques to handle incomplete
fault data distributions. CIRCA [15] adjusts anomaly scores
without relying on labeled data, making it effective in sce-
narios with scarce labeled information. This model focuses
more on refining anomaly scores based on partial data, which
complements Sage’s focus on generating counterfactuals for
hypothesis testing. LatentScope [59] addresses the difficulty by
introducing unsupervised methods like the Regression-based
Latent-space Intervention Recognition (RLIR) algorithm and
its enhancement, LatentRegressor. Unlike traditional super-
vised models that require labeled data, RLIR operates in a
latent space, allowing it to infer the status of unobservable
variables without the need for labeled data. LatentRegressor

further refines this process by using ridge regression, which
is more robust to noise, reducing computational overhead and
enhancing accuracy in real-world applications.

Pattern Mining-Based Methods. Unlike statistical or causal
inference-based approaches, pattern mining methods focus
on discovering commonalities and deviations within large
datasets. These methods directly identify patterns associated
with failures through automated clustering and comparison,
reducing reliance on labeled data. In cloud system log anal-
ysis, the large volume and complexity of logs make man-
ual labeling of incident-indicating logs time-consuming and
error-prone. By leveraging automated clustering techniques,
Onion [8] groups similar logs into “log cliques” and uses
contrast analysis to compare logs from anomalous servers with
those from normal servers, effectively identifying incident-
indicating logs. This approach avoids the need for extensive
manual labeling and, compared to traditional template-based
log analysis methods, is more adaptable and maintains high
accuracy and efficiency even when labeled data is incomplete.
Nezha [10] takes this idea further by analyzing multi-modal
data, such as logs, traces, and metrics, before and after faults
occur. It constructs an event graph and compares execution pat-
terns to detect anomalies. Nezha [10] automatically pinpoints
potential root causes by detecting patterns that deviate from
expected paths, thereby reducing reliance on manual labeling
and handling larger, more complex datasets. Sleuth [56] en-
hances pattern mining techniques by adopting an unsupervised
learning approach that leverages a GNN to model causal
relationships between services in a microservices architecture.
Then it generates counterfactual queries to identify the root
causes of anomalies. This approach allows Sleuth to oper-
ate effectively without any labeled data. Moreover, Sleuth’s
design includes few-shot learning capabilities, ensuring it
remains highly adaptable and generalizable across different
microservice applications, even with minimal or no labeled
data available.

C. ACCURACY OF ANOMALY DETECTION

In large-scale microservice systems, accurately detecting
anomalies presents several key challenges: parameter sensitiv-
ity in statistical methods, complex service dependencies, and
diverse anomaly types. Addressing these challenges is crucial
for ensuring that anomaly detection can effectively support
root cause analysis (RCA). Below, we examine how different
methods tackle these issues.

Parameter Tuning and Data Limitations. Firstly, existing
methods like Kernel Density Estimation (KDE) and epsilon-
statistical tests often struggle with parameter tuning and
data limitations, leading to inaccurate anomaly detection.
PatternMatcher [82] addresses this by using a two-sample
hypothesis test for coarse-grained anomaly detection, which
compares data distributions before and during anomalies. This
method reduces parameter sensitivity and improves detection
reliability by avoiding the complex tuning required in KDE.

Complex Dependencies and Diverse Anomaly Types In
addition, the complex dependencies and diverse anomaly types
in microservices create further challenges. MicroHECL [83]

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

offers a solution by combining machine learning and statistical
methods to handle different anomaly types more effectively.
It uses OC-SVM for performance anomalies, Random Forest
for reliability anomalies, and the 3-sigma rule for traffic
anomalies, ensuring more precise detection across multiple
anomaly types.

Complex Dependencies in Multivariate Time Series.
Eadro [1] takes a step further by integrating anomaly detection
and root cause localization in an end-to-end manner, using
multimodal learning to create a unified system representation
from logs, KPIs, and traces. By jointly optimizing both tasks,
Eadro enhances detection and localization accuracy. How-
ever, Eadro’s reliance on simpler detection methods like N-
Sigma and SPOT limits its effectiveness in handling com-
plex dependencies in multivariate time series. To overcome
this, BARO [29] introduces Multivariate Bayesian Online
Change Point Detection (BOCPD), which models dependency
structures more accurately, improving anomaly detection in
complex systems. Additionally, its RobustScorer method ranks
root causes based on data distribution changes, making root
cause analysis less sensitive to detection timing.

VI. CHALLENGES OF EFFICIENCY

In this section, we explore the various challenges related to
the efficiency of the methods. Efficiency is a critical aspect
of algorithm design and implementation, directly impacting
a system’s practical applicability and performance. The dis-
cussion will cover key areas, including inference time, cost-
effectiveness, robustness, scalability, incremental training, and
the integration of human-in-the-loop approaches. By exam-
ining these dimensions, we aim to provide a comprehensive
understanding of the factors that influence the efficiency and
practicality of the algorithms under the scope of RCA.

A. INFERENCE TIME

Inference time is critical in evaluating root cause analysis
(RCA) algorithms. Faster inference time enables quicker re-
sponse to issues, minimizing downtime and improving system
reliability. Lots of works address their quick inference time,
we categorize this portion as techniques based on pruning [84],
[8], [45], [83], [75], [54], [85], [74], [86], [68], [73], [46], [15],
[14], [59], parallel processing [68], [55], [10], [54], [15], [38].

1) Reducing the search space: Since the most input for
RCA, i.e., telemetry data, often lacks failure-related informa-
tion, irrelevant data can be quickly pruned, thereby accelerat-
ing the RCA process. Additionally, if the results generated by
the algorithm do not meet certain thresholds or patterns, the
process can be terminated early, further enhancing efficiency.
Almost all methods [83], [68], [14], [8], [74], [86], [46], [54]
employ some form of pruning strategy to reduce the search
space and improve efficiency. These strategies may involve
similarity metrics (e.g., Pearson’s correlation coefficient [87]
in MicroHECL [83] and metric similarity pruning in CMDi-
agnostor [73]), event features (e.g., event pruning and Chi-
square pruning in TraceContrast [73]), or topology (e.g., the
DBSCAN algorithm [88] and influence topology filtering in
GIED [74]). All these pruning strategies aim to eliminate

irrelevant or low-relevance paths, nodes, or features to narrow
down the problem and focus resources on deeper analysis.

Some methods organize and simplify the problem by ex-
ploiting the hierarchical nature of the data or structure. Trace-
Diag [75] is an adaptive and interpretable approach designed
to enhance the efficiency of root cause analysis (RCA) in
large-scale microservice systems. It leverages reinforcement
learning (RL) to automatically learn a pruning policy that elim-
inates redundant components from service dependency graphs.
This policy operates based on three main criteria: latency-
based pruning, which removes components with low latency
values; anomaly-based pruning, which filters out components
with low anomaly indicators; and correlation-based pruning,
which discards components with low correlation to end-to-end
service latency. The RL-based pruning policy learns an optimal
sequence of actions through a filtering tree, ensuring that the
pruned graph retains only the components most relevant to
RCA. HALO [84] optimizes inference time by leveraging the
hierarchical structure of telemetry data to reduce the search
space intelligently. It begins by identifying and organizing
attributes into an Attribute Hierarchy Graph (AHG), which
guides an efficient attribute-level search phase. This phase
strategically narrows down the focus to a subset of relevant
attributes. Subsequently, a value-level search is conducted
along the hierarchical paths defined by the AHG, employing
a top-down approach coupled with an adaptive early-stopping
mechanism to further minimize the number of attribute value
combinations evaluated. Additionally, HALO [84] refines the
search results through reverse truncation to enhance the com-
pactness of the fault-indicating combinations, thereby signif-
icantly streamlining the fault localization process without the
need for pruning techniques. Onion [8] employs a “downward-
closure based pruning” strategy during the clustering process,
which stops the splitting process at an appropriate level,
thus avoiding generating trivial log groups with low impact.
This pruning strategy significantly improves efficiency by
reducing unnecessary computations and focusing on critical
information. Sieve [45] reduces the search space by loading
the application under various load conditions to obtain metrics
and a call graph, reducing the dimensionality of metrics using
clustering to identify representative metrics, and identifying
dependencies between components using the call graph and
Granger Causality tests. The call graph helps to reduce the
number of component pairs that need to be checked for
relationships. In contrast, clustering reduces the number of
metrics to consider by selecting representative metrics from
each cluster. Squeeze [89] use a “bottom-up then top-down”
pruning strategy to accelerate anomaly root cause analysis
while balancing speed and accuracy. In the bottom-up phase,
the method filters normal attribute combinations and clus-
ters potential abnormal ones based on their deviation scores,
significantly reducing the search space. The top-down phase
then localizes the root cause within each cluster using a
heuristic approach, guided by the generalized potential score
(GPS), which enhances root cause identification by addressing
cumulative forecast errors. This two-step approach efficiently
narrows the search space and localizes root causes with
improved precision and computational efficiency.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

MicroHECL [83] dynamically constructs a service call
graph based on aggregated 30-minute window data. Starting
with the initial anomalous service of availability issue, it uti-
lizes a pruning strategy that eliminates irrelevant service calls
by assessing the similarity of change trends in quality metrics
between successive edges (service calls) in the propagation
chain. Specifically, the Pearson correlation coefficient [87]
measures this similarity. If the coefficient is below a certain
threshold, the edge is pruned, preventing the addition of
potentially irrelevant anomalous nodes to the current anomaly
propagation chain. Murphy [54], RCSF [85], GIED [74] and
TraceRCA [86] also use some kinds of thresholds to filter
the unrelated intermediate results. TraceContrast [68] first
extracts the critical path, then transforms critical paths into
event sets. Then, it identifies anomalous traces and affected
paths. Using a parallel contrast sequential pattern mining
algorithm, it uncovers candidate root causes. It mentions three
types of pruning: Event pruning removes events unique to
normal paths, Chi-square pruning eliminates patterns with a
chi-square statistic value below a threshold when compared
to their prefixes, and Minimum support pruning cuts off
patterns with support lower than a specified threshold in the
anomaly paths. CMDiagnostor [73] reduces the search space
by using three key pruning strategies: AmSit-based Pruning
(ASP), which removes irrelevant downstream paths; Metric
Similarity-based Pruning (MSP), which eliminates paths where
metric trends between successive calls are dissimilar; and
Anomaly Detection-based Pruning (ADP), which prunes paths
where metrics are normal. These strategies help focus the
analysis on the most relevant parts of the graph, significantly
narrowing down the potential root cause candidates. Trace-
Diag [75]uses three specific pruning methods to enhance root
cause analysis by removing unnecessary nodes from trace
data. The latency-based pruning method eliminates services
with low latency metrics (such as average and maximum
exclusive latencies) since they are less likely to be the root
cause of an incident. The anomaly-based pruning method
filters out components with low anomaly indicators, based
on metrics like NormalizedCount and RankScore, as these
services are unlikely to be involved in the incident. Lastly, the
correlation-based pruning method removes nodes that show a
low correlation between their latency and the overall end-to-
end delay, as they are less likely to be relevant to the incident.
MicroCU [46] implements pruning by enforcing a temporal
order constraint on the path search within the temporal causal
graph, ensuring that anomalies propagate in a strict time
sequence. Applying this constraint, MicroCU [46] eliminates
paths that do not conform to the required temporal order,
thereby reducing the number of generated paths and improving
their relevance. Additionally, MicroCU [46] validates paths
based on causal peak timestamps, discarding those that fall
outside the detected abnormal period. To further refine the
search, it calculates path correlation strength while avoiding
loops by restricting nodes to appear only once per path. The
final ranking of potential root causes is determined by a
weighted combination of path correlation strength and metric
correlation strength, which together ensure that only the most
relevant paths are considered, resulting in more accurate and

efficient identification of root cause microservices.
2) Parallel Processing: Parallel processing is a common

optimization methodology for speeding up the inference.
TraceContrast [68] employs a parallelized contrast sequential
pattern mining algorithm and Apache Spark’s distributed com-
puting capabilities to efficiently identify and analyze patterns
in large-scale trace data, enabling rapid identification of root
causes in complex microservice systems. Sage [55] trains its
model in parallel. Nezha [10] traverses the event graph and
mines the pattern in parallel. Murphy [54] and CIRCA [15]
support further optimization with parallelism support. Mi-
croscope [38] uses a parallelized PC-algorithm to construct
causality graphs based on a single metric and it leverages a
conditioned graph traversing algorithm to locate the root cause.

B. COST EFFECTIVENESS AND ROBOSTNESS
Cost-effectiveness and robustness are crucial factors in

assessing RCA algorithms since not all the systems can apply
the monitoring infrastructure, and even those systems with
the monitoring infrastructure, the collected data is will also
lost [46]. To this end, effective RCA solutions should provide
accurate results with minimal resource expenditure and the
ability to function with less input data while maintaining or
even enhancing performance.

MicroCU [46] only needs to use very sparse API logs to
localize the root cause, based on the causal unimodalization,
which effectively transforms causal curves into unimodal
shapes, enhancing the interpretability and reliability of sparse
data. Moreover, the dynamic causality discovery and the algo-
rithm’s robustness to different imputation methods contribute
to its high accuracy, even under conditions of significant data
sparsity. SpanGraph [90] demonstrates strong performance in
few-shot learning scenarios, even with limited data. In tests
using the SockShop [91] and Trainticket [92] datasets, Span-
Graph achieved high F1 scores of 93% and 88.95% with just
1% of the training data. The model’s performance improved
across precision, recall, and F1-score as the data proportion
increased. This highlights SpanGraph’s efficiency, reliability,
and ability to generalize well with minimal data, making it
a competitive solution for fault localization in microservices
systems where data is scarce.

