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Background (1 / 3)

Success of LLMs

Generative large language models (LLMs) have become a driving
force behind significant advancements in artificial intelligence (AI)
and have demonstrated exceptional performance across a wide
range of language-related tasks.

▶ Text Translation

▶ Text Paraphrasing

▶ Code Assistance

▶ ...
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Background (2 / 3)

Cost of LLMs

Company Model 1M input($) 1M output($)

OpenAI o1-preview 15 60
OpenAI GPT-4o 2.5 10
Anthropic Claude 3 Opus 15 75
Anthropic Claude 3.5 Sonnet 3 15
Google Gemini 1.5 pro 1.25 5

▶ The large model size and complexity of LLMs lead to the
expensive computational requirements during deployment.
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Challenge

However, the pricing of LLMs prevents their widespread
deployment in real-world applications.
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Background (3 / 3)

Research Question [1]

1 Low latency and fast response time.

2 Small memory consumption on devices.

3 High throughput to simultaneous requests.
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Question

What is an efficient large language models serving system?
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Low-Bit Quantization (1 / 9)

Numerical Precision

Float32 → Float16 leads to lower memory consumption and faster
computing speed.

However, the numerical precision has decreased primarily due to
fewer bits allocated for the exponent.
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Low-Bit Quantization (2 / 9)

Computational Errors

▶ How to use reduced bits while maintain the performance?
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Low numerical precision is likely to cause some computational
errors such as inf and nan.
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Low-Bit Quantization | Inference Quantization (3 / 9)

Which to Quantize

For LLMs at and beyond 6.7B parameters, the feed-forward and
attention layers and their matrix multiplication account largely for
the memory and the computation complexity [2].

Quantize the parameters of the feed-forward and attention layers
and perform their matrix multiplication in less bits format such as
INT8 or INT4 during inference process.
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Low-Bit Quantization | Inference Quantization (4 / 9)

LLM.int8() [3]

1 We identify the regular values and the outliers that exhibit a
magnitude significantly larger than that of the other values
across other dimensions.
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Low-Bit Quantization | Inference Quantization (5 / 9)

LLM.int8() [3]

1 Determine the regular values and outliers that exceed the
representation precision by utilizing FP16.

2 To process regular values, first quantize the matrices to INT8
format, then perform the multiplication. Finally, convert the
resulting product into FP16 format.
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Low-Bit Quantization | Inference Quantization (6 / 9)

LLM.int8() [3]

1 Determine the regular values and outliers that exceed the
representation precision by utilizing FP16.

2 To process regular values, first quantize the matrices to IN8
format, then perform the multiplication. Finally, convert the
resulting product into FP16 format.

3 To address the outliers, perform the multiplication in FP16
format, as they hurt the performance when using INT8 format.
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Low-Bit Quantization | Training Quantization (7 / 9)

LoRA [4]

▶ Freeze the original model parameters.

▶ Initialize a small set of trainable parameters for certain
components W of the model.

▶ Decompose the update in a low-rank manner.
W = W +∆W → W = W +BA
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Low-Bit Quantization | Training Quantization (8 / 9)

QLoRA [5]

1 Quantize the pretrained model in 4-bit NormalFloat format
which yields better results than INT4 and FP4 for normally
distributed data.
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Low-Bit Quantization | Training Quantization (9 / 9)

QLoRA [5]

1 Quantize the pretrained model in 4-bit NormalFloat format
which is an information theoretically optimal quantization
data type for normally distributed data that yields better
empirical results than 4-bit Integers and 4-bit Floats.

2 Introduce the Double Quantization which is a method that
quantizes the quantization constants resulting from quantizing
the model from FP32 format to FP8 format.

23 / 53



Outline

1 Background

2 Low-Bit Quantization
Inference Quantization
Training Quantization

3 Parallel Computation
Data Parallelism
Model Parallelism

4 Memory Management
CPU Offloading
KV Cache

5 Conclusion & Future Direction

6 References

24 / 53



Parallel Computation (1 / 5)

Why Parallel

1 Parallel computation enhances the efficiency of the training
process, particularly when dealing with large datasets and
complex models.

