
Advance in Efficient Large Language Models
Serving Systems

Yunpeng Tai

Nov 12, 2024

School of Data Science
Chinese University of Hong Kong, Shenzhen

1 / 53

Outline

1 Background

2 Low-Bit Quantization
Inference Quantization
Training Quantization

3 Parallel Computation
Data Parallelism
Model Parallelism

4 Memory Management
CPU Offloading
KV Cache

5 Conclusion & Future Direction

6 References

2 / 53

Outline

1 Background

2 Low-Bit Quantization
Inference Quantization
Training Quantization

3 Parallel Computation
Data Parallelism
Model Parallelism

4 Memory Management
CPU Offloading
KV Cache

5 Conclusion & Future Direction

6 References

3 / 53

Background (1 / 3)

Success of LLMs

Generative large language models (LLMs) have become a driving
force behind significant advancements in artificial intelligence (AI)
and have demonstrated exceptional performance across a wide
range of language-related tasks.

▶ Text Translation

▶ Text Paraphrasing

▶ Code Assistance

▶ ...

4 / 53

Background (2 / 3)

Cost of LLMs

Company Model 1M input($) 1M output($)

OpenAI o1-preview 15 60
OpenAI GPT-4o 2.5 10
Anthropic Claude 3 Opus 15 75
Anthropic Claude 3.5 Sonnet 3 15
Google Gemini 1.5 pro 1.25 5

▶ The large model size and complexity of LLMs lead to the
expensive computational requirements during deployment.

5 / 53

Challenge

However, the pricing of LLMs prevents their widespread
deployment in real-world applications.

Background (2 / 3)

Cost of LLMs

Company Model 1M input($) 1M output($)

OpenAI o1-preview 15 60
OpenAI GPT-4o 2.5 10
Anthropic Claude 3 Opus 15 75
Anthropic Claude 3.5 Sonnet 3 15
Google Gemini 1.5 pro 1.25 5

▶ The large model size and complexity of LLMs lead to the
expensive computational requirements during deployment.

6 / 53

Challenge

However, the pricing of LLMs prevents their widespread
deployment in real-world applications.

Background (3 / 3)

Research Question [1]

1 Low latency and fast response time.

2 Small memory consumption on devices.

3 High throughput to simultaneous requests.

7 / 53

Question

What is an efficient large language models serving system?

Background (3 / 3)

Research Question [1]

1 Low latency and fast response time.

2 Small memory consumption on devices.

3 High throughput to simultaneous requests.

8 / 53

Question

What is an efficient large language models serving system?

Background (3 / 3)

Research Question [1]

1 Low latency and fast response time.

2 Small memory consumption on devices.

3 High throughput to simultaneous requests.

9 / 53

Question

What is an efficient large language models serving system?

Background (3 / 3)

Research Question [1]

1 Low latency and fast response time.

2 Small memory consumption on devices.

3 High throughput to simultaneous requests.

10 / 53

Question

What is an efficient large language models serving system?

Outline

1 Background

2 Low-Bit Quantization
Inference Quantization
Training Quantization

3 Parallel Computation
Data Parallelism
Model Parallelism

4 Memory Management
CPU Offloading
KV Cache

5 Conclusion & Future Direction

6 References

11 / 53

Low-Bit Quantization (1 / 9)

Numerical Precision

Float32 → Float16 leads to lower memory consumption and faster
computing speed.

However, the numerical precision has decreased primarily due to
fewer bits allocated for the exponent.

12 / 53

Low-Bit Quantization (1 / 9)

Numerical Precision

Float32 → Float16 leads to lower memory consumption and faster
computing speed.

However, the numerical precision has decreased primarily due to
fewer bits allocated for the exponent.

13 / 53

Low-Bit Quantization (2 / 9)

Computational Errors

▶ How to use reduced bits while maintain the performance?

14 / 53

Low numerical precision is likely to cause some computational
errors such as inf and nan.

Low-Bit Quantization (2 / 9)

Computational Errors

▶ How to use reduced bits while maintain the performance?

15 / 53

Low numerical precision is likely to cause some computational
errors such as inf and nan.

Low-Bit Quantization | Inference Quantization (3 / 9)

Which to Quantize

For LLMs at and beyond 6.7B parameters, the feed-forward and
attention layers and their matrix multiplication account largely for
the memory and the computation complexity [2].

Quantize the parameters of the feed-forward and attention layers
and perform their matrix multiplication in less bits format such as
INT8 or INT4 during inference process.

16 / 53

Low-Bit Quantization | Inference Quantization (3 / 9)

Which to Quantize

For LLMs at and beyond 6.7B parameters, the feed-forward and
attention layers and their matrix multiplication account largely for
the memory and the computation complexity [2].