Microrank [9] uses trace data to construct the trace coverage
tree. For normal and abnormal traces, it has normal and
abnormal coverage trees. Based on the trace coverage tree,
it constructs the real-time call graph for further root cause
analysis. This method does not take care much of the single
traces, on the other hand, it uses the statistical feature of
the trace, thus, Microrank [9] can accept some data missing.
Similarly, Sage [55] also constructs the Causal Bayesian
Network by the traces, it does not require tracking individual
requests to detect temporal patterns, making it robust to tracing
frequency. Murphy [54] is even more robust in their evaluation
since its use of a Markov Random Field (MRF) framework for
reasoning in cyclic graphs, online model training to ensure up-
to-date accuracy, counterfactual analysis for identifying root
causes even without explicit causal data, and an efficient
diagnosis process that prunes the search space to reduce
complexity while maintaining precision.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Diagfusion [72] tackles two primary challenges: (1) repre-
senting diverse data formats and (2) addressing imbalanced
failure types. To achieve this, DiagFusion [72] uses fast-
Text [93] for unified event representation across modalities,
leveraging data augmentation to handle limited labeled data
and imbalance in failure types. Additionally, it constructs a
dependency graph from traces and deployment data to un-
derstand failure propagation paths and applies a graph neural
network (GNN) to localize the root cause instance and classify
the failure type.

C. SCALABILITY

Scalability refers to an algorithm’s ability to efficiently
manage increasing volumes of data and complexity without
a significant loss in performance. In the context of RCA,
scalable solutions are crucial for handling the expanding
volume and variety of hierarchical telemetry data generated by
microservices. To achieve high scalability, many approaches
leverage the hierarchical nature of the data, dividing the
original telemetry data into different levels of granularity
and abstraction [3], [51], [14]. Additionally, because most
telemetry data does not indicate failure, algorithms can quickly
prune data that lacks clear evidence of an issue, thereby
avoiding unnecessary computations and enhancing scalability,
as we mentioned in previous sections.

Groot [3] and Chain-of-Event [51] achieve scalability in
RCA by constructing a global service dependency graph
to map interactions across distributed systems, this graph
allows Groot and Chain-of-event to identify critical nodes that
have a widespread impact on the system. The event graph
aggregates low-level metrics, logs, and traces into higher-
level features, reducing the data volume while preserving
essential information, thus improving the scalability. RCD [14]
employs a hierarchical learning approach by dividing the
variables into smaller subsets and using the Ψ-PC algorithm
to identify potential root causes within each subset. This
method reduces the number of conditional independence (CI)
tests needed, enhancing efficiency. After analyzing all subsets,
RCD combines the results to identify candidate root causes.
By focusing on localized learning around specific nodes (F-
NODE), RCD further refines the potential root causes, im-
proving both accuracy and runtime. This hierarchical strategy
allows RCD to manage complex causal relationships more
effectively. HALO [84] first identifies the relationships among
attributes to construct the Attribute Hierarchy Graph (AHG),
then generates attribute search paths by performing random
walk on AHG. The second phase contains a top-down search
along the hierarchically arranged attribute paths to identify
the best attribute value combinations. By using this technique,
HALO can scale up to 1.2 million records.

D. INCREMENTAL TRAINING

Change is common in microservice, there are service up-
dates and service dependency changes every day. However,
it is usually time-consuming and requires a large amount of
data to train a robust model for new types of failure and
dependency [58]. Thus, incremental training(online training)

is important for maintaining the relevance and accuracy of
RCA algorithms over time. It involves updating the model
continuously as new data becomes available, allowing the sys-
tem to adapt to changing conditions and new failure patterns.
To achieve this, there are commonly two ways: incremental
training that adopts the new data to the model [55], [56], [58],
and online training that only uses fresh data [54].

a) Incremental training: CORAL [58] uses Long Short-
Term Memory [94] (LSTM) networks and Variational Graph
Autoencoders [95] (VGAE) to capture both temporal and
structural patterns in evolving data. Specifically, LSTM can
remember long-term data features, allowing it to update its
internal state incrementally with new data without the need for
full retraining. When new telemetry data arrives, LSTM [94]
can continue to learn from this data based on its existing
training results, thereby updating the model’s prediction ca-
pabilities. This incremental learning approach avoids the need
for full retraining with every data update, saving computa-
tional resources and enabling the model to adapt to new data
distributions quickly. For VGAE [95], incremental learning is
realized through the updatability of the graph structure. The
service dependency graph in a microservice system is often
dynamic, with services being added, removed, or dependencies
changing. During incremental learning, VGAE [95] updates
the graph structure and its latent representations (embeddings)
locally, rather than rebuilding the entire graph model. For the
same target, Sage [55] utilizes Graph Variational Autoencoders
(GVAE) and Causal Bayesian Networks (CBN) to implement
incremental learning in response to changes in a microservice
architecture. The GVAE allows for dynamic reshaping and
incremental updates by adjusting the network structure and
parameters without retraining the entire model. Meanwhile,
the CBN captures and updates causal relationships between
microservices, guiding selective retraining based on changes
in the RPC graph or performance metrics. Together, these
components enable Sage [55] to efficiently adapt to microser-
vice changes, reducing retraining time and maintaining model
accuracy by updating only the relevant parts of the model
and preserving causal integrity. Sleuth [56] improves upon
Sage [55] by using Graph Neural Networks (GNNs) to enable
few-shot and zero-shot learning, allowing it to quickly adapt
to new microservice applications with minimal data. Unlike
Sage [55], which relies on GVAE and CBN for incremental
updates, Sleuth’s GNN architecture captures generalizable
patterns across different microservices, reducing the need for
extensive retraining. This makes Sleuth more scalable and
efficient, especially in dynamic environments where rapid
deployment and high accuracy are essential.

Different from the previous papers, Murphy [54] is in-
herently an online training method. Every time Murphy is
called, it utilizes data from the week before the incident. This
ensures that the models are continuously updated with the
latest application topology and software versions, avoiding the
use of outdated data. Including the most recent incident data is
crucial, as it allows the model to capture new metrics patterns
that may not have occurred previously, enhancing the accuracy
of fault diagnosis.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

E. HUMAN IN THE LOOP

Integrating human expertise into the Root Cause Analysis
(RCA) process can significantly enhance the findings’ accu-
racy and contextual relevance. Human-in-the-loop approaches,
which combine algorithmic analysis with human insights,
create a more robust and adaptable system. However, in-
corporating human input can sometimes require substantial
effort. Thus, better utilization of human domain knowledge
is an important topic. Humans can incorporate into multiple
processes, including preparing high-quality inputs [15], [6],
[3], [36], [41] and the evaluation process [6], [10], [4], [96],
[97], [98].

a) Inputs: Groot [3] allows Site Reliability Engineers
(SREs) to add new event types, construct event graphs, and
maintain rules for filtering and building these graphs. This
capability enables human experts to inject their knowledge
directly into the RCA system. However, it also introduces the
overhead of manual configuration. To mitigate this, Chain-of-
Event [51] leverages historical incidents to automatically learn
a Naive Event Graph while still allowing experts to refine pa-
rameters, thereby ensuring more effective utilization of human
knowledge. Similar to Groot [3], Déjàvu [6], LogKG [99],
CIRCA [15] and iSQUAD [36] require engineers to label
the correctness of the result during the process or provide
some predefined pattern to help the model to distinguish
the root cause better. To stimulate the real environment,
MEPFL [100] needs student volunteers to play the role of
users and manually execute the scenarios that may involve
the target microservice. MicroCause [40] needs professional
operators to manually collect the online failure ticket and
find out the actual root cause. HRLHF [41] draws inspiration
from the outstanding results of Reinforcement Learning with
Human Feedback (RLHF) in aligning large language models
(LLMs) with human intent during training, effectively utilizing
human feedback to reduce the uncertainty in dependency graph
discovery. By integrating human feedback into reinforcement
learning, HRLHF aims to construct dependency graphs with
high accuracy while minimizing the need for human interven-
tion. TraceDiag [75] leverages reinforcement learning (RL)
to acquire an automated, interpretable, and adaptable pruning
policy that effectively removes redundant components, enhanc-
ing the efficiency and accuracy of the RCA process. The policy
is based on graph pruning rules derived from experienced
engineers and comprehensive trace analysis, ensuring domain
knowledge and industry best practices are incorporated. The
pruned service graph is then utilized for RCA using causal
methods.

b) Evaluation: There are no ground truth root causes in
the actual industry service. Thus, in most cases, humans play
an evaluation role to validate the performance of the RCA
methods. Nezha [10] generates a suspicion list for SRE to
check, which enables SRE to manually filter the miss-alarm.
SynthoDiag [101], it is deployed to online service and needs
SREs to manually check the performance of the RCA methods.
RCACopilot [4], FSE Companion’24 [96], LM-PACE [97]
and ICSE’23 [98] are four papers utilizing Large Language
Model in root cause analysis, all of them needs human experts

Event Similarity

Event Chain Similarity

Event Set Similarity

Time
Action
Entity

Localtion

Event(root cause)

Event(trigger)

Event(result)

Event Chain

Event(root cause)

Event(trigger)

Event(result)

Event Chain

Event

Event

Event

Event Result Set

Event… Event

Event

Event

Event Result Set

Event…

Event

Time
Action
Entity

Localtion

Event

Event Chain

Event Graph

Event Chain

Event Chain

Event Chain

Event Graph

Event Chain

Event Chain

Event Graph Similarity

… …

Code

Configuration

Service Static Files

Operations CPU GPU RAM Storage

Operating System

Network

Hardwares

Processes

…

Lib

Operating System

Lib

Processes

Lib Lib

Service Dependency

Runtime Environments

Infrastructure Dependency
User Request

Input

Assurance Service

Preserve Service

Consign Service

Service Dependency(Logical View)

Pod

StatefulSet

Deployment

Container

Host

Deployment Dependency(Physical View) Inner Resource View

Config

Service Level Resource Level Component Level

Log Event

Code

Observation Space

Service Topology
…

OS CPU

Memory …

Line number File Name Log Level

Trace

Thread Info Function Parameter Value

……
Metric

Source Dimension Value

…
Code change Traffic change

…more telemetry data

Fig. 4. Multi-level root causes

to evaluate the result. The human evaluation also needs to
be simple, otherwise it also will cost lots of human effort.
GMTA [102], Eadro [1], and Groot [3] all provided a user-
friendly interface to interact with SREs.

c) Others: Some works only target to reduce the effort
of looking up the redundant and large volume telemetry
data, thus speeding up the operator to make decisions of
which component is the root cause. For example, the aim of
GMTA [102] is to visualize the trace graph and do further
analysis of visualizing service dependencies, making archi-
tectural decisions, analyzing the changes in service behaviors,
detecting performance issues, and locating root causes. It does
not directly output a list of root cause candidates. More human
effort is needed to inspect the anomaly manually.

VII. CHALLENGES OF OUTPUT

Root Cause Analysis (RCA) is designed to equip Site
Reliability Engineers (SREs) with the ability to quickly and
accurately identify both the “what” and the “how” of an
anomaly. To be truly effective, the output of RCA must be
fine-grained and interpretable. A fine-grained output means
isolating the ultimate root cause, enabling SREs to address
it, thereby directly resolving all associated abnormal behav-
iors. Interpretability ensures that these results are easy to
understand, reducing the time SREs spend on verification.
Therefore, the challenges of RCA outputs can be distilled into
two key aspects: producing highly detailed results and ensuring
those results are easy to understand.

A. DIFFERENT GRANULARITY OF ROOT CAUSE

In the literature, various methods yield root causes at
differing levels of granularity. To fully grasp this concept,
it’s important to understand that the granularity of identified
root causes is closely tied to the granularity of the input data.
Simply put more fine-grained observation data enables the
inference of more detailed root causes. To illustrate this, we
use an example from the TrainTicket case [103] to demonstrate
the hierarchical nature of root cause granularities. From this
view, we can comprehensively understand the relationships
between the input data and the output result.

Root causes can be categorized into three primary levels:
service level, resource level, and component level, with each
successive level providing finer granularity. Each level is
derived from the observation space, where finer-grained levels
generally encompass the results from coarser-grained levels.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

For example, the assurance service has logical dependencies
on the preserve service. Within the assurance service, which is
deployed on Kubernetes, corresponding resources are utilized.
Drilling down further, within a specific resource (such as
a container), more detailed resources and attributes can be
observed. Depending on the scenario, the root cause could be
at any of these levels 1. For instance, if the SRE team needs
to identify which team to contact, the service-level root cause
might suffice. On the other hand, if the development team is
tasked with fixing the issue, they may require more granular
information, such as the root causes related to configuration
changes or code changes.

1) At the service level: The root cause pertains to identi-
fying which service is responsible for the observed anomaly
(often indicated by a violation of Service Level Objectives, or
SLOs) [39], [104], [63], [42], [41], [100], [83], [60], [86],
[105], [55], [1], [2], [73], [54], [9], [13], [64], [65], [38],
[75], [62], [14], [70], [106], [107], [108], [71], [69], [109],
[76]. This helps SREs narrow down the search space from
potentially thousands of services to just a few. For example,
the system in Ant Group consists 3000+ microservices running
on over 1 million virtual containers [110]. Resolving the root
cause among these services is relatively difficult. At this level,
the provided telemetry data(input) sometimes includes only
service-specific metrics, such as CPU usage, service logs, and
inter-service calling traces. Although helpful, the result of the
RCA is too fine-grained, since the possible failure search space
is still large within a single service. The underlined reason may
be the model might not leverage fine-grained data, thereby
limiting its ability to pinpoint the exact root cause. It can only
determine which service is responsible for the current issue.

