
CSC3150-Instruction-A3:  
Introduction  
This assignment uses xv6, a simple and Unix-like teaching operating system, as the platform to 
guide you in implementing the mmap  and munmp  system calls. These two are used to share 
memory among proceses and to map files to process address spaces. Generally speaking, this 
assignment focuses on memory-mapped files. A mechanism supporting memory-mapped files 
can handle files as if they are a portion of the program's memory. This is achieved by mapping a 
file to a segment of the virtual memory space (Reminder: Each process has its own virtual address 
space). Such mapping between a file and memory space is achieved using the mmap()  system call, 
and the mapping is removed using the munmap()  system call. We provide a virtual machine image 

where everything is configured and set. The image is available on Blackboard.

submission  
Due on: 23:59, 13 November, 2024

Plagiarism is strictly forbidden. Please note that TAs may ask you to explain the meaning of 
your program to ensure that the codes are indeed written by yourself. Please also note that 
we would check whether your program is too similar to your fellow students' code and 
solutions available on the internet using plagiarism detectors.

Late submission: A late submission within 15 minutes will not induce any penalty on your 
grades. But 00:16 am-1:00 am: Reduced by 10%; 1:01 am-2:00 am: Reduced by 20%; 2:01 
am-3:00 am: Reduced by 30% and so on. (e.g. Li Hua submit a perfect attemp of 
assignment3 on 2:10 am. He will get (100+10 (bonus)) * 0.7 = 77 points for his assignment3.)

You should submit a zip file to the Blackboard. The zip file structure is as follows.

Format guide  
The project structure is illustrated below. You can also use ls  command to check if your structure 

is fine. Structure mismatch would cause grade deduction.

For this assignment, you don't need a specific folder for the extra credit part. The source folder 
should contain four files: proc.c, proc.h, sysfile.c, trap.c

Please compress all files in the file structure root folder into a single zip file and name it using 
your student ID as the code shown below and above, for example, 
Assignment_3_xxxxxxxxx.zip. The report should be submitted in the format of pdf, together with 
your source code. Format mismatch would cause grade deduction. Here is the sample step for 
compressing your code.

main@ubuntu:~/Desktop/Assignment_3_120010001$ ls

Report.pdf source/

(One directory and one pdf.)

main@ubuntu:~/Desktop/Assignment_3_120010001/source$ ls

proc.c proc.h sysfile.c trap.c

(three .c files and one .h file)

af://n232
af://n234
https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf
af://n236
af://n246


Tips on interactions between host and virtual 
machine

 

Here are some useful tips for you to interact between the host machine and the virtual machine. If 
you are familiar with it and "Format guide", you can ignore this section.

In the terminal, you should not include "<" and ">". Here, they are just to present a custom string 
variable.

1. Copy the assignment folder to your virtual machine. You can copy the folder in the 
VSCode or use the scp command below.
$\newline$ 
In the host machine:
$\newline$

 If you have spaces in the path, use the double quote to include your path, e.g. cd "your host 

path" .

2. Unzip the assignment folder in your virtual machine. 
$\newline$
 In the virtual machine:

 Then, you can browse the assignment folder.

 After finishing the project, you should wrap your file following the format instructions. We 
prepare a script for you to generate the submission zip. This optional script is just for your 
convenience to wrap the files. You can wrap your file in your own way, only ensuring that you 
follow the format.

3. Suppose that you have already copied your Report.pdf to the virtual machine (like the way 
you copy the assignment zip from the host machine to the virtual machine).

In the virtual machine:

gen_submission.sh  script will ask for your student id and path of your Report.pdf .

Then you can find your submission folder under ~/csc3150

project3/submission/Assignment_3_<your_student_id>.zip

4. You can use the following command to copy the submission zip to your host machine.

main@ubuntu:~/Desktop$

zip -q -r Assignment_3_xxxxxxxxx.zip Assignment_3_xxxxxxxxx

main@ubuntu:~/Desktop$ ls

Assignment_3_xxxxxxxxx Assignment_3_xxxxxxxxx.zip

cd <your_host_path_to_project_zip>

scp -P 2200 ./csc3150-project3.zip csc3150@127.0.0.1:~

unzip ~/csc3150-project3.zip ~/

chmod -R +x ~/csc3150-project3

cd ~/csc3150-project3

bash gen_submission.sh

af://n252


In the host machine:

Then you will get the submission zip in your_host_machine_folder_path  . Don't forget to 
submit your zip file to the BlackBoard.