Quantize the parameters of the feed-forward and attention layers
and perform their matrix multiplication in less bits format such as
INT8 or INT4 during inference process.

17 / 53

Low-Bit Quantization | Inference Quantization (4 / 9)

LLM.int8() [3]

1 We identify the regular values and the outliers that exhibit a
magnitude significantly larger than that of the other values
across other dimensions.

18 / 53

Low-Bit Quantization | Inference Quantization (5 / 9)

LLM.int8() [3]

1 Determine the regular values and outliers that exceed the
representation precision by utilizing FP16.

2 To process regular values, first quantize the matrices to INT8
format, then perform the multiplication. Finally, convert the
resulting product into FP16 format.

19 / 53

Low-Bit Quantization | Inference Quantization (6 / 9)

LLM.int8() [3]

1 Determine the regular values and outliers that exceed the
representation precision by utilizing FP16.

2 To process regular values, first quantize the matrices to IN8
format, then perform the multiplication. Finally, convert the
resulting product into FP16 format.

3 To address the outliers, perform the multiplication in FP16
format, as they hurt the performance when using INT8 format.

20 / 53

Low-Bit Quantization | Training Quantization (7 / 9)

LoRA [4]

▶ Freeze the original model parameters.

▶ Initialize a small set of trainable parameters for certain
components W of the model.

▶ Decompose the update in a low-rank manner.
W = W +∆W → W = W +BA

21 / 53

Low-Bit Quantization | Training Quantization (8 / 9)

QLoRA [5]

1 Quantize the pretrained model in 4-bit NormalFloat format
which yields better results than INT4 and FP4 for normally
distributed data.

22 / 53

Low-Bit Quantization | Training Quantization (9 / 9)

QLoRA [5]

1 Quantize the pretrained model in 4-bit NormalFloat format
which is an information theoretically optimal quantization
data type for normally distributed data that yields better
empirical results than 4-bit Integers and 4-bit Floats.

2 Introduce the Double Quantization which is a method that
quantizes the quantization constants resulting from quantizing
the model from FP32 format to FP8 format.

23 / 53

Outline

1 Background

2 Low-Bit Quantization
Inference Quantization
Training Quantization

3 Parallel Computation
Data Parallelism
Model Parallelism

4 Memory Management
CPU Offloading
KV Cache

5 Conclusion & Future Direction

6 References

24 / 53

Parallel Computation (1 / 5)

Why Parallel

1 Parallel computation enhances the efficiency of the training
process, particularly when dealing with large datasets and
complex models.

2 Parallel computation enhances convergence stability by
allowing multiple instances to be learned simultaneously,
leading to improved performance.

25 / 53

Parallel Computation (1 / 5)

Why Parallel

1 Parallel computation enhances the efficiency of the training
process, particularly when dealing with large datasets and
complex models.

2 Parallel computation enhances convergence stability by
allowing multiple instances to be learned simultaneously,
leading to improved performance.

26 / 53

Parallel Computation | Data Parallelism (2 / 5)

The Procedure

1 Partition the training data.

2 Parallel training on multiple machines.

3 Synchronize the updates from multiple machines.

4 Update the model and forward the updates to machines.
Repeat from step 2.

27 / 53

Parallel Computation | Data Parallelism (3 / 5)

ZeRO [6]

1 Pos : shards the optimizer states (save 73.8%).

2 Pos+g : shards the optimizer states and gradients (save 86.2%).

3 Pos+g+p : shards the optimizer states, gradients, and parameters
(save 98.4%)

28 / 53

Parallel Computation | Model Parallelism (4 / 5)

Tensor Parallelism [7]

▶ Split the matrix by its rows or columns, perform the
independent multiplication on multiple devices, and
accumulate the multiplication results.

29 / 53

Parallel Computation | Model Parallelism (5 / 5)

Pipeline Parallelism [8]

=================== ===================
| 0 | 1 | 2 | 3 | | 4 | 5 | 6 | 7 |
=================== ===================
 GPU0 GPU1

1 / 1

▶ Given that one single GPU fails to fit a whole model, we can
put the layers of the model on multiple devices.

▶ For instance, the model executes the computations for the
first four layers on one GPU, while the remaining four layers
are processed on a second GPU.

30 / 53

Outline

1 Background

2 Low-Bit Quantization
Inference Quantization
Training Quantization

3 Parallel Computation
Data Parallelism
Model Parallelism

4 Memory Management
CPU Offloading
KV Cache

5 Conclusion & Future Direction

6 References

31 / 53

Memory Management | CPU Offloading (1 / 7)

The Procedure [9]

When GPU memory is exhausted, it is possible to transfer data to
CPU memory or even to disk for temporary storage.

32 / 53

Memory Management | KV Cache (2 / 7)

Text → Tokens

33 / 53

https://platform.openai.com/tokenizer

The original input text is converted into “tokens,” represented as
distinct color blocks in the image below (e.g., Generative → Gener
& ative).