2) At the resource level: Multiple runtime resources are
managed in the cloud-native environment, like deployment,
stateful set, and pod. Some approaches [57], [72], [58], [56],
[74], [78], [44], [67], [111], [112] pinpoint the specific re-
source, such as a pod or container, that is the root cause of the
failure. This provides SREs with a more direct focus for further
investigation. At this level, the ability to identify the root cause
is largely due to the availability of more granular data, includ-
ing metrics and logs specific to individual pods, containers,
and hosts. By leveraging this fine-grained information, the
methodologies can correlate anomalies directly with specific
resources, rather than just higher-level services. This allows
for a more precise diagnosis, facilitating quicker and more
targeted remediation efforts. Consequently, the identification
at the resource level not only reduces the search space further
but also enhances the accuracy of the troubleshooting process,
ultimately leading to more efficient incident resolution in
cloud-native environments.

3) At the component level: Where methods [6], [5], [15],
[113], [29], [49], [3], [51], [40], [28], [8], [90], [114], [102],
[46], [115], [85], [116], [117], [45], [101], [89], [118], [11],
[66], [50], [53], [52], [48], [47], [61], [119], [99], [120],
[121], [122], [123] the inner component within some service
or resource at fault, e.g., which lines of code, which oper-

1In industry practice, the root causes usually are combinations of these
levels, composing which service, which resource, and which component

ation, or which change event is the root cause. This level
of granularity is achievable due to the availability of highly
detailed observational data. For instance, logs may contain
specific code snippets, traces might include function calls and
attributes such as OS versions and the tools used for data
collection, and metrics could detail the exact objects being
monitored. We also categorize methods that identify specific
telemetry data, such as a particular log [8] or a detailed metric,
as the root cause at the component level. This is because
such telemetry data inherently includes information about the
corresponding component, such as file names, line numbers
for logs, or the specific component associated with a metric or
trace. By utilizing such fine-grained inputs, these approaches
can output similarly detailed diagnoses, pinpointing the exact
component responsible for the issue. This capability is critical
for SREs and developers as it not only identifies the problem-
atic component but also provides actionable insights that can
be directly linked to the codebase or configuration settings. As
a result, the troubleshooting process is accelerated, enabling
more effective debugging and quicker resolution of incidents
at a micro-level within the system.

4) At Multi-dimension level: There could be multiple out-
put levels at the same time. In this approach, the algorithm
considers the characteristics of the input data to identify root
causes across various levels simultaneously, including service,
resource, and component levels [10], [68], [59], [7], [84], [43],
[77]. This level of analysis is highly adaptive, allowing it to
provide the most context-appropriate diagnosis depending on
the nature of the anomaly and the data available. For instance,
an issue might be traced back to a specific service at the
service level, while concurrently identifying a particular pod at
the resource level and pinpointing a faulty code snippet at the
component level. This multi-dimensional output is particularly
valuable in complex, cloud-native environments where issues
often span multiple layers of the infrastructure. By offering
a comprehensive view that integrates insights from multiple
levels, this approach empowers SREs and developers to ad-
dress problems more holistically, ensuring that all potential
root causes are considered and that remediation efforts are both
targeted and effective. For example, Nezha [10] can localize
three types of output, i.e., service, code region, and telemetry
type; TrinityRCL [7] can output application, service, host,
metric and code level root causes.

Through these multi-level outputs, it becomes clear that the
granularity of the output is fundamentally determined by two
key factors: the utilization rate of the input data (which
varies depending on how different models process the data)
and the granularity of the input data itself. Regardless of
the model’s effectiveness in utilizing data, the finest granularity
of the output is limited by the detail present in the input.
At best, we can pinpoint the smallest component within the
observed data as the root cause of the anomaly, or we might
determine that the root cause lies outside the current observa-
tion space [59]. Therefore, achieving finer granularity in root
cause analysis hinges on two main challenges: enhancing the
utilization of input data and increasing the granularity of the
observed data. These aspects have been discussed in detail in
Section V.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

B. INTERPRETABLE LOCALIZATION RESULTS
Interpretability is another crucial objective in root cause

analysis, as it allows Site Reliability Engineers (SREs) to
rapidly comprehend what transpired within the running ser-
vice, why anomalies occurred, and how to resolve them.
Similar to the granularity of root causes, interpretability can
be classified into various levels, ranging from identifying a
single root cause to constructing a fault propagation graph.
The single root cause approach assumes there is only one
underlying cause, while the fault propagation graph illustrates
the dependencies and causal relationships among multiple
root causes. Between these two extremes, intermediate levels
exist, such as identifying multiple root causes or tracing a
fault propagation chain. Additionally, we will also discuss the
methods that output explanations of root causes/incidents.

1) Single Root Cause: This level is suited for models
designed to identify only one root cause, without considering
scenarios involving interactions between multiple root causes.
The output is typically a ranked list of suspected root causes,
with only one being the ground truth. For instance, although
Eadro [1], BARO [29], and related works [40], [5], [7], [100],
[63], [39], [70], [104], [42], [83], [60], [85], [116], [117],
[45], [15], [58], [28], [113], [72], [44], [74], [84], [59], [2],
[38], [115], [65], [8], [114], [14], [55], [56], [90], [101], [68],
[75], [86], [36], [77], [43], [118], [106], [107], [67], [111],
[11], [66], [50], [112], [53], [52], [48], [47], [61], [119],
[108], [71], [69], [99], [109], [76], [120], [121], [122], [123]
produce outputs at varying levels of granularity, as discussed
in Section VII-A, they all focus on identifying a single root
cause, implying that only one root cause exists within the
current observation space. However, in reality, multiple root
causes can coexist—such as a configuration change being
the root cause and a surge in requests acting as the trigger
described in Section III. In such cases, the absence of the
trigger would mean the root cause might not lead to the
observed anomaly. Thus, the current models may overlook
complex scenarios where multiple root causes work together
to produce the observed issue.

2) Multiple Root Causes: At this level, the model recog-
nizes that real-world scenarios often involve multiple inter-
acting root causes [62], [13], [124], [89]. It generates a list
of potential root causes reflecting this complexity, providing
a more comprehensive understanding of the issue than single
root cause approaches. For example, GAMMA [62] addresses
the challenge of multiple bottlenecks in microservices archi-
tecture (MSA), which can occur independently, dependently,
or in a cascading manner, a scenario that has been largely
overlooked by existing research that mainly deals with single
bottlenecks. However, while these methods account for multi-
ple root causes, they typically do not address the interactions
and dependencies between them. In other words, they identify
the possible root causes but do not explain how these root
causes interact to create the current situation. This limitation
leaves a gap in understanding the causal relationships that
lead to the observed problem, which is crucial for effective
remediation and prevention strategies.

3) Fault Propagation Graph: The fault propagation graph
could be considered as the most interpretable illustration of the

root causes since it contains the single root causes as the nodes
and the possible propagation path as the edges. In this graph,
the node root cause can be multi-dimensional as mentioned
in the previous section, including the service level, resource
level, and component level. This graph-based approach offers
the most detailed and comprehensive explanation of how the
current anomalies have occurred by capturing the intricate
relationships and dependencies between multiple root causes.
However, achieving this level of detail is challenging due to
several factors.

(1) Obtaining accurate ground truth is difficult, as SREs
and other operational staff may have varying or incomplete
understandings of the incidents, leading to inconsistent or
incorrect interpretations.

(2) There is a lack of standardized evaluation metrics for
fault propagation graphs [49], making it hard to compare
methods or validate their effectiveness at this level. These
challenges have limited the development and adoption of
strategies that fully meet the definition of a fault propagation
graph.

As far as we know, ServerRCA [125] is the only method
that formally claims that they output a fault propagation chain,
indicating how the fault propagates from the ultimate root
cause to the intermediate root cause. However, due to the
aforementioned limitations, it still uses the HR@K metric to
evaluate the fault propagation chain, where the root node of
the true fault propagation chain is the root cause. Nevertheless,
many existing methods do maintain an internal graph structure
to represent the spread of anomalies [51], [49], [54], [10],
[46], [3], [57], [73], [9], [6], [63], [39], [41], [104], [83],
[126], [115], [85], [15], [58], [28], [113], [44], [102], [64],
[38], [90], [68], even if their final output is simplified to
a root cause list. To acknowledge the significance of these
methods, we discuss those that incorporate an internal fault
propagation graph. Despite the mentioned challenges, these
methods often revert to producing a ranked list of root causes,
as the complexity of fully utilizing the graph structure remains
an unresolved challenge in the field.

Three notable works focusing on fault propagation paths
are Groot [3], Chain-of-Event [51], and GrayScope [49].
Specifically, Groot [3] employs a user interface to visually
display the propagation path of anomalies, making it easier
for SREs to verify root causes. Chain-of-Event [51] addresses
three key questions: how different events influence each other,
how the model arrives at its conclusions, and how suspicious
a given event chain appears to SREs. These questions help
provide a detailed illustration of the incident, aiding SREs in
understanding the fault propagation. Since there is no standard
definition for evaluating the precision of failure propagation
paths, GrayScope [49] relies on human evaluation to assess
their method’s effectiveness. Other works like [54], [10], [46],
[57], [73], [9], [6], [39], [104], [83] internally maintained a
fault propagation graph, but they did not address or partially
address the interpretability issue in terms of fault propagation
graph.

There are also works providing the graph similarity metrics.
For example, Brandón et al. [126] propose a graph similarity
engine that is used to detect the anomalies in the graph. By

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

composing the graph elements(node, edge, context), the graph
similarity is calculated to detect the anomaly. However, they
did not emphasize this point, which is possible to be used for
evaluating the interpretability issue.

4) Explanation of Root Cause/Incident Ticket: The field
of root cause and incident explanation can be divided into
two main components. The first involves explaining root cause
candidates, including identifying the types of root causes and
determining the specific category of potential faults. This is
typically achieved by leveraging historical incident databases,
which store past error data along with human-provided expla-
nations. By matching new cases with similar past incidents,
models can offer SREs relevant insights and references. The
second component, distinct from traditional root cause analysis
(RCA) methods, focuses on incident tickets as input. This
emerging area of research, which gained traction around 2023,
has been largely driven by advances in large language models
(LLMs). LLMs enable the provision of detailed incident ex-
planations within operational processes, filtering out irrelevant
issues and compiling pertinent information. In our reviewed
literature, five works [98], [96], [97], [4] have explored this
area, highlighting the potential of LLMs in enhancing incident
management and explanation.

Failure type is the most frequently used explanation, typ-
ically the action/symptom of the component or resources.
Combining output multi-level root causes and the correspond-
ing possible failure types can provide more interpretable
results for SREs. For example, Déjàvu [6] considers bad
requests, unavailable third-party services, failed disks, slow
SQL queries, etc. as their failure types. MEPFL [100] also
categorizes the failure categories into configuration-related,
resource-related instance-related, and interaction-related. Their
implementations usually contain using the previous known
failure database to retrieve similar cases [6], [63], [99]. The
most common failure types are discussed by numerous studies
and surveys [32], [127], [128], [129], [130], [110], [131], [31],
[132], thus we did not extend it.

Different from other works we introduced in previous
sections, the input of these four papers are all incident de-
scriptions, like incident tickets. ICSE’23 [98] did a rigorous
study at Microsoft, on more than 40,000 incidents and com-
pared several large language models in zero-shot, fine-tuned,
and multi-task settings using semantic and lexical metrics.
RCACopilot [4] is a system that leverages historical incident
data and predefined rules to match incoming incidents with
the most appropriate handlers based on the type of alert. For
instance, if an alert pertains to a database connection issue,
the system automatically assigns it to a database adminis-
trator. By integrating this capability, RCACopilot enhances
the efficiency of incident resolution by reducing the manual
effort traditionally required to investigate logs and trace data
sources. Moreover, RCACopilot goes a step further by gener-
ating explanatory narratives for each incident. These narratives
provide engineers with a comprehensive understanding of
the incident, including context, the identified root cause, and
recommended actions for resolution. This capability is crucial
in helping on-call engineers quickly grasp the situation and
respond effectively. FSE Companion’24 [96] uses a standard

RAG and In-context-learning pipeline to retrieve the possible
root cause of the provided incident. Specifically, it involves
collecting and cleaning incident data, summarizing the inci-
dents using GPT-3.5-turbo, and creating embedding vectors
with a sentence transformer model. These embeddings are
used to build a retrieval index with the Faiss library for
efficient similarity searches. When a new incident occurs,
relevant examples are retrieved from the index and included
in a prompt provided to a large language model (e.g., GPT-4),
which then generates the root cause analysis based on the new
incident description and the retrieved in-context examples. To
generate calibrated confidence scores, LMPACE [97] involves
prompting the model in two distinct stages. In the first stage,
the model quantifies the strength of evidence derived from
historical incidents, allowing for an equitable assessment of
the current incident. Subsequently, the second stage prompts
the model to evaluate the candidate root cause produced by
the root-cause predictor, utilizing the same set of references.
A transformation is then applied to a validation set to estimate
the confidence level based on the two scores generated from
the prompting stages. Additionally, to address the challenges
of limited historical data and evolving systems in root cause
localization, OCRCL [133] not only integrates incident tickets,
but also service text semantics, and static service depen-
dency structures, employing online incremental learning to
incorporate historical incident information and enhance model
accuracy. By leveraging contrastive learning, OCRCL [133]
augments incident tickets to improve the model’s ability to
link incidents with root causes. While this area shows great
promise, it is still in its early stages, and further research is
needed to refine these methods, improve their accuracy, and
expand their applicability to a broader range of incidents.

VIII. RESEARCH TREND AND DISTRIBUTIONS

In this section, we analyze the research trend and distribu-
tions of root cause analysis.