Instrction Guideline  
We limit your implementation within proc.c, proc.h, sysfile.c, trap.c four files, where there are 
some missing code sections starting with "TODO" comments. The entry (where you may start 
learning) of the test program is the main function in mmaptest.c under the 'csc3150-project3/user' 
directory.

Sections with (*) are introduction sections. These sections introduce tools and functions that will 
help you understand what this system is about and how the system works with these 
components. You might need to use some of the functions when implementing the TODO 
parts.

You are ONLY allowed to modify the TODO parts in these four files! And we will grade your project 
ONLY based on the implementation of the TODO parts. Any other modification will be
considered invalid.

1. For the introduction sections, please figure out how functions work and how to use them.

2. Be sure you have a basic idea of the content before starting your assignment. We believe that
those would be enough for handling this assignment.

3. (optional) For students who are interested in the xv6 system and want to learn more about it,
you are welcome to read "xv6-book" to get more details.

 a. https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf

Sections without (*) are TODO sections. In these sections, the logic of how this component/
function should work is listed in detail. You should implement functions in the given places.

1. However, no sample code will be shown here. You need to figure out the implementation
based on the logic and APIs provided in the introduction sections.

Arguments fetching*  
<xv6-book> chapter 4.3

The kernel functions argint  , argaddr  , and argfd  retrieve the nth system call argument from 

the trap frame as an integer, pointer, or file descriptor. They all call argraw to retrieve the 
appropriate saved user register (kernel/syscall.c:34).

scp -P 2200 csc3150@127.0.0.1:~/csc3150-

project3/submission/Assignment_3_<your_student_id>.zip

<your_host_machine_folder_path>

void argint(int, int*);

int argstr(int, char*, int);

void argaddr(int, uint64 *);

int argfd(int n, int *pfd, struct file **pf);

af://n276
https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf
af://n292
af://n296


Proc*  

Pages*  
<xv6-book> chapter3

// Define in proc.h

struct proc {

  struct spinlock lock;

  // p->lock must be held when using these:

  enum procstate state;        // Process state

  void *chan;                  // If non-zero, sleeping on chan

  int killed;                  // If non-zero, have been killed

  int xstate;                  // Exit status to be returned to parent's wait

  int pid;                     // Process ID

  // wait_lock must be held when using this:

  struct proc *parent;         // Parent process

  // these are private to the process, so p->lock need not be held.

  uint64 kstack;               // Virtual address of kernel stack

  uint64 sz;                   // Size of process memory (bytes)

  pagetable_t pagetable;       // User page table

  struct trapframe *trapframe; // data page for trampoline.S

  struct context context;      // swtch() here to run process

  struct file *ofile[NOFILE];  // Open files

  struct inode *cwd;           // Current directory

  char name[16];               // Process name (debugging)

  struct vma vma[VMASIZE];     // virtual mem area

  // Defined in proc.c

  // Return the current struct proc *, or zero if none.

  struct proc* myproc(void)

};

// Defined in riscv.h

typedef uint64 pte_t;

typedef uint64 *pagetable_t; // 512 PTEs

#endif // __ASSEMBLER__

#define PGSIZE 4096 // bytes per page

#define PGSHIFT 12  // bits of offset within a page

#define PGROUNDUP(sz)  (((sz)+PGSIZE-1) & ~(PGSIZE-1))

#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))

#define PTE_V (1L << 0) // valid

#define PTE_R (1L << 1)

#define PTE_W (1L << 2)

#define PTE_X (1L << 3)

#define PTE_U (1L << 4) // user can access

af://n296
af://n298


Prots & Flags*  

(TODO) Traps  

Usertrap handles an interrupt, exception, or system call from user space. It calls r_scause() to get 
the exception code. In this assignment, you are asked to handle the PageFault exception.

// one beyond the highest possible virtual address.

// MAXVA is actually one bit less than the max allowed by

// Sv39, to avoid having to sign-extend virtual addresses

// that have the high bit set.

#define MAXVA (1L << (9 + 9 + 9 + 12 - 1))

// Defined in fcntl.h

#define PROT_NONE 0x0

#define PROT_READ 0x1

#define PROT_WRITE 0x2

#define PROT_EXEC 0x4

#define MAP_SHARED 0x01

#define MAP_PRIVATE 0x02

// trap.c

void usertrap(void)

{

    ...

    // TODO: manage pagefault

    else if(r_scause() == 13 || r_scause() == 15){

    ...