Memory Management | KV Cache (3 / 7)

Text Generation

Algorithm 1: Auto-Regressive Decoding for LLM Inference

1 Initialize the input sequence X0 with a given context or start token
2 for t = 1 to T do
3 Predict the next token yt = argmaxyP (y|Xt−1)

4 Update the input sequence Xt = Xt−1 ⊕ yt
5 if yt is EOS then
6 break
7 end

8 end

1

▶ P (y|Xt−1) represents the probability of the next token y given
the current sequence Xt−1, and ⊕ denotes the concatenation
operation.

▶ The argmax function is used to select the most probable next
token at each step.

34 / 53

Memory Management | KV Cache (4 / 7)

Computational Redundancy

Algorithm 1: Auto-Regressive Decoding for LLM Inference

1 Initialize the input sequence X0 with a given context or start token
2 for t = 1 to T do
3 Predict the next token yt = argmaxyP (y|Xt−1)

4 Update the input sequence Xt = Xt−1 ⊕ yt
5 if yt is EOS then
6 break
7 end

8 end

1

1 When predicting a new token at position t, the model needs
to walk through the previous context (1, · · · , t− 1).

2 However, the previous context (1, · · · , t− 1) exhibits
significant overlap with the context for predicting a new token
at position t− 1.

3 Each time the model predicts a new token, it must
re-calculate previously computed results, thus leading to
computational redundancy.

35 / 53

Memory Management | KV Cache (4 / 7)

Computational Redundancy

Algorithm 1: Auto-Regressive Decoding for LLM Inference

1 Initialize the input sequence X0 with a given context or start token
2 for t = 1 to T do
3 Predict the next token yt = argmaxyP (y|Xt−1)

4 Update the input sequence Xt = Xt−1 ⊕ yt
5 if yt is EOS then
6 break
7 end

8 end

1

1 When predicting a new token at position t, the model needs
to walk through the previous context (1, · · · , t− 1).

2 However, the previous context (1, · · · , t− 1) exhibits
significant overlap with the context for predicting a new token
at position t− 1.

3 Each time the model predicts a new token, it must
re-calculate previously computed results, thus leading to
computational redundancy.

36 / 53

Memory Management | KV Cache (4 / 7)

Computational Redundancy

Algorithm 1: Auto-Regressive Decoding for LLM Inference

1 Initialize the input sequence X0 with a given context or start token
2 for t = 1 to T do
3 Predict the next token yt = argmaxyP (y|Xt−1)

4 Update the input sequence Xt = Xt−1 ⊕ yt
5 if yt is EOS then
6 break
7 end

8 end

1

1 When predicting a new token at position t, the model needs
to walk through the previous context (1, · · · , t− 1).

2 However, the previous context (1, · · · , t− 1) exhibits
significant overlap with the context for predicting a new token
at position t− 1.

3 Each time the model predicts a new token, it must
re-calculate previously computed results, thus leading to
computational redundancy.

37 / 53

Memory Management | KV Cache (5 / 7)

KV Cache

1 Store the previous computation results into a cache.

2 Avoid computational redundancy by retrieving the information
from the cache instead of re-computation.

3 The inference process is then accelerated by utilizing a cache.

38 / 53

Memory Management | KV Cache (6 / 7)

Challenges of KV Cache

The naive implementation of KV cache is to pre-allocate a
contiguous memory with a maximum sequence length assumption.

1 Requests of various output lengths take up the same memory.

2 The total memory can not be fully utilized due to the memory
fragmentation.

39 / 53

Memory Management | KV Cache (6 / 7)

Challenges of KV Cache

The naive implementation of KV cache is to pre-allocate a
contiguous memory with a maximum sequence length assumption.

1 Requests of various output lengths take up the same memory.

2 The total memory can not be fully utilized due to the memory
fragmentation.

40 / 53

Memory Management | KV Cache (7 / 7)

Improved Implementation of KV Cache

1 vLLM proposes paged attention that partitions the KV cache
into non-contiguous memory blocks and significantly improves
the batch size as well as throughput [10].

2 SpecInfer proposes tree attention and depth-first tree traversal
to eliminate redundant KV cache allocation for multiple
output sequences sharing the same prefix [11].

3 LightLLM uses token-level memory management mechanism
to reduce memory usage. [12]

41 / 53

Memory Management | KV Cache (7 / 7)

Improved Implementation of KV Cache

1 vLLM proposes paged attention that partitions the KV cache
into non-contiguous memory blocks and significantly improves
the batch size as well as throughput [10].

2 SpecInfer proposes tree attention and depth-first tree traversal
to eliminate redundant KV cache allocation for multiple
output sequences sharing the same prefix [11].