A. Publication Trend

We first analyze the publications on the RCA topic each year
at each conference or journal. As shown in Fig. 5, this chart
presents the yearly distribution of publications related to the
RCA topic, categorized by their classification under the China
Computer Federation (CCF) recommendation list, which ranks
conferences and journals into three levels: A, B, and C. The
data shows a clear upward trend in publications over the
years, particularly in the high-tier CCF A category. From 2013
to 2024, the most notable growth occurred in the CCF A
category, with a sharp rise from 2021 onwards, peaking at 15
publications in 2023 and maintaining a significant number of
13 publications in 2024. This trend suggests that RCA research
is increasingly being recognized and published in prestigious
venues.

Fig. 6 illustrates the distribution of the collected papers
across various research venues. The majority of RCA pa-
pers are published in software engineering venues, including
ESEC/FSE, ISSRE, ICWS, ASE, ICSE, TSC, TOSEM, JSS,
and ISSTA. Additionally, there are significant contributions in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

Fig. 5. Publication number of each class of the paper

Fig. 6. Distribution of conference/journal

data mining venues, such as SIGKDD, as well as in artificial
intelligence conferences like NeurIPS, systems venues such as
EuroSys, and network and security venues like TDSC. This
indicates that RCA is a relatively broad and interdisciplinary
topic that spans multiple research fields, demonstrating its
applicability and relevance across various domains.

Fig. 7 shows a steady increase in both total papers and
company collaborations related to RCA since 2016, with a
significant rise after 2020. While the total number of papers
has grown more rapidly, peaking at 15 in 2023, the num-
ber of company collaborations has also steadily increased,
maintaining a consistent ratio of around 50% of the total
publications. This highlights the close connection between

academic research and the industrial sector within this area.

B. Settings of RCA

Ground Truth Root Causes. The diversity of ground
truth root causes directly impacts the effectiveness of RCA
(Root Cause Analysis) models. In practice, the failure can
occur anywhere the root cause runtime model in Fig. 9,
including static files, user requests, runtime environment, and
dependencies. By following the runtime model, in Fig. 8, we
categorize the ground truth root causes discussed in 53 papers
into six groups(the rest of the papers do not mention this
information). Each group represents different types of failures
that the experiments in these papers focus on. Specifically, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 22

Fig. 7. Distribution of conference/journal from 2013 to 2024

Fig. 8. The root cause distributions across 53 papers, each of which discusses
the injected ground truth root cause used in their experiments.

categories are as follows: (1) Resource: This category refers
to the resources required by a program or service, including
CPU, memory, disk space, disk I/O, and network capacity.
The root cause in this group relates to issues with these
resources, such as outages, limitations, or corruption. (2) Code:
This group pertains to failures stemming from the static code
itself, including logic errors, low performance, poor design, or
faulty changes. (3) Configuration: This category includes root
causes associated with misconfigurations or errors in system
configurations. (4) User Request: In this group, the root cause
is linked to the nature of the user request, such as malicious
requests, high volumes of requests, or poorly structured re-
quests. (5) Infrastructure Dependency: This refers to failures in
the underlying infrastructure, such as database errors, message
queue (MQ) issues, or other foundational infrastructure errors.
It is important to note that this category excludes resource-
related failures (e.g., CPU resources are not considered part of
the infrastructure). Instead, “infrastructure dependency” refers
to failures in basic services that support the current system.
(6) Service Dependency: This category addresses failures in
service dependencies, including internal business logic failures
or issues with third-party service dependencies that result in
disruptions.

From Fig. 8, the high proportion of papers focusing on

resource-related failures (47.7%) suggests that much of the
RCA research prioritizes resource management issues such as
CPU, memory, and network capacity. However, this heavy fo-
cus raises the question of whether RCA models are adequately
addressing other critical failure types. In real-world systems,
failures might arise from more complex or less obvious causes,
such as human error, misconfigurations, or external service
dependencies, which may not be fully captured in current
research. While infrastructure and service dependencies make
up a significant portion (15.1% and 11.6%, respectively), they
may still be underexplored in comparison to real-world failure
scenarios where intricate interactions between services and
external systems often cause disruptions. Given the growing
complexity of cloud-native and microservice-based architec-
tures, the extent to which dependency failures are explored
in RCA research could be insufficient to fully capture the
challenges of modern systems. Additionally, with only 7.0%
of studies focusing on user request-related failures, there
appears to be a lack of emphasis on how user behaviors and
malicious or abnormal requests can lead to system failures. In
real-world environments, user interaction—whether intentional
or unintentional—can be a major source of system disrup-
tions, suggesting that this area warrants further investigation.
The relatively low percentages for code-related (10.5%) and
configuration-related (8.1%) failures indicate that these areas
may not be fully explored. In practice, misconfigurations
and software bugs often lead to severe outages and perfor-
mance degradation. This discrepancy suggests that current
RCA research might not be placing enough emphasis on
these common real-world root causes, potentially overlooking
critical aspects of system reliability.

Input and Output Settings. As discussed in Section III,
both the telemetry data (input) and the root cause (output)
are inherently complex, leading to numerous combinations
of input-output relationships. Figure 10 illustrates this com-
plexity: the X-axis represents the various input options, while
the Y-axis shows the corresponding output levels. The most
common output levels are service level, resource level, and
component level.

Among these, the service level is the most frequent output,
particularly in scenarios involving metrics (16 occurrences)
and traces (10 occurrences). The resource level follows, with
metrics (6 occurrences) and metric-topology combinations
(2 occurrences) being the most prominent. Meanwhile, the
component level exhibits considerable diversity, spanning a
range of input combinations, including logs (4 occurrences)
and metrics (10 occurrences). This figure underscores that,
due to the complexity of input-output relationships, various
configurations arise frequently in root cause analysis (RCA).
The diverse combinations of inputs—such as logs, metrics,
topology, and traces—across different levels (component, re-
source, and service) highlight the multifaceted nature of RCA
scenarios. Addressing these challenges often requires flexibil-
ity and adaptability, as identifying root causes depends on
multiple interacting factors, including the system’s specific
conditions and the nature of the telemetry data.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 23

Event Similarity

Event Chain Similarity

Event Set Similarity

Time
Action
Entity

Localtion

Event(root cause)

Event(trigger)

Event(result)

Event Chain

Event(root cause)

Event(trigger)

Event(result)

Event Chain

Event

Event

Event

Event Result Set

Event… Event

Event

Event

Event Result Set

Event…

Event

Time
Action
Entity

Localtion

Event

Event Chain

Event Graph

Event Chain

Event Chain

Event Chain

Event Graph

Event Chain

Event Chain

Event Graph Similarity

… …

Code

Configuration

Service Static Files

Operations CPU GPU RAM Storage

Operating System

Network

Hardwares

Processes

…

Lib

Operating System

Lib

Processes

Lib Lib

Service Dependency

Runtime Environments

Infrastructure Dependency
User Request

Input

Fig. 9. Hierarchical Root Cause Model, root cause can be found all these components

TABLE II
ROOT CAUSE ANALYSIS TYPES AND DETAILED ENTITIES

Benchmark2 Svc # LoC/Programming Languages Protocol Last Update

TrainTicket [92] 45 37746/Java, 23/Go, 292/Python,
5335/JavaScript, 9733/HTML

HTTP 2022-11-01

Online
Boutique [134]

11 5881/Go, 1043/Python, 740/HTML, 634/C#,
347/JavaScript, 255/Java

gRPC 2024-10-03

Sock Shop [91] 9 4010/JavaScript, 3577/Java, 3283/Go,
1640/Python

HTTP 2023-12-05

HotelReservation [135] 10 7298/Go gRPC 2024-06-28

SocialNetwork [135] 12 5753/C++ Thrift 2024-06-28

C. Benchmarks

This section lists the public benchmarks in the literature
based on our collected papers. Publicly available benchmarks
are important to RCA research since the companies usually
cannot open-source their data due to privacy and security
issues. Additionally, root cause analysis is very related to
the industry practice, and the cloud environment is highly
dynamic. As a result, researchers need publicly available
benchmarks to inject corresponding failures, stimulate the
environment, and show the effectiveness of the proposed
method.

Table II provides detailed information about five widely
used public benchmarks in RCA research. The table includes
the name of each benchmark, the number of services (Svc
#), the total lines of code (LoC) along with the specific
programming languages used, the communication protocol
employed by each benchmark, and the date of the last update.

TrainTicket [92] is the largest benchmark in terms of both
the number of services (45 services) and the total lines of code,
which is distributed across several programming languages
including Java, Go, Python, JavaScript, and HTML. Online
Boutique [134], although smaller with 11 services, utilizes a
diverse range of programming languages such as Go, Python,
HTML, C#, JavaScript, and Java. Sock Shop [91], with 9
services, predominantly uses JavaScript, Java, Go, and Python

for its implementation. Meanwhile, both HotelReservation and
SocialNetwork are part of the DeathStarBench [135] suite,
focusing on the use of Go and C++ respectively, with fewer
services compared to TrainTicket [92]. The communication
protocols used across these benchmarks vary, with HTTP,
gRPC, and Thrift [136] being the primary protocols, re-
flecting different architectural and communication styles in
microservice-based systems.

However, some of the benchmarks show signs of declining
maintenance. For instance, TrainTicket [92] has not received
any commits in over two years. Sock Shop [91] has been
officially archived, signaling that it is no longer actively main-
tained or updated. DeathStarBench [135] claims to offer six
sub-benchmarks, but in reality, only three—Social Network,
Media Service, and Hotel Reservation—have been publicly
released. Despite the original promise of more comprehensive
coverage, the development activity for DeathStarBench has
primarily focused on bug fixes in recent commits, with no
significant feature updates or the release of the remaining sub-
benchmarks. The only benchmark currently under active de-
velopment is Online Boutique, which has maintenance through
regular bug fixes and the introduction of new features.

D. Datasets
This section presents an overview of the publicly available

datasets relevant to root cause analysis (RCA), as identified

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 24

Fig. 10. Distribution of Input and Output Type

from the literature. Table III summarizes the key attributes of
these datasets, including their data types (metrics, traces, logs),
data formats (e.g., CSV, JSON), dataset size (calculated after
decompression), and the research papers that utilized these
datasets. Most datasets are collected from the public bench-
marks, e.g., Online Boutique [134](OB), SockShop [91](SS),
TrainTicket [92](TT), DeathStarBench [135](DSB), Social-
Network [135](SN). Notably, the datasets exhibit heterogene-
ity in terms of both data type and size. Some datasets ex-
clusively contain metrics (M), while others combine multiple
types, such as metrics, traces (T), and logs (L), reflecting
the diverse nature of telemetry data. The data formats also
vary, with most datasets stored as CSV files, though some
use alternative formats such as JSON or XLSX. The dataset
sizes range from relatively small files (e.g., 4.1MB for Dy-
cause [44]) to much larger ones (e.g., 99GB for Murphy-
DSB [54]), highlighting substantial differences in the amount
of information each dataset provides for analysis.

E. Public Available Tools

This section compiles a collection of publicly accessible
toolkits and codebases that can facilitate further research in
root cause analysis. Among the 106 papers we reviewed, 21
have openly shared their code implementations, as shown in
Table IV. Notable tools such as BARO [29], LatentScope [59],

2We are only counting the core business logic code and excluding any
auto-generated code or infrastructure services like databases.

and Chain-of-Event [51] from recent years (2024) reflect a
trend toward open-sourcing model implementations, which is
instrumental in promoting transparency and reproducibility.

The chronological progression of these tools, from early
contributions like Sieve [45] (2017) to more recent advance-
ments like GIED [74] and Eadro [1], highlights the evolu-
tion of methodologies in root cause analysis. This diversity
enriches the research community, enabling comparisons and
adaptations of distinct models tailored to varied applica-
tion scenarios. Such openness not only fosters collaboration
but also provides a foundation for future innovations and
standardized benchmarking, essential for advancing the field
systematically.

IX. DISCUSSION

A. THREATS TO VALIDITY

Data source credibility. This survey covers only a subset
of the available literature, with a focus on papers related to
microservices root cause analysis published in top-tier confer-
ences and journals over the past decade. Due to limitations
in both time and resources, it was not feasible to collect all
relevant works, which may result in some incompleteness. For
instance, while the pipeline in RootCLAM [35] aligns with the
general scope of this paper—encompassing anomaly detection,
root cause localization, and anomaly mitigation—the specific
context of RootCLAM [35] is quite different from ours.
RootCLAM [35] utilizes a loan approval scenario based on

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 25

TABLE III
PUBLIC DATASET FOR ROOT CAUSE ANALYSIS(M FOR METRICS, E FOR EVENTS, AND T FOR TRACES)

Dataset Type Format Amount Used By

Dejavu-A1[137] M CSV 75.1MB [6]

Dejavu-A2[137] M CSV 82.2MB [6]

Dejavu-B[137] M CSV 1.7GB [6]

Dejavu-C[137] M CSV 48.8MB [6]

Dejavu-D[137] M CSV 3.7GB [6]

RCD-SS[138] M CSV 16MB [14]

ChangeRCA-OB[139] M CSV 60MB [5]

BARO-TT[140] M CSV 1.1GB [29]

BARO-SS[140] M CSV 337MB [29]

BARO-OB[140] M CSV 339MB [29]

Squeeze[141] M CSV 18G [89]

Dycause[142] M XLSX 4.1M [44]

GrayScope[143] M CSV 8.4M [49]

LatentScope[144] M JSON 2.1G [59]

MicroCU[145] M npy 118M [46]

Murphy-DSB[146] M, T JSON 99GB [54]

AIOps Comp-2020[147] M, T CSV 16G [9], [111], [114], [105], [67]

Nezha-OB[148] M, T, L CSV 2.5GB [10]

Nezha-TT[148] M, T, L CSV 351MB [10]

GAIA[149] M, T, L CSV 41G [72]

Eadro-TT[150] M, T, L CSV/JSON 841M [1]

Eadro-SN[150] M, T, L CSV/JSON 1.3G [1]

AIOps Comp-2021[147] M, T, L CSV 25G [114], [57]

GAMMA[151] M, L RAW format/CSV 39GB [62]

MEPFL-TT[152] T CSV 2.3G [100]

MEPFL-SS[152] T CSV 59M [100]

TABLE IV
PUBLICLY AVAILABLE TOOLS/CODES FOR ROOT CAUSE ANALYSIS

Tool URL Year Tool URL Year

BARO[29] [153] 2024 GIED[74] [154] 2022

LatentScope[59] [155] 2024 DeepTraLog[113] [156] 2022

Chain-of-Event[51] [157] 2024 CIRCA[15] [158] 2022

ChangeRCA[5] [159] 2024 RCD[14] [160] 2022

Eadro[1] [161] 2023 DejaVu[6] [162] 2022

MicroCU[46] [163] 2023 TraceRCA[86] [164] 2021

Diagfusion[72] [165] 2023 MicroRank[9] [166] 2021

CMDiagnostor[73] [167] 2023 squeeze[89] [168] 2019

Nezha[10] [169] 2023 Log3C[121] [170] 2018

MicroCBR[77] [171] 2022 Sieve[45] [172] 2017

SwissLog[109] [173] 2022 - - -

the German Credit dataset, which falls outside the domain of
incident management. Consequently, works that do not pertain
to incident management, such as RootCLAM, were excluded
from our discussion. However, its inclusion highlights the
broader applicability of root cause analysis, which extends
beyond incident management scenarios.