    }

    ...

}

// Supervisor Trap Cause

static inline uint64

r_scause()

{

    uint64 x;

    asm volatile("csrr %0, scause" : "=r" (x) );

    return x;

}

// Supervisor Trap Value

static inline uint64

r_stval()

{

    uint64 x;

    asm volatile("csrr %0, stval" : "=r" (x) );

    return x;

}

af://n301
af://n303


Hint:  

r_stval()  provides trap value. (i.e. the address causing the exception)

The swapping mechanism is not supported in the xv6 system. If the physical memory is filled, 
you are expected to kill the process. (You shall learn to use kalloc()  and setkilled()  
functions)

If there is spare space in physical memory, map one page of the file with the corresponding 
vma. ( mapfile()  and mappages() )

// file.c

// read a page of file to address mem

// The off parameter in the mapfile and readi represents the offset

// from the start of the file where the read operation should begin.

void mapfile(struct file * f, char * mem, int offset){

    // printf("off %d\n", offset);

    ilock(f->ip);

    readi(f->ip, 0, (uint64) mem, offset, PGSIZE);

    iunlock(f->ip);

}

// vm.c

// Create PTEs for virtual addresses starting at va that refer to

af://n307


File*  

// physical addresses starting at pa. va and size might not

// be page-aligned. Returns 0 on success, -1 if walk() couldn't

// allocate a needed page-table page.

int mappages(pagetable_t pagetable, uint64 va, uint64 size, uint64 pa, int

perm)

{

    uint64 a, last;

    pte_t *pte;

    if(size == 0)

        panic("mappages: size");

    a = PGROUNDDOWN(va);

    last = PGROUNDDOWN(va + size - 1);

    for(;;){

        if((pte = walk(pagetable, a, 1)) == 0)

        return -1;

        if(*pte & PTE_V)

            panic("mappages: remap");

        *pte = PA2PTE(pa) | perm | PTE_V;

        if(a == last)

            break;

        a += PGSIZE;

        pa += PGSIZE;

    }

    return 0;

}

// Defined in file.h

struct file {

    enum { FD_NONE, FD_PIPE, FD_INODE, FD_DEVICE } type;

    int ref; // reference count

    char readable;

    char writable;

    struct pipe *pipe; // FD_PIPE

    struct inode *ip; // FD_INODE and FD_DEVICE

    uint off; // FD_INODE

    short major; // FD_DEVICE

};

// in-memory copy of an inode

struct inode {

    uint dev; // Device number

    uint inum; // Inode number

    int ref; // Reference count

    struct sleeplock lock; // protects everything below here

    int valid; // inode has been read from disk?

    short type; // copy of disk inode

    short major;

    short minor;

    short nlink;

    uint size;

    uint addrs[NDIRECT+1];

};

af://n316


Struct "file" "inode" is presented for your information.
  
filewrite()  will be invoked to write back when the memory map is over. i.e. Calling munmap  or 

Calling exit of process. Similarly to fileclose() .

filedup()  will be invoked when there is an increment of accessing file. ( mmap() , fork() )

Function that you need to use when handling page fault, pay attention to how readi()  works and 

figure out the parameter you should send to readi() .

ilock()  and iunlock()  are locks of inode, which are used to ensure consistency of the memory.

// Write to file f.

// addr is a user virtual address.

int filewrite(struct file *f, uintaddr, int n);

// Increment ref count for file f.

struct file* filedup(struct file*);

// Close file f. (Decrement ref count, close when reaches 0.)

void fileclose(struct file*);

// Defined in fs.c

// Read data from inode.

// Caller must hold ip->lock.

// If user_dst==1, then dst is a user virtual address;

// otherwise, dst is a kernel address.

int readi(struct inode *ip, int user_dst, uint64 dst, uint off, uint n);

// Write data to inode.

// Caller must hold ip->lock.

// If user_src==1, then src is a user virtual address;

// otherwise, src is a kernel address.

// Returns the number of bytes successfully written.

// If the return value is less than the requested n,

// there was an error of some kind.

int writei(struct inode *ip, int user_src, uint64 src, uint off, uint n);

// Lock the given inode.

// Reads the inode from disk if necessary.

void ilock(struct inode *ip);

// Unlock the given inode.

void iunlock(struct inode *ip);

If you have no idea what readi() is doing, think about read() or memcpy(), which 

deal with pointers and address.

imilarly as `writei()`



Hint  

You may take a look at sys_open()  to know how inode, file, and locks work.

