
CSC3150-OS-AS2_24fall​

CSC3150 Assignment 2​

1. Homework Requirements​

1.1. Environment​

• Before starting on this assignment, make sure you have set up your VM properly. We would
test all students' homework using the following environment. You can type the following

command in terminal on your VM to see if your configuration matches the test environment.

If you follow the tutorials then your VM setting should be fine, though verifying your

environment again is still recommended.

• Linux Version​

• The versions of Ubuntu from 16.04 to 22.04 are ok. You can use the following command to get
it.​

csc3150@csc3150:~$ cat /etc/issue
Ubuntu 20.04.6 LTS \n \l

1
2

• Linux Kernel Version​

• 5.4.x or 5.10.x is ok. You can use the following command to get it.​

csc3150@csc3150:~$ uname -r
5.4.0-165-generic

1
2

• GCC Version​

• 4.9 above. Use "gcc --version" to get it.​

csc3150@csc3150:~$ gcc --version
gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1
2
3
4
5

• If your environment is not satisfied, you are still good to go, but please try to test your
program with the above environment for at least once, because you may be able to run your

program on your environment, but not on TAs' environment, causng inconvenience or even

grade deduction.​

1.2. Submission​

• Due on: 23:59, October 28, 2024​

• Please note that, teaching assistants may ask you to explain the meaning of your program, to
ensure that the codes are indeed written by yourself. Please also note that we would check

whether your program is too similar to your fellow students’ code using plagiarism

detectors.​

• Late submission: A late submission within 15 minutes will not induce any penalty on your
grades. But 00:16 am-1:00 am: Reduced by 10%; 1:01 am-2:00 am: Reduced by 20%; 2:01

am-3:00 am: Reduced by 30% and so on. (e.g. Paul submit a perfect attempt of Assignment

2 on 2:10 am. She will get 100*0.7=70 points for her Assignment 2.​

Here is the format guide. The project structure is illustrated as below. You can also use ls -R
command to check if your structure is fine. Structure mismatch would cause grade deduction.​

csc3150@csc3150:~/Assignment_2_120010001$ ls -R
.:
Report.pdf source

./source:
hw2.cpp README.txt

1
2
3
4
5
6

Please compress all files in the file structure root folder into a single zip file and name it using

your student id as the code showing below and above, for example,

Assignment_2_120010001.zip. The report should be submitted in the format of pdf, together

with your source code. Format mismatch would cause grade deduction. Here is the sample step

for compress the root folder xxxxx of your whole project.​

csc3150@csc3150:~$ ls
xxxxx
csc3150@csc3150:~$ zip -q -r xxxxx.zip . -i xxxxx
csc3150@csc3150:~$ ls
xxxxx xxxxx.zip

1
2
3
4
5

2. Task Description​

Game background: The greatest wealth belongs to the bravest people! An adventurer travels

alone to a dungeon, where he encounters many gold shards, but changing walls impede his

progress. The adventurer's goal is to get all the gold shards without hitting the wall.​

Task: In the source directory of Assignment 2, you are required to complete the multithread
program to implement the game "The greatest adventurer".​

2.1 Game Rules​

• In the beginning, the adventurer is in the middle of the dungeon, represented by 0 , and
there are 6 walls moving towards left or right. There are 6 gold shards moving towards left or

right, and the adventurer should catch all of them to win the game.​

2.1.1 Basic objects​

• Details about the dungeon​

◦ representation: several + , | , - ​

◦ size: (including borders) height: 17; width: 49​

◦ To be clear, we donote rows of dungeon with index 0 to 16, and columns with index 0 to
48 for the further descriptions.​

• Details about the walls​

◦ representation: =============== (' = ' * 15)​

◦ moving directions: (from top to bottom) right, left, right, left, right, left​

◦ When the wall disappears from one border, it reappears from the opposite border​

◦ initial place: row 2, 4, 6, 10, 12, 14; random columns​

• Details about the gold shards​

◦ representation: $ ​

◦ moving directions: random​

◦ initial place: row 1, 3, 5, 11, 13, 15; random columns​

• Details about the adventurer​

◦ representation: 0 ​

◦ initial place: row 8; column 24​

2.1.2 Game mechanics

• when clicking W / S / A / D , the adventurer will move up / down / left / right for one index.​

• When the adventurer touches the wall, you lose the game, and the screen should be:​

• When the adventurer touches the gold shards, this shard should disappear. When all the
shards are collected by the adventurer, you win the game, and the screen should be:​

• At anytime you click Q , the game will quit, and the screen should be:​

2.2 Important specifications​

• You must use Pthread to implement this assignment, i.e. there should at least 2
pthread_t to be created and used in your code. We recommend you to assign separate
threads for each object which can move.​

• You should make sure your game goes smoothly and there are no possible bugs. For example:​

◦ The speed of the moving walls and gold shards can be specified by yourself, but it should
not be too fast or too slow (To ensure that the player can win this game, and the wall

needs to traverse the dungeon within 10 seconds.)​

• There should be NO redundant characters (e.g. W, S, A, D, Q, etc) on the screen that affecting
the game experience. (Since you must input some characters, you need to clean them using

some terminal controls introduced in the Tutorials.)​

◦ The adventurer CANNOT be on or even cross the borders.​

• For some of the variables mentioned above that require randomness, you need to use the
srand() and rand() functions to set them.​

• The template hw2.cpp has created the dungeon and the adventurer, you can follow the
command in the source/README.md to run the program. You can modify it and define
your own functions freely.​

• If you are still confused after reading this instruction, you can refer to the demo video
CSC3150_Assignment2_demo.mp4 .​

3. Report (10 points)​

You shall strictly follow the provided latex template for the report, where we have emphasized

important parts and respective grading details. Reports based on other templates will not be

graded. You should include main information as below:​

• Your name and student id.​

• How did you design your program.​

• The environment of running your program. (E.g. version of OS and kernel)​

• The steps to execute your program.​

• Appropriate way showing that your program runs successfully. (E.g. Screenshot of your
program output and some descriptions.)​

• What did you learn from the tasks.​

4. Grading rules​

Here is a sample grading scheme. Different from the points specified above, this is the general

guide when TA's grading. Note that the full mark is 100 and there is no extra bonus for this

assignment.​

Completion​ Marks​

Report​ 10 points​

Completed with good quality​ 80 ~ 90​

Completed accurately​ 80 +​

Fully submitted (compile successfully)​ 60 +​

Partial submitted​ 0 ~ 60​

No submission​ 0​