Moreover, while we have strived to ensure the accuracy

of our literature understanding and analysis, there is an
inherent risk of subjective interpretation errors during the
reading process. To mitigate these risks, we employed a cross-
validation approach: the primary authors independently read
and summarized the papers, followed by a cross-review of
the results to enhance the accuracy and consistency of our
findings.

Compatibility of event graph. We use an event graph to
describe the failure propagation, which is compatible with all
the previous output formats we have surveyed. Specifically,
the single event node can represent the service, resource,
and component-level root cause, since the event contains a
timestamp, action, entity, and context, most of the current
output is a part of the event. The failure propagation chain
shows the propagation of the anomaly, and the event graph is
the dynamic description of the runtime system.

B. FUTURE WORK DIRECTIONS

In the introduction, we identified three critical gaps within
the current research landscape. These gaps were categorized
into input, method, and output-oriented challenges. Subsequent
sections of this work have demonstrated how existing methods
have addressed these challenges to varying degrees. However,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 26

in this section, we aim to highlight the challenges that re-
main unresolved or insufficiently addressed, thereby outlining
potential directions for future research.

1) Comprehensive Telemetry Data: As we introduced in
Section V, advancing Root Cause Analysis (RCA) necessitates
the development of more comprehensive and realistic teleme-
try data, which requires both enhanced benchmarks and more
sophisticated fault injection techniques.

• Realistic benchmarks. As discussed in Section VIII, cur-
rent benchmarks are often limited in scale and complex-
ity, typically involving small microservices with simple
interactions. These constraints hinder the identification of
specific real-world issues, such as network partitioning
problems in benchmarks lacking high-availability fea-
tures. Future benchmarks should incorporate a broader
range of telemetry data types, simulate more complex ser-
vice interactions, and include monitoring infrastructures
capable of collecting extensive and varied telemetry data.

• Comprehensive fault injection. Improving RCA also re-
quires the use of more advanced and diverse fault in-
jection techniques. The quality of telemetry data is not
only dependent on its type but also on the nature of
the incidents it captures. As highlighted in Section V,
previous studies have predominantly focused on injecting
basic CPU, memory, and network issues, which are
relatively easy to diagnose. Future research should aim to
simulate faults that closely resemble real-world scenarios,
including operational errors, configuration mistakes, and
code anomalies, to better reflect the wide array of issues
encountered in practice.

By pursuing these directions, the field can generate more
comprehensive telemetry data, which in turn will enable the
development of more accurate, robust, and efficient RCA
models. For example, future research could explore the com-
bination of different telemetry data types, varying levels of
granularity, and diverse data volumes to design models that
better address the complexities of real-world systems.

2) Explore New Types of Telemetry Data: As we introduced
in Section V-A, more fine-grained data can help localize more
fine-grained root causes. Currently, profiling data can be con-
tinuously collected [174], [175], which means localizing which
code line causes the incident is possible. Some events, such
as code updates, deployments, and attacks, could also describe
the system behavior. Adding these new data, and solving the
inherent challenges within the new data is worth investigating.
Some studies [130], [110] show that the “change” in the
system is likely to be the root cause of the incident. However,
in our survey, few papers focus on this [5], [3].

3) Eliminate the Side-Effect of Anomaly Detection: In
current practices, anomaly detection often serves as the trigger
for Root Cause Analysis (RCA). However, this approach
means that the accuracy of RCA is heavily dependent on the
precision of anomaly detection. Currently, indeed there are
some works [1], [29] that consider anomaly detection and root
cause analysis as an end-to-end task, however, they still use
follow the pattern that anomaly detection is the trigger, if there
is an anomaly detected, then the RCA will start, this means
there still could be false negatives. The result of anomaly

detection can be utilized by the root cause analysis phase,
reducing the search space by filtering some simple patterns in
advance.

4) Interpretable RCA Models: Future RCA (Root Cause
Analysis) models should strive for greater interpretability.
With well-defined input and output interfaces, we envision
future models not only identifying the root cause of an issue
but also illustrating the incident propagation path through a
comprehensive causal graph. This graph would clarify which
event is the root cause, which acts as a trigger, and how
these events interact to lead to the failure. Such detailed
outputs would provide deeper insights into the development
of incidents, enabling more effective mitigation strategies.

While current research has achieved some level of in-
terpretability by offering explanations [10] and providing
propagation graphs [3], [51], [49], most methods still rely
on internal graphs for inference and only output single root
causes [54], [10], [46], [57], [73], [9], [6], [39], [104], [83].
This limitation primarily arises from the lack of standardized
evaluation metrics for failure propagation graphs (paths) [49].
Therefore, achieving better interpretability requires two key
developments: the establishment of standard evaluation metrics
for propagation graphs and the creation of corresponding
datasets that include ground truth data. With these foundational
elements in place, more interpretable RCA models can be
developed.

5) Cost-effective and Robust RCA models: Developing
cost-effective RCA models is essential for practical implemen-
tation in industry settings. Collecting and storing extensive
telemetry data, as outlined in Section VI, is expensive and
often impractical. Most companies cannot keep all the nec-
essary data, and they only hold sampled data. Additionally,
the collected telemetry data itself can also be incomplete and
inaccurate due to the setting of monitoring infrastructure [176].
Therefore, future models should be designed to achieve high
performance with minimal and dirty data, making RCA more
accessible and practical for a broader range of organizations.

6) Intelligent Sample Algorithm: As previously mentioned,
companies often retain sampled telemetry data for only short
periods (e.g., a few days or months) due to the high cost
and redundancy of storing all data. However, because failure-
related data is rare, relying solely on random sampling may
lead to the loss of critical information. Additionally, this
approach can disrupt the effectiveness of existing root cause
analysis (RCA) models, as changes in the data distribution
caused by the sampling process may render these models less
accurate. Consequently, RCA models need to be robust enough
to accommodate such variations. Recent research has focused
on more intelligent trace sampling methods [12], [177], [178].
However, other types of telemetry data, such as profiling, logs,
and metrics, remain less explored.

7) Efficient RCA models: Efficiency is critical for RCA
models, especially in high-demand environments like Alibaba,
where SREs need to localize problems within 5 minutes and
fix them within 10 minutes [179]. Future RCA models must
be optimized for speed and quick response times to meet these
stringent operational demands, ensuring rapid localization and
resolution of incidents.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 27

X. RELATED WORKS

Root cause analysis (RCA) is a critical component of inci-
dent management, enabling Site Reliability Engineers (SREs)
to quickly identify and resolve incidents. Previous surveys
on RCA have been successfully published, focusing primarily
on the methodologies employed within RCA. However, these
surveys often overlook the ultimate objectives of RCA, which
can lead to a lack of clear direction.

Soldani et al.[16] and Zhang et al.[17] provide surveys that
are closely related to our topic. Soldani et al.[16] focus on both
anomaly detection techniques and RCA techniques. Zhang
et al.[17] concentrate on root cause localization techniques
and failure classification techniques. While there is some
overlap between our survey and previous ones, our objectives
differ. Specifically, Zhang et al. [17] aim to distinguish failure
diagnosis objectives, explore multimodal data, and analyze
practical applications. In contrast, we aim to provide a de-
tailed explanation of what RCA entails, and its role within
incident management, and to categorize papers by summa-
rizing common challenges. For example, Zhang et al.[17]
note that various methods produce different levels of root
cause identification, ranging from service-level to instance-
level. However, they do not address why these multiple levels
of root causes exist. We address this by summarizing the CEO
principle (SectionIII-C), which posits that the granularity of
the root cause is restricted by the input granularity. Increasing
input granularity raises storage costs. Therefore, to achieve
more fine-grained, interpretable, and precise root causes, there
are two approaches: adding fine-grained inputs and better
utilizing current data (e.g., mining relations/patterns) to infer
beyond unobserved data. By categorizing previous works in
such a goal-driven way, we enable readers to think about and
understand the current state of RCA research from a high-level
perspective, identify existing challenges, and explore potential
solutions to these challenges.

Sole et al. [180]’s definition of RCA is similar to ours, with
the model construction, inference, and model update processes,
where the training process uses domain knowledge, system
knowledge, and observations, the inference process uses ob-
servations to infer the root causes and give the explanations.
Our definition of RCA is the observation, inference, and result.
However, they did not discuss the different types of input
data(different modality), and the unified output format(the
failure propagation graph).

Our purpose is not to replace or criticize previous surveys
but rather to interpret the current state of RCA research
from the perspective of existing challenges. This approach is
complementary to other surveys. By integrating our survey
with others, readers can gain a comprehensive understanding
of the development of existing technologies, both from a
challenge-oriented perspective and in a broader context.

XI. CONCLUSION

In this survey, we present a comprehensive overview and
analysis of recent research on Root Cause Analysis (RCA).
We discuss the current limitations within RCA workflows,

elucidating why existing research efforts often appear frag-
mented and ad-hoc rather than directed toward a unified
research objective. Anchored by a common goal—minimizing
service downtime—this review categorizes RCA techniques
according to the specific challenges they address, providing
a clear framework for understanding their definitions and
current research status. We also review experimental datasets
and available open-source tools, offering an in-depth analysis
of emerging trends, research directions, opportunities, and
challenges in the RCA domain. We hope this survey serves
as a valuable resource for researchers across diverse fields,
enhancing their understanding of the current state of RCA
research and the open avenues for future exploration.

REFERENCES

[1] C. Lee, T. Yang, Z. Chen, Y. Su, and M. R. Lyu, “Eadro: An end-
to-end troubleshooting framework for microservices on multi-source
data,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2023, pp. 1750–1762.

[2] L. Zheng, Z. Chen, J. He, and H. Chen, “Mulan: Multi-modal causal
structure learning and root cause analysis for microservice systems,”
in Proceedings of the ACM on Web Conference 2024, 2024, pp. 4107–
4116.

[3] H. Wang, Z. Wu, H. Jiang, Y. Huang, J. Wang, S. Kopru, and T. Xie,
“Groot: An event-graph-based approach for root cause analysis in
industrial settings,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2021, pp. 419–429.

[4] Y. Chen, H. Xie, M. Ma, Y. Kang, X. Gao, L. Shi, Y. Cao, X. Gao,
H. Fan, M. Wen et al., “Automatic root cause analysis via large
language models for cloud incidents,” in Proceedings of the Nineteenth
European Conference on Computer Systems, 2024, pp. 674–688.

[5] G. Yu, P. Chen, Z. He, Q. Yan, Y. Luo, F. Li, and Z. Zheng, “Changerca:
Finding root causes from software changes in large online systems,”
Proceedings of the ACM on Software Engineering, vol. 1, no. FSE, pp.
24–46, 2024.

[6] Z. Li, N. Zhao, M. Li, X. Lu, L. Wang, D. Chang, X. Nie, L. Cao,
W. Zhang, K. Sui et al., “Actionable and interpretable fault localization
for recurring failures in online service systems,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp.
996–1008.

[7] S. Gu, G. Rong, T. Ren, H. Zhang, H. Shen, Y. Yu, X. Li, J. Ouyang,
and C. Chen, “Trinityrcl: Multi-granular and code-level root cause
localization using multiple types of telemetry data in microservice
systems,” IEEE Transactions on Software Engineering, vol. 49, no. 5,
pp. 3071–3088, 2023.

[8] X. Zhang, Y. Xu, S. Qin, S. He, B. Qiao, Z. Li, H. Zhang, X. Li,
Y. Dang, Q. Lin et al., “Onion: identifying incident-indicating logs
for cloud systems,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 1253–1263.

[9] G. Yu, P. Chen, H. Chen, Z. Guan, Z. Huang, L. Jing, T. Weng,
X. Sun, and X. Li, “Microrank: End-to-end latency issue localization
with extended spectrum analysis in microservice environments,” in
Proceedings of the Web Conference 2021, 2021, pp. 3087–3098.

[10] G. Yu, P. Chen, Y. Li, H. Chen, X. Li, and Z. Zheng, “Nezha:
Interpretable fine-grained root causes analysis for microservices on
multi-modal observability data,” in Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2023, pp. 553–565.

[11] V. Jeyakumar, O. Madani, A. Parandeh, A. Kulshreshtha, W. Zeng, and
N. Yadav, “Explainit!–a declarative root-cause analysis engine for time
series data,” in Proceedings of the 2019 International Conference on
Management of Data, 2019, pp. 333–348.