2 Parallel computation enhances convergence stability by
allowing multiple instances to be learned simultaneously,
leading to improved performance.
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Parallel Computation | Data Parallelism (2 / 5)

The Procedure

1 Partition the training data.

2 Parallel training on multiple machines.

3 Synchronize the updates from multiple machines.

4 Update the model and forward the updates to machines.
Repeat from step 2.
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Parallel Computation | Data Parallelism (3 / 5)

ZeRO [6]

1 Pos : shards the optimizer states (save 73.8%).

2 Pos+g : shards the optimizer states and gradients (save 86.2%).

3 Pos+g+p : shards the optimizer states, gradients, and parameters
(save 98.4%)
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Parallel Computation | Model Parallelism (4 / 5)

Tensor Parallelism [7]

▶ Split the matrix by its rows or columns, perform the
independent multiplication on multiple devices, and
accumulate the multiplication results.
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Parallel Computation | Model Parallelism (5 / 5)

Pipeline Parallelism [8]

===================  ===================
|  0 | 1 | 2 | 3  |  |  4 | 5 | 6 | 7  |
===================  ===================
        GPU0                 GPU1

1 / 1

▶ Given that one single GPU fails to fit a whole model, we can
put the layers of the model on multiple devices.

▶ For instance, the model executes the computations for the
first four layers on one GPU, while the remaining four layers
are processed on a second GPU.
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Memory Management | CPU Offloading (1 / 7)

The Procedure [9]

When GPU memory is exhausted, it is possible to transfer data to
CPU memory or even to disk for temporary storage.
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Memory Management | KV Cache (2 / 7)

Text → Tokens
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https://platform.openai.com/tokenizer

The original input text is converted into “tokens,” represented as
distinct color blocks in the image below (e.g., Generative → Gener
& ative).



Memory Management | KV Cache (3 / 7)

Text Generation

Algorithm 1: Auto-Regressive Decoding for LLM Inference

1 Initialize the input sequence X0 with a given context or start token
2 for t = 1 to T do
3 Predict the next token yt = argmaxyP (y|Xt−1)

4 Update the input sequence Xt = Xt−1 ⊕ yt
5 if yt is EOS then
6 break
7 end

8 end

1

▶ P (y|Xt−1) represents the probability of the next token y given
the current sequence Xt−1, and ⊕ denotes the concatenation
operation.

▶ The argmax function is used to select the most probable next
token at each step.
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Memory Management | KV Cache (4 / 7)

Computational Redundancy

Algorithm 1: Auto-Regressive Decoding for LLM Inference

1 Initialize the input sequence X0 with a given context or start token
2 for t = 1 to T do
3 Predict the next token yt = argmaxyP (y|Xt−1)

4 Update the input sequence Xt = Xt−1 ⊕ yt
5 if yt is EOS then
6 break
7 end

8 end

1

1 When predicting a new token at position t, the model needs
to walk through the previous context (1, · · · , t− 1).

2 However, the previous context (1, · · · , t− 1) exhibits
significant overlap with the context for predicting a new token
at position t− 1.

3 Each time the model predicts a new token, it must
re-calculate previously computed results, thus leading to
computational redundancy.
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Memory Management | KV Cache (5 / 7)

KV Cache

1 Store the previous computation results into a cache.

2 Avoid computational redundancy by retrieving the information
from the cache instead of re-computation.

3 The inference process is then accelerated by utilizing a cache.
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Memory Management | KV Cache (6 / 7)

Challenges of KV Cache

The naive implementation of KV cache is to pre-allocate a
contiguous memory with a maximum sequence length assumption.

1 Requests of various output lengths take up the same memory.

2 The total memory can not be fully utilized due to the memory
fragmentation.
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Memory Management | KV Cache (7 / 7)

Improved Implementation of KV Cache

1 vLLM proposes paged attention that partitions the KV cache
into non-contiguous memory blocks and significantly improves
the batch size as well as throughput [10].

2 SpecInfer proposes tree attention and depth-first tree traversal
to eliminate redundant KV cache allocation for multiple
output sequences sharing the same prefix [11].

3 LightLLM uses token-level memory management mechanism
to reduce memory usage. [12]
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Conclusion & Future Direction (1 / 2)

Conclusion

How to build efficient large language models serving systems?

1 Low-Bit Quantization

2 Parallel Computation

3 Memory Management

The above frameworks makes huge progress in achieving low
latency, small memory consumption, and high throughput.
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Conclusion & Future Direction (2 / 2)

Future

1 For low-bit quantization, there may be more stable
quantization methods for broad scales of LLMs which also
aligns with the scaling law of LLMs.

2 For parallel computation, the latency introduced by the
communication may be better handled to further speed up the
computation.

3 For memory management, the performance degradation
caused by the fine-grained memory strategies may be
improved without losing the memory efficiency.
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Any Question?
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