3 LightLLM uses token-level memory management mechanism
to reduce memory usage. [12]

42 / 53

Memory Management | KV Cache (7 / 7)

Improved Implementation of KV Cache

1 vLLM proposes paged attention that partitions the KV cache
into non-contiguous memory blocks and significantly improves
the batch size as well as throughput [10].

2 SpecInfer proposes tree attention and depth-first tree traversal
to eliminate redundant KV cache allocation for multiple
output sequences sharing the same prefix [11].

3 LightLLM uses token-level memory management mechanism
to reduce memory usage. [12]

43 / 53

Outline

1 Background

2 Low-Bit Quantization
Inference Quantization
Training Quantization

3 Parallel Computation
Data Parallelism
Model Parallelism

4 Memory Management
CPU Offloading
KV Cache

5 Conclusion & Future Direction

6 References

44 / 53

Conclusion & Future Direction (1 / 2)

Conclusion

How to build efficient large language models serving systems?

1 Low-Bit Quantization

2 Parallel Computation

3 Memory Management

The above frameworks makes huge progress in achieving low
latency, small memory consumption, and high throughput.

45 / 53

Conclusion & Future Direction (2 / 2)

Future

1 For low-bit quantization, there may be more stable
quantization methods for broad scales of LLMs which also
aligns with the scaling law of LLMs.

2 For parallel computation, the latency introduced by the
communication may be better handled to further speed up the
computation.

3 For memory management, the performance degradation
caused by the fine-grained memory strategies may be
improved without losing the memory efficiency.

46 / 53

Conclusion & Future Direction (2 / 2)

Future

1 For low-bit quantization, there may be more stable
quantization methods for broad scales of LLMs which also
aligns with the scaling law of LLMs.

2 For parallel computation, the latency introduced by the
communication may be better handled to further speed up the
computation.

3 For memory management, the performance degradation
caused by the fine-grained memory strategies may be
improved without losing the memory efficiency.

47 / 53

Conclusion & Future Direction (2 / 2)

Future

1 For low-bit quantization, there may be more stable
quantization methods for broad scales of LLMs which also
aligns with the scaling law of LLMs.

2 For parallel computation, the latency introduced by the
communication may be better handled to further speed up the
computation.

3 For memory management, the performance degradation
caused by the fine-grained memory strategies may be
improved without losing the memory efficiency.

48 / 53

Outline

1 Background

2 Low-Bit Quantization
Inference Quantization
Training Quantization

3 Parallel Computation
Data Parallelism
Model Parallelism

4 Memory Management
CPU Offloading
KV Cache

5 Conclusion & Future Direction

6 References

49 / 53

[1] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin,
Tianqi Chen, and Zhihao Jia.
Towards efficient generative large language model serving: A survey from
algorithms to systems.
arXiv preprint arXiv:2312.15234, 2023.

[2] Gabriel Ilharco, Cesar Ilharco, Iulia Turc, Tim Dettmers, Felipe Ferreira,
and Kenton Lee.
High performance natural language processing.
In Aline Villavicencio and Benjamin Van Durme, editors, Proceedings of
the 2020 Conference on Empirical Methods in Natural Language
Processing: Tutorial Abstracts, pages 24–27, Online, November 2020.
Association for Computational Linguistics.

[3] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer.
Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale.
Advances in Neural Information Processing Systems, 35:30318–30332,
2022.

[4] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al.
Lora: Low-rank adaptation of large language models.
In International Conference on Learning Representations.

50 / 53

[5] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer.
Qlora: Efficient finetuning of quantized llms.
Advances in Neural Information Processing Systems, 36, 2024.

[6] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
Zero: memory optimizations toward training trillion parameter models.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–16, 2020.

[7] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using
model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

[8] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei
Zaharia.
Memory-efficient pipeline-parallel dnn training.
In International Conference on Machine Learning, pages 7937–7947.
PMLR, 2021.

51 / 53

[9] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
{Zero-offload}: Democratizing {billion-scale} model training.
In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages
551–564, 2021.

[10] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
Efficient memory management for large language model serving with
pagedattention.
In Proceedings of the 29th Symposium on Operating Systems Principles,
pages 611–626, 2023.

[11] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang,
Zhengxin Zhang, Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang
Shi, et al.
Specinfer: Accelerating large language model serving with tree-based
speculative inference and verification.
In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3, pages 932–949, 2024.

52 / 53

[12] Lightllm; commit: 789637f.
https://github.com/ModelTC/lightllm.
Accessed on: 2024-10-24.

53 / 53

Any Question?

	Background
	Low-Bit Quantization
	Inference Quantization
	Training Quantization

	Parallel Computation
	Data Parallelism
	Model Parallelism

	Memory Management
	CPU Offloading
	KV Cache

	Conclusion & Future Direction
	References