[12] H. Huang, X. Zhang, P. Chen, Z. He, Z. Chen, G. Yu, H. Chen,
and C. Sun, “Trastrainer: Adaptive sampling for distributed traces
with system runtime state,” Proceedings of the ACM on Software
Engineering, vol. 1, no. FSE, pp. 473–493, 2024.

[13] S. Yan, C. Shan, W. Yang, B. Xu, D. Li, L. Qiu, J. Tong, and Q. Zhang,
“Cmmd: Cross-metric multi-dimensional root cause analysis,” in Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, 2022, pp. 4310–4320.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 28

[14] A. Ikram, S. Chakraborty, S. Mitra, S. Saini, S. Bagchi, and M. Ko-
caoglu, “Root cause analysis of failures in microservices through
causal discovery,” Advances in Neural Information Processing Systems,
vol. 35, pp. 31 158–31 170, 2022.

[15] M. Li, Z. Li, K. Yin, X. Nie, W. Zhang, K. Sui, and D. Pei, “Causal
inference-based root cause analysis for online service systems with
intervention recognition,” in Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2022, pp.
3230–3240.

[16] J. Soldani and A. Brogi, “Anomaly detection and failure root cause
analysis in (micro) service-based cloud applications: A survey,” ACM
Computing Surveys (CSUR), vol. 55, no. 3, pp. 1–39, 2022.

[17] S. Zhang, S. Xia, W. Fan, B. Shi, X. Xiong, Z. Zhong, M. Ma,
Y. Sun, and D. Pei, “Failure diagnosis in microservice systems: A
comprehensive survey and analysis,” arXiv preprint arXiv:2407.01710,
2024.

[18] P. Di Francesco, I. Malavolta, and P. Lago, “Research on architecting
microservices: Trends, focus, and potential for industrial adoption,” in
2017 IEEE International conference on software architecture (ICSA).
IEEE, 2017, pp. 21–30.

[19] “Spring boot,” https://spring.io/projects/spring-boot, 2024, accessed:
2024-08-19.

[20] “Dubbo,” https://dubbo.apache.org/en/index.html, 2024, accessed:
2024-08-19.

[21] “Docker,” https://www.docker.com/, 2024, accessed: 2024-08-19.
[22] “Spring cloud,” https://spring.io/projects/spring-cloud, 2024, accessed:

2024-08-19.
[23] “Mesos,” https://mesos.apache.org/, 2024, accessed: 2024-08-19.
[24] “Kubernetes,” https://kubernetes.io/, 2024, accessed: 2024-08-19.
[25] “Jenkins,” https://www.jenkins.io/, 2024, accessed: 2024-08-19.
[26] “Gitlab,” https://about.gitlab.com/, 2024, accessed: 2024-08-19.
[27] J. Lewis and M. Fowler, “Microservices a definition of this new

architectural term,” 2014. [Online]. Available: https://martinfowler.
com/articles/microservices.html

[28] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: Automatic and
distributed performance diagnosis with hierarchical causality graph in
large distributed systems,” in IEEE INFOCOM 2014-IEEE Conference
on Computer Communications. IEEE, 2014, pp. 1887–1895.

[29] L. Pham, H. Ha, and H. Zhang, “Baro: Robust root cause analysis for
microservices via multivariate bayesian online change point detection,”
Proceedings of the ACM on Software Engineering, vol. 1, no. FSE, pp.
2214–2237, 2024.

[30] “Incident management guide,” https://sre.google/resources/
practices-and-processes/incident-management-guide/, 2024, accessed:
2024-08-19.

[31] J. Chen, S. Zhang, X. He, Q. Lin, H. Zhang, D. Hao, Y. Kang, F. Gao,
Z. Xu, Y. Dang et al., “How incidental are the incidents? characteriz-
ing and prioritizing incidents for large-scale online service systems,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 373–384.

[32] V. Ganatra, A. Parayil, S. Ghosh, Y. Kang, M. Ma, C. Bansal,
S. Nath, and J. Mace, “Detection is better than cure: A cloud inci-
dents perspective,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2023, pp. 1891–1902.

[33] M. E. Cournoyer, S. Trujillo, C. M. Lawton, W. M. Land, and S. B.
Schreiber, “Anatomy of an incident,” Journal of Chemical Health &
Safety, vol. 23, no. 6, pp. 40–48, 2016.

[34] Y. Zhao, L. Jiang, Y. Tao, S. Zhang, C. Wu, T. Jia, X. Huang, Y. Li, and
Z. Wu, “Identifying root-cause changes for user-reported incidents in
online service systems,” in 2023 IEEE 34th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 2023, pp. 287–
297.

[35] X. Han, L. Zhang, Y. Wu, and S. Yuan, “On root cause localization and
anomaly mitigation through causal inference,” in Proceedings of the
32nd ACM International Conference on Information and Knowledge
Management, 2023, pp. 699–708.

[36] M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X. Jiang, H. Hu, C. Luo,
Y. Li, N. Qiu et al., “Diagnosing root causes of intermittent slow
queries in cloud databases,” Proceedings of the VLDB Endowment,
vol. 13, no. 8, pp. 1176–1189, 2020.

[37] S. Jalali and C. Wohlin, “Systematic literature studies: database
searches vs. backward snowballing,” in Proceedings of the ACM-
IEEE international symposium on Empirical software engineering and
measurement, 2012, pp. 29–38.

[38] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance
issues with causal graphs in micro-service environments,” in Service-
Oriented Computing: 16th International Conference, ICSOC 2018,
Hangzhou, China, November 12-15, 2018, Proceedings 16. Springer,
2018, pp. 3–20.

[39] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen,
“Cloudranger: Root cause identification for cloud native systems,” in
2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, 2018, pp. 492–502.

[40] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing failure root causes in a microservice through
causality inference,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS). IEEE, 2020, pp. 1–10.

[41] L. Wang, C. Zhang, R. Ding, Y. Xu, Q. Chen, W. Zou, Q. Chen,
M. Zhang, X. Gao, H. Fan et al., “Root cause analysis for microservice
systems via hierarchical reinforcement learning from human feedback,”
in Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023, pp. 5116–5125.

[42] M. Ma, W. Lin, D. Pan, and P. Wang, “Servicerank: Root cause
identification of anomaly in large-scale microservice architectures,”
IEEE Transactions on Dependable and Secure Computing, vol. 19,
no. 5, pp. 3087–3100, 2021.

[43] Y. Zhang, Z. Guan, H. Qian, L. Xu, H. Liu, Q. Wen, L. Sun, J. Jiang,
L. Fan, and M. Ke, “Cloudrca: A root cause analysis framework
for cloud computing platforms,” in Proceedings of the 30th ACM
International Conference on Information & Knowledge Management,
2021, pp. 4373–4382.

[44] Y. Pan, M. Ma, X. Jiang, and P. Wang, “Faster, deeper, easier: crowd-
sourcing diagnosis of microservice kernel failure from user space,” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 646–657.

[45] J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia, R. Chen,
B. Viswanath, L. Jiao, and C. Fetzer, “Sieve: Actionable insights from
monitored metrics in distributed systems,” in Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, 2017, pp. 14–27.

[46] X. Jiang, Y. Pan, M. Ma, and P. Wang, “Look deep into the microservice
system anomaly through very sparse logs,” in Proceedings of the ACM
Web Conference 2023, 2023, pp. 2970–2978.

[47] Y. Chen, D. Xu, N. Chen, and X. Wu, “Frl-mfpg: Propagation-
aware fault root cause location for microservice intelligent operation
and maintenance,” Information and Software Technology, vol. 153, p.
107083, 2023.

[48] L. Mariani, C. Monni, M. Pezzé, O. Riganelli, and R. Xin, “Localizing
faults in cloud systems,” in 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 2018,
pp. 262–273.

[49] S. Zhang, Y. Zhao, X. Xiong, Y. Sun, X. Nie, J. Zhang, F. Wang,
X. Zheng, Y. Zhang, and D. Pei, “Illuminating the gray zone: Non-
intrusive gray failure localization in server operating systems,” in
Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering, 2024, pp. 126–137.

[50] Z. Hu, P. Chen, G. Yu, Z. He, and X. Li, “Ts-invarnet: Anomaly
detection and localization based on tempo-spatial kpi invariants in
distributed services,” in 2022 IEEE International Conference on Web
Services (ICWS). IEEE, 2022, pp. 109–119.

[51] Z. Yao, C. Pei, W. Chen, H. Wang, L. Su, H. Jiang, Z. Xie, X. Nie,
and D. Pei, “Chain-of-event: Interpretable root cause analysis for
microservices through automatically learning weighted event causal
graph,” in Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, 2024, pp.
50–61.

[52] X. Lu, Z. Xie, Z. Li, M. Li, X. Nie, N. Zhao, Q. Yu, S. Zhang,
K. Sui, L. Zhu et al., “Generic and robust performance diagnosis
via causal inference for oltp database systems,” in 2022 22nd IEEE
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). IEEE, 2022, pp. 655–664.

[53] X. Nie, Y. Zhao, K. Sui, D. Pei, Y. Chen, and X. Qu, “Mining
causality graph for automatic web-based service diagnosis,” in 2016
IEEE 35th International Performance Computing and Communications
Conference (IPCCC). IEEE, 2016, pp. 1–8.

[54] V. Harsh, W. Zhou, S. Ashok, R. N. Mysore, B. Godfrey, and S. Baner-
jee, “Murphy: Performance diagnosis of distributed cloud applications,”
in Proceedings of the ACM SIGCOMM 2023 Conference, 2023, pp.
438–451.

[55] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: practical
and scalable ml-driven performance debugging in microservices,” in
Proceedings of the 26th ACM International Conference on Architec-

https://spring.io/projects/spring-boot
https://dubbo.apache.org/en/index.html
https://www.docker.com/
https://spring.io/projects/spring-cloud
https://mesos.apache.org/
https://kubernetes.io/
https://www.jenkins.io/
https://about.gitlab.com/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://sre.google/resources/practices-and-processes/incident-management-guide/
https://sre.google/resources/practices-and-processes/incident-management-guide/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 29

tural Support for Programming Languages and Operating Systems,
2021, pp. 135–151.

[56] Y. Gan, G. Liu, X. Zhang, Q. Zhou, J. Wu, and J. Jiang, “Sleuth:
A trace-based root cause analysis system for large-scale microser-
vices with graph neural networks,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 4, 2023, pp. 324–337.

[57] D. Wang, Z. Chen, J. Ni, L. Tong, Z. Wang, Y. Fu, and H. Chen, “Inter-
dependent causal networks for root cause localization,” in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2023, pp. 5051–5060.

[58] D. Wang, Z. Chen, Y. Fu, Y. Liu, and H. Chen, “Incremental causal
graph learning for online root cause analysis,” in Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2023, pp. 2269–2278.

[59] Z. Xie, S. Zhang, Y. Geng, Y. Zhang, M. Ma, X. Nie, Z. Yao, L. Xu,
Y. Sun, W. Li et al., “Microservice root cause analysis with limited
observability through intervention recognition in the latent space,”
2024.

[60] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo,
J. Zeng, W. Xue et al., “Unsupervised detection of microservice trace
anomalies through service-level deep bayesian networks,” in 2020 IEEE
31st International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2020, pp. 48–58.

[61] L. Wu, J. Bogatinovski, S. Nedelkoski, J. Tordsson, and O. Kao,
“Performance diagnosis in cloud microservices using deep learning,” in
International Conference on Service-Oriented Computing. Springer,
2020, pp. 85–96.

[62] G. Somashekar, A. Dutt, M. Adak, T. Lorido Botran, and A. Gandhi,
“Gamma: Graph neural network-based multi-bottleneck localization
for microservices applications,” in Proceedings of the ACM on Web
Conference 2024, 2024, pp. 3085–3095.

[63] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap:
Diagnose your microservice-based web applications automatically,” in
Proceedings of The Web Conference 2020, 2020, pp. 246–258.

[64] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Microrca: Root cause
localization of performance issues in microservices,” in NOMS 2020-
2020 IEEE/IFIP Network Operations and Management Symposium.
IEEE, 2020, pp. 1–9.

[65] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” ACM SIGMETRICS Performance Evaluation
Review, vol. 41, no. 1, pp. 93–104, 2013.

[66] W. Lin, M. Ma, D. Pan, and P. Wang, “Facgraph: Frequent anomaly
correlation graph mining for root cause diagnose in micro-service
architecture,” in 2018 IEEE 37th International Performance Computing
and Communications Conference (IPCCC). IEEE, 2018, pp. 1–8.

[67] J. Yang, Y. Guo, Y. Chen, Y. Zhao, Z. Lu, and Y. Liang, “Robust
anomaly diagnosis in heterogeneous microservices systems under vari-
able invocations,” in GLOBECOM 2022-2022 IEEE Global Communi-
cations Conference. IEEE, 2022, pp. 2722–2727.

[68] C. Zhang, Z. Dong, X. Peng, B. Zhang, and M. Chen, “Trace-based
multi-dimensional root cause localization of performance issues in
microservice systems,” in Proceedings of the IEEE/ACM 46th Inter-
national Conference on Software Engineering, 2024, pp. 1–12.

[69] H. Nguyen, Z. Shen, Y. Tan, and X. Gu, “Fchain: Toward black-
box online fault localization for cloud systems,” in 2013 IEEE 33rd
International Conference on Distributed Computing Systems. IEEE,
2013, pp. 21–30.

[70] M. Ma, W. Lin, D. Pan, and P. Wang, “Ms-rank: Multi-metric and self-
adaptive root cause diagnosis for microservice applications,” in 2019
IEEE International Conference on Web Services (ICWS). IEEE, 2019,
pp. 60–67.

[71] P. Liu, Y. Chen, X. Nie, J. Zhu, S. Zhang, K. Sui, M. Zhang, and
D. Pei, “Fluxrank: A widely-deployable framework to automatically
localizing root cause machines for software service failure mitigation,”
in 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2019, pp. 35–46.

[72] S. Zhang, P. Jin, Z. Lin, Y. Sun, B. Zhang, S. Xia, Z. Li, Z. Zhong,
M. Ma, W. Jin et al., “Robust failure diagnosis of microservice system
through multimodal data,” IEEE Transactions on Services Computing,
vol. 16, no. 6, pp. 3851–3864, 2023.

[73] Q. Yu, C. Pei, B. Hao, M. Li, Z. Li, S. Zhang, X. Lu, R. Wang,
J. Li, Z. Wu et al., “Cmdiagnostor: An ambiguity-aware root cause
localization approach based on call metric data,” in Proceedings of the
ACM Web Conference 2023, 2023, pp. 2937–2947.

[74] Z. He, P. Chen, Y. Luo, Q. Yan, H. Chen, G. Yu, and F. Li, “Graph
based incident extraction and diagnosis in large-scale online systems,”

in Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1–13.

[75] R. Ding, C. Zhang, L. Wang, Y. Xu, M. Ma, X. Wu, M. Zhang, Q. Chen,
X. Gao, X. Gao et al., “Tracediag: Adaptive, interpretable, and efficient
root cause analysis on large-scale microservice systems,” in Proceed-
ings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2023, pp.
1762–1773.

[76] T. Jia, P. Chen, L. Yang, Y. Li, F. Meng, and J. Xu, “An approach
for anomaly diagnosis based on hybrid graph model with logs for
distributed services,” in 2017 IEEE international conference on web
services (ICWS). IEEE, 2017, pp. 25–32.

[77] F. Liu, Y. Wang, Z. Li, R. Ren, H. Guan, X. Yu, X. Chen, and G. Xie,
“Microcbr: Case-based reasoning on spatio-temporal fault knowledge
graph for microservices troubleshooting,” in International Conference
on Case-Based Reasoning. Springer, 2022, pp. 224–239.

[78] H. Shan, Y. Chen, H. Liu, Y. Zhang, X. Xiao, X. He, M. Li, and
W. Ding, “ϵ-diagnosis: Unsupervised and real-time diagnosis of small-
window long-tail latency in large-scale microservice platforms,” in The
World Wide Web Conference, 2019, pp. 3215–3222.

[79] P. Spirtes, C. Glymour, and R. Scheines, Causation, prediction, and
search. MIT press, 2001.

[80] S. Z. Li, Markov random field modeling in image analysis. Springer
Science & Business Media, 2009.

[81] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[82] C. Wu, N. Zhao, L. Wang, X. Yang, S. Li, M. Zhang, X. Jin, X. Wen,
X. Nie, W. Zhang et al., “Identifying root-cause metrics for incident
diagnosis in online service systems,” in 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2021,
pp. 91–102.

[83] D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou,
and Z. Wu, “Microhecl: High-efficient root cause localization in large-
scale microservice systems,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2021, pp. 338–347.

[84] X. Zhang, C. Du, Y. Li, Y. Xu, H. Zhang, S. Qin, Z. Li, Q. Lin,
Y. Dang, A. Zhou et al., “Halo: Hierarchy-aware fault localization for
cloud systems,” in Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, 2021, pp. 3948–3958.

[85] K. Wang, C. Fung, C. Ding, P. Pei, S. Huang, Z. Luan, and D. Qian,
“A methodology for root-cause analysis in component based systems,”
in 2015 IEEE 23rd International Symposium on Quality of Service
(IWQoS). IEEE, 2015, pp. 243–248.

[86] Z. Li, J. Chen, R. Jiao, N. Zhao, Z. Wang, S. Zhang, Y. Wu,
L. Jiang, L. Yan, Z. Wang et al., “Practical root cause localization
for microservice systems via trace analysis,” in 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS). IEEE, 2021,
pp. 1–10.

[87] H. Abe and S. Tsumoto, “Analyzing behavior of objective rule evalua-
tion indices based on a correlation coefficient,” in International Confer-
ence on Knowledge-Based and Intelligent Information and Engineering
Systems. Springer, 2008, pp. 758–765.

[88] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in kdd, vol. 96, no. 34, 1996, pp. 226–231.

[89] Z. Li, C. Luo, Y. Zhao, Y. Sun, K. Sui, X. Wang, D. Liu, X. Jin,
Q. Wang, and D. Pei, “Generic and robust localization of multi-
dimensional root causes,” in 2019 IEEE 30th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 2019, pp. 47–57.

[90] H. Kong, T. Li, J. Ge, L. Zhang, and L. Li, “Enhancing fault localization
in microservices systems through span-level using graph convolutional
networks,” Automated Software Engineering, vol. 31, no. 2, p. 46, 2024.

[91] “Sock shop,” https://github.com/microservices-demo/
microservices-demo, 2024, accessed: 2024-08-21.

[92] “Train ticket,” https://github.com/FudanSELab/train-ticket, 2024, ac-
cessed: 2024-10-03.

[93] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the association for
computational linguistics, vol. 5, pp. 135–146, 2017.

[94] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[95] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[96] X. Zhang, S. Ghosh, C. Bansal, R. Wang, M. Ma, Y. Kang, and S. Ra-
jmohan, “Automated root causing of cloud incidents using in-context

https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo
https://github.com/FudanSELab/train-ticket

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 30

learning with gpt-4,” in Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering,
2024, pp. 266–277.

[97] D. Zhang, X. Zhang, C. Bansal, P. Las-Casas, R. Fonseca, and S. Raj-
mohan, “Lm-pace: Confidence estimation by large language models for
effective root causing of cloud incidents,” in Companion Proceedings of
the 32nd ACM International Conference on the Foundations of Software
Engineering, 2024, pp. 388–398.

[98] T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann, X. Zhang, and
S. Rajmohan, “Recommending root-cause and mitigation steps for
cloud incidents using large language models,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE,
2023, pp. 1737–1749.

[99] Y. Sui, Y. Zhang, J. Sun, T. Xu, S. Zhang, Z. Li, Y. Sun, F. Guo, J. Shen,
Y. Zhang et al., “Logkg: Log failure diagnosis through knowledge
graph,” IEEE Transactions on Services Computing, 2023.

[100] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and
C. He, “Latent error prediction and fault localization for microservice
applications by learning from system trace logs,” in Proceedings of
the 2019 27th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering,
2019, pp. 683–694.

[101] S. Zhang, J. Zhu, B. Hao, Y. Sun, X. Nie, J. Zhu, X. Liu, X. Li, Y. Ma,
and D. Pei, “Fault diagnosis for test alarms in microservices through
multi-source data,” in Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering,
2024, pp. 115–125.

[102] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie,
and L. Su, “Graph-based trace analysis for microservice architecture
understanding and problem diagnosis,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020,
pp. 1387–1397.

[103] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding,
“Fault analysis and debugging of microservice systems: Industrial
survey, benchmark system, and empirical study,” IEEE Transactions
on Software Engineering, vol. 47, no. 2, pp. 243–260, 2018.

[104] M. Ma, W. Lin, D. Pan, and P. Wang, “Self-adaptive root cause
diagnosis for large-scale microservice architecture,” IEEE Transactions
on Services Computing, vol. 15, no. 3, pp. 1399–1410, 2020.

[105] G. Yu, Z. Huang, and P. Chen, “Tracerank: Abnormal service local-
ization with dis-aggregated end-to-end tracing data in cloud native
systems,” Journal of Software: Evolution and Process, vol. 35, no. 10,
p. e2413, 2023.

[106] Y. Li, G. Yu, P. Chen, C. Zhang, and Z. Zheng, “Microsketch:
Lightweight and adaptive sketch based performance issue detection
and localization in microservice systems,” in International Conference
on Service-Oriented Computing. Springer, 2022, pp. 219–236.

[107] J. Yang, Y. Guo, Y. Chen, and Y. Zhao, “Tracenet: Operation aware
root cause localization of microservice system anomalies,” in 2023
IEEE International Conference on Communications Workshops (ICC
Workshops). IEEE, 2023, pp. 758–763.

[108] S. Zhang, Y. Zhao, J. Lu, B. Lyu, S. Zhu, Z. Wang, J. Yang, L. He,
and J. Wu, “Cloudpin: A root cause localization framework of shared
bandwidth package traffic anomalies in public cloud networks,” in
2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2021, pp. 367–377.

[109] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust anomaly
detection and localization for interleaved unstructured logs,” IEEE
Transactions on Dependable and Secure Computing, vol. 20, no. 4,
pp. 2762–2780, 2022.

[110] Y. Wu, B. Chai, Y. Li, B. Liu, J. Li, Y. Yang, and W. Jiang, “An
empirical study on change-induced incidents of online service systems,”
in 2023 IEEE/ACM 45th International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP). IEEE, 2023,
pp. 234–245.

[111] Y. Cai, B. Han, J. Li, N. Zhao, and J. Su, “Modelcoder: A fault model
based automatic root cause localization framework for microservice
systems,” in 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS). IEEE, 2021, pp. 1–6.

[112] C. Sauvanaud, K. Lazri, M. Kaâniche, and K. Kanoun, “Anomaly
detection and root cause localization in virtual network functions,”
in 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2016, pp. 196–206.

[113] C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu, X. Wu, Q. Lin, and
D. Zhang, “Deeptralog: Trace-log combined microservice anomaly
detection through graph-based deep learning,” in Proceedings of the

44th international conference on software engineering, 2022, pp. 623–
634.

[114] C. Hou, T. Jia, Y. Wu, Y. Li, and J. Han, “Diagnosing performance
issues in microservices with heterogeneous data source,” in 2021 IEEE
Intl Conf on Parallel & Distributed Processing with Applications, Big
Data & Cloud Computing, Sustainable Computing & Communications,
Social Computing & Networking (ISPA/BDCloud/SocialCom/Sustain-
Com). IEEE, 2021, pp. 493–500.

[115] V. Murali, E. Yao, U. Mathur, and S. Chandra, “Scalable statistical
root cause analysis on app telemetry,” in 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). IEEE, 2021, pp. 288–297.

[116] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance monitoring and
root cause analysis for cloud-hosted web applications,” in Proceedings
of the 26th International Conference on World Wide Web, 2017, pp.
469–478.

[117] C. M. Rosenberg and L. Moonen, “Spectrum-based log diagnosis,”
in Proceedings of the 14th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2020, pp.
1–12.

[118] L. Wang, N. Zhao, J. Chen, P. Li, W. Zhang, and K. Sui, “Root-cause
metric location for microservice systems via log anomaly detection,” in
2020 IEEE international conference on web services (ICWS). IEEE,
2020, pp. 142–150.

[119] B. Sharma, P. Jayachandran, A. Verma, and C. R. Das, “Cloudpd:
Problem determination and diagnosis in shared dynamic clouds,” in
2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2013, pp. 1–12.

[120] A. Amar and P. C. Rigby, “Mining historical test logs to predict
bugs and localize faults in the test logs,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 140–151.

[121] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,” in
Proceedings of the 2018 26th ACM joint meeting on European software
engineering conference and symposium on the foundations of software
engineering, 2018, pp. 60–70.

[122] S. Lu, B. Rao, X. Wei, B. Tak, L. Wang, and L. Wang, “Log-based
abnormal task detection and root cause analysis for spark,” in 2017
IEEE International Conference on Web Services (ICWS). IEEE, 2017,
pp. 389–396.

[123] H. Ikeuchi, A. Watanabe, T. Kawata, and R. Kawahara, “Root-cause
diagnosis using logs generated by user actions,” in 2018 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–7.

[124] J. Ni, W. Cheng, K. Zhang, D. Song, T. Yan, H. Chen, and X. Zhang,
“Ranking causal anomalies by modeling local propagations on net-
worked systems,” in 2017 IEEE International Conference on Data
Mining (ICDM). IEEE, 2017, pp. 1003–1008.

[125] J. Shi, S. Jiang, B. Xu, and Y. Xiao, “Serverrca: Root cause analysis
for server failure using operating system logs,” in 2023 IEEE 34th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2023, pp. 486–496.

[126] Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and
V. Muntés-Mulero, “Graph-based root cause analysis for service-
oriented and microservice architectures,” Journal of Systems and Soft-
ware, vol. 159, p. 110432, 2020.

[127] J. Jiang, W. Lu, J. Chen, Q. Lin, P. Zhao, Y. Kang, H. Zhang, Y. Xiong,
F. Gao, Z. Xu et al., “How to mitigate the incident? an effective
troubleshooting guide recommendation technique for online service
systems,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 1410–1420.

[128] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-Anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin
et al., “What bugs live in the cloud? a study of 3000+ issues in cloud
systems,” in Proceedings of the ACM symposium on cloud computing,
2014, pp. 1–14.

[129] H. Liu, S. Lu, M. Musuvathi, and S. Nath, “What bugs cause production
cloud incidents?” in Proceedings of the Workshop on Hot Topics in
Operating Systems, 2019, pp. 155–162.

[130] Y. Zhao, L. Jiang, Y. Tao, S. Zhang, C. Wu, Y. Wu, T. Jia, Y. Li,
and Z. Wu, “How to manage change-induced incidents? lessons from
the study of incident life cycle,” in 2023 IEEE 34th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2023,
pp. 264–274.

[131] S. Ghosh, M. Shetty, C. Bansal, and S. Nath, “How to fight production
incidents? an empirical study on a large-scale cloud service,” in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 31

Proceedings of the 13th Symposium on Cloud Computing, 2022, pp.
126–141.

[132] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why does the cloud stop computing?
lessons from hundreds of service outages,” in Proceedings of the
Seventh ACM Symposium on Cloud Computing, 2016, pp. 1–16.

[133] X. Huang, H. Liu, Y. Wu, Y. Zhao, C. Wu, S. Zhang, L. Jiang, T. Jia,
Y. Li, and Z. Wu, “Ocrcl: Online contrastive learning for root cause
localization of business incidents,” in 2024 IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2024, pp. 524–534.

[134] “Online boutique,” https://github.com/GoogleCloudPlatform/
microservices-demo, 2024, accessed: 2024-10-03.

[135] “Deathstarbench,” https://github.com/delimitrou/DeathStarBench/tree/
master, 2024, accessed: 2024-10-03.

[136] “Apache thrift,” https://thrift.apache.org/, 2024, accessed: 2024-10-03.
[137] “Déjàvu dataset,” https://zenodo.org/records/6955909, 2024, accessed:

2024-10-03.
[138] “Rcd dataset,” https://github.com/azamikram/rcd/tree/master, 2024, ac-

cessed: 2024-10-03.
[139] “Changerca dataset,” https://github.com/IntelligentDDS/ChangeRCA,

2024, accessed: 2024-10-03.
[140] “Baro dataset,” https://zenodo.org/records/11046533, 2024, accessed:

2024-10-03.
[141] “Squeeze dataset,” https://zenodo.org/records/8153367, 2024, accessed:

2024-10-03.
[142] “Dycause dataset,” https://github.com/PanYicheng/dycause rca/tree/

main, 2024, accessed: 2024-10-03.
[143] “Grayscope dataset,” https://gitee.com/milohaha/grayscope/tree/master,

2024, accessed: 2024-10-03.
[144] “Latentscope dataset,” https://github.com/NetManAIOps/LatentScope,

2024, accessed: 2024-10-03.
[145] “Microcu dataset,” https://github.com/jxrjxrjxr/MicroCU/tree/main,

2024, accessed: 2024-10-03.
[146] “Murphy dataset,” https://github.com/netarch/Murphy-traces, 2024, ac-

cessed: 2024-10-03.
[147] “Aiops competition dataset,” https://www.aiops.cn//, 2024, accessed:

2024-10-03.
[148] “Nezha dataset,” https://github.com/IntelligentDDS/Nezha/tree/main,

2024, accessed: 2024-10-03.
[149] “Gaia dataset,” https://github.com/CloudWise-OpenSource/

GAIA-DataSet, 2024, accessed: 2024-10-03.
[150] “Eadro dataset,” https://zenodo.org/records/7615394, 2024, accessed:

2024-10-03.
[151] “Gamma dataset,” https://www.kaggle.com/datasets/gagansomashekar/

microservices-bottleneck-detection-dataset, 2024, accessed: 2024-10-
03.

[152] “Mepfl dataset,” https://github.com/FudanSELab/
Research-ESEC-FSE2019-AIOPS, 2024, accessed: 2024-10-03.

[153] “Github - phamquiluan/baro: [fse’24 - best artifact award] baro:
Robust root cause analysis for microservice systems.” https://github.
com/phamquiluan/baro, 2024, accessed: 2024-10-27.

[154] “Github - intelligentdds/gied: Graph based incident extraction and
diagnosis in large-scale online systems (ase’22),” https://github.com/
IntelligentDDS/GIED, 2024, accessed: 2024-10-27.

[155] “Github - netmanaiops/latentscope: Source code and dataset b for kdd
24 paper ”microservice root cause analysis with limited observability
through intervention recognition in the latent space”,” https://github.
com/NetManAIOps/LatentScope, 2024, accessed: 2024-10-27.

[156] “Github - fudanselab/deeptralog,” https://github.com/FudanSELab/
DeepTraLog, 2024, accessed: 2024-10-27.

[157] “Github - netmanaiops/chain-of-event,” https://github.com/
NetManAIOps/Chain-of-Event, 2024, accessed: 2024-10-27.

[158] “Github - netmanaiops/circa: Causal inference-based root cause analy-
sis,” https://github.com/NetManAIOps/CIRCA, 2024, accessed: 2024-
10-27.

[159] “Github - intelligentdds/changerca,” https://github.com/IntelligentDDS/
ChangeRCA, 2024, accessed: 2024-10-27.

[160] “Github - azamikram/rcd: Root cause discovery: Root cause analysis
of failures in microservices through causal discovery,” https://github.
com/azamikram/rcd, 2024, accessed: 2024-10-27.

[161] “Github - bebillionaireusd/eadro,” https://github.com/
BEbillionaireUSD/Eadro, 2024, accessed: 2024-10-27.

[162] “Github - netmanaiops/dejavu: Code and datasets for fse’22 paper
”actionable and interpretable fault localization for recurring failures
in online service systems”,” https://github.com/NetManAIOps/DejaVu,
2024, accessed: 2024-10-27.

[163] “Github - jxrjxrjxr/microcu,” https://github.com/jxrjxrjxr/MicroCU,
2024, accessed: 2024-10-27.

[164] “Github - netmanaiops/tracerca: Practical root cause localization for
microservice systems via trace analysis. iwqos 2021,” https://github.
com/NetManAIOps/TraceRCA, 2024, accessed: 2024-10-27.

[165] “Github - aiops-lab-nku/diagfusion,” https://github.com/
AIOps-Lab-NKU/DiagFusion, 2024, accessed: 2024-10-27.

[166] “Github - intelligentdds/microrank: Microrank: End-to-end latency
issue localization with extended spectrum analysis in microservice en-
vironments,” https://github.com/IntelligentDDS/MicroRank, 2024, ac-
cessed: 2024-10-27.

[167] “Github - netmanaiops/cmdiagnostor,” https://github.com/
NetManAIOps/CMDiagnostor, 2024, accessed: 2024-10-27.

[168] “Github - netmanaiops/squeeze: Issre 2019: Generic and robust lo-
calization of multi-dimensional root cause,” https://github.com/lizeyan/
Squeeze, 2024, accessed: 2024-10-27.

[169] “Github - intelligentdds/nezha: The implementation of multimodal
observability data root cause analysis approach nezha in fse 2023,”
https://github.com/IntelligentDDS/Nezha, 2024, accessed: 2024-10-27.

[170] “Github - logpai/log3c: Log-based impactful problem identification us-
ing machine learning [fse’18],” https://github.com/logpai/Log3C, 2024,
accessed: 2024-10-27.

[171] “Github - fengrui-liu/microcbr: Official repository for microcbr,” https:
//github.com/Fengrui-Liu/MicroCBR, 2024, accessed: 2024-10-27.

[172] “Sieve by sieve-microservices,” https://sieve-microservices.github.io/,
2024, accessed: 2024-10-27.

[173] “Github - intelligentdds/swisslog: The implementation of swisslog
in issre’20 and tdsc’22,” https://github.com/IntelligentDDS/SwissLog,
2024, accessed: 2024-10-27.

[174] “Opentelemetry ebpf profiler,” https://github.com/open-telemetry/
opentelemetry-ebpf-profiler, 2024, accessed: 2024-08-21.

[175] “Auto profiling,” https://www.deepflow.io/docs/features/
continuous-profiling/auto-profiling/, 2024, accessed: 2024-08-21.

[176] “Github issue of prometheus,” https://github.com/prometheus/
prometheus/issues/10445/, 2024, accessed: 2024-09-14.

[177] L. Zhang, Z. Xie, V. Anand, Y. Vigfusson, and J. Mace, “The benefit
of hindsight: Tracing {Edge-Cases} in distributed systems,” in 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), 2023, pp. 321–339.

[178] S. He, B. Feng, L. Li, X. Zhang, Y. Kang, Q. Lin, S. Rajmohan,
and D. Zhang, “Steam: observability-preserving trace sampling,” in
Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, 2023, pp. 1750–1761.

[179] Alibaba, “Design architecture,” 2023, gitHub repository. [Online].
Available: https://help.aliyun.com/document detail/2362206.html

[180] M. Solé, V. Muntés-Mulero, A. I. Rana, and G. Estrada, “Survey
on models and techniques for root-cause analysis,” arXiv preprint
arXiv:1701.08546, 2017.

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/delimitrou/DeathStarBench/tree/master
https://github.com/delimitrou/DeathStarBench/tree/master
https://thrift.apache.org/
https://zenodo.org/records/6955909
https://github.com/azamikram/rcd/tree/master
https://github.com/IntelligentDDS/ChangeRCA
https://zenodo.org/records/11046533
https://zenodo.org/records/8153367
https://github.com/PanYicheng/dycause_rca/tree/main
https://github.com/PanYicheng/dycause_rca/tree/main
https://gitee.com/milohaha/grayscope/tree/master
https://github.com/NetManAIOps/LatentScope
https://github.com/jxrjxrjxr/MicroCU/tree/main
https://github.com/netarch/Murphy-traces
https://www.aiops.cn/多模态数据/
https://github.com/IntelligentDDS/Nezha/tree/main
https://github.com/CloudWise-OpenSource/GAIA-DataSet
https://github.com/CloudWise-OpenSource/GAIA-DataSet
https://zenodo.org/records/7615394
https://www.kaggle.com/datasets/gagansomashekar/microservices-bottleneck-detection-dataset
https://www.kaggle.com/datasets/gagansomashekar/microservices-bottleneck-detection-dataset
https://github.com/FudanSELab/Research-ESEC-FSE2019-AIOPS
https://github.com/FudanSELab/Research-ESEC-FSE2019-AIOPS
https://github.com/phamquiluan/baro
https://github.com/phamquiluan/baro
https://github.com/IntelligentDDS/GIED
https://github.com/IntelligentDDS/GIED
https://github.com/NetManAIOps/LatentScope
https://github.com/NetManAIOps/LatentScope
https://github.com/FudanSELab/DeepTraLog
https://github.com/FudanSELab/DeepTraLog
https://github.com/NetManAIOps/Chain-of-Event
https://github.com/NetManAIOps/Chain-of-Event
https://github.com/NetManAIOps/CIRCA
https://github.com/IntelligentDDS/ChangeRCA
https://github.com/IntelligentDDS/ChangeRCA
https://github.com/azamikram/rcd
https://github.com/azamikram/rcd
https://github.com/BEbillionaireUSD/Eadro
https://github.com/BEbillionaireUSD/Eadro
https://github.com/NetManAIOps/DejaVu
https://github.com/jxrjxrjxr/MicroCU
https://github.com/NetManAIOps/TraceRCA
https://github.com/NetManAIOps/TraceRCA
https://github.com/AIOps-Lab-NKU/DiagFusion
https://github.com/AIOps-Lab-NKU/DiagFusion
https://github.com/IntelligentDDS/MicroRank
https://github.com/NetManAIOps/CMDiagnostor
https://github.com/NetManAIOps/CMDiagnostor
https://github.com/lizeyan/Squeeze
https://github.com/lizeyan/Squeeze
https://github.com/IntelligentDDS/Nezha
https://github.com/logpai/Log3C
https://github.com/Fengrui-Liu/MicroCBR
https://github.com/Fengrui-Liu/MicroCBR
https://sieve-microservices.github.io/
https://github.com/IntelligentDDS/SwissLog
https://github.com/open-telemetry/opentelemetry-ebpf-profiler
https://github.com/open-telemetry/opentelemetry-ebpf-profiler
https://www.deepflow.io/docs/features/continuous-profiling/auto-profiling/
https://www.deepflow.io/docs/features/continuous-profiling/auto-profiling/
https://github.com/prometheus/prometheus/issues/10445/
https://github.com/prometheus/prometheus/issues/10445/
https://help.aliyun.com/document_detail/2362206.html

	Introduction
	BACKGROUND
	MICROSERVICE
	INCIDENT MANAGEMENT

	PRELIMINARIES
	TERMINOLOGIES
	DEFINITION OF RCA
	RCA CONSTRAINT (CEO CONSTRAINT)

	SURVEY METHODOLOGY
	SURVEY SCOPE
	PAPER COLLECTION
	PAPER ANALYSIS

	CHALLENGES OF INPUT
	REDUCING BLIND SPOTS THROUGH INFERRING UNOBSERVED DATA
	Construct Graph by Causal Discovery
	Infer Beyond Observation by Causal Inference

	CHALLENGES DUE TO DATA COMPLEXITY
	Intricate Service Dependencies
	Data Complexity
	Data Path Ambiguity
	Scarcity of Incident-related Data
	Difficulty in Obtaining Labeled Data

	ACCURACY OF ANOMALY DETECTION

	CHALLENGES OF EFFICIENCY
	INFERENCE TIME
	Reducing the search space
	Parallel Processing

	COST EFFECTIVENESS AND ROBOSTNESS
	SCALABILITY
	INCREMENTAL TRAINING
	HUMAN IN THE LOOP

	CHALLENGES OF OUTPUT
	DIFFERENT GRANULARITY OF ROOT CAUSE
	At the service level
	At the resource level
	At the component level
	At Multi-dimension level

	INTERPRETABLE LOCALIZATION RESULTS
	Single Root Cause
	Multiple Root Causes
	Fault Propagation Graph
	Explanation of Root Cause/Incident Ticket

	RESEARCH TREND AND DISTRIBUTIONS
	Publication Trend
	Settings of RCA
	Benchmarks
	Datasets
	Public Available Tools

	DISCUSSION
	THREATS TO VALIDITY
	FUTURE WORK DIRECTIONS
	Comprehensive Telemetry Data
	Explore New Types of Telemetry Data
	Eliminate the Side-Effect of Anomaly Detection
	Interpretable RCA Models
	Cost-effective and Robust RCA models
	Intelligent Sample Algorithm
	Efficient RCA models

	RELATED WORKS
	CONCLUSION
	References