(TODO) VMA Struct  

Explanation  

The VMA (Virtual Memory Area) struct is used to manage and track the memory regions that are 
mapped into the address space of a process. Each VMA represents a contiguous region of virtual 
memory that has the same permissions and is backed by the same kind of object. The 
operating system needs to keep track of these mappings, including where they start, how large 
they are, what permissions they have, and what file or device they're associated with. This is 
what the vma struct is used for.

Implementation  

Keep track of what mmap has mapped for each process.

Define a structure corresponding to the VMA (virtual memory area), recording the address, 
length, permissions, file, etc. for a virtual memory range created by mmap.

Since the xv6 kernel doesn't have a memory allocator in the kernel, it's OK to declare a fixed-
size array of VMAs and allocate from that array as needed. A size of 16 should be sufficient. (I 
already define VMASIZE for you)

Hint  

Take a look at what parameter will be sent into mmap() .

The VMA should contain a pointer to a struct file for the file being mapped;

If you would like to use more variables in VMA for further implementation, feel free to use them.

There is not only one correct answer.

(TODO) mmap()  

// we already define size of VMA array for you

#define VMASIZE 16

// TODO: complete struct of VMA

struct VMA {

};

// Defined in user.h

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t

offset);

// TODO: kernel mmap executed in sysfile.c

uint64

sys_mmap(void)

{

}

af://n324
af://n326
af://n328
af://n330
af://n338
af://n343


Arguments explanation:

In the mmaptest.c, we call 'char p = mmap(0, PGSIZE2, PROT_READ, MAP_PRIVATE, fd, 0);'. 

This call asks the kernel to map the content of file 'fd' into the address space. The first '0' 
argument indicates that the kernel should choose the virtual address (In this homework, you 
can assume that 'addr' will always be zero). 

The second argument 'length' indicates how many bytes to map.

The third argument 'PROT_READ' indicates that the mapped memory should be read-only, 
i.e., modification is not allowed.

The fourth argument 'MAP_PRIVATE' indicates that if the process modifies then mapped 
memory, the modification should not be written back to the file nor shared with other 
processes mapping the same file (of course, due to PROT_READ, updates are prohibited in 
this case).

The fifth argument is the file description of the file to be mapped.

The last argument 'offset' is the starting offset in the file.

The return value indicates whethermmap succeeds or not.

sys_xxx()  function is the kernel's implementation of the xxx() system call. In the xv6 

operating system, system calls are prefixed with sys_ to distinguish them from other 
functions and to indicate that they are system calls. The kernel functions argint  , argaddr  , 

and argfd  retrieve the n'th system call argument from the trap frame as an integer, pointer, 
or a file descriptor. See the Arguments fetching section.

Run mmaptest  after mmap()  implemented: the first mmap should succeed, but the first 
access to the mmap-ed memory will cause a page fault and kill mmaptest.

Before mmap()  implemented

Page fault occurs after mmap()  implemented(work correctly)

 



Progress chart  

(TODO) PageFault Handle  
<xv6-book>chapter 4.5,4.6

Add code to cause a page-fault in a mmap-ed region to allocate a page of physical memory.

Find corresponding valid vma by fault address.

Read 4096 bytes of the relevant file onto that page, and map it into the user address space.

Read the file with readi, which takes an offset argument at which to read in the file (but you
will have to lock/unlock the inode passed to readi).

Set the permissions correctly on the page. Run mmaptest; it should get to the first munmap.

af://n367
af://n369


See Section Trap

(TODO) munmap()  
Implement munmap:

find the VMA for the address range and unmap the specified pages (hint: use 
uvmunmap).

If munmap removes all pages of a previous mmap, it should decrease the reference 
count of the corresponding struct file.

If an unmapped page has been modified and the file is mapped MAP_SHARED, write the 
page back to the file. Look at filewrite for inspiration.

Ideally your implementation would only write back MAP_SHARED pages that the 
program actually modified. The dirty bit (D) in the RISC-V PTE indicates whether a page 
has been written. However, mmaptest does not check that non-dirty pages are not 
written back; thus, you can get away with writing pages back without looking at D bits.

(TODO) Page Alignment  
This is a reminder to raise your awareness that all the virtual addresses in your kernel 
implementation should be page-aligned! It's very important to keep this rule in real 
implementation. That is to say, wrap the addresses with PGROUNDUP  or PGROUNDOWN  under 
different situations. You have to figure out which to use.

(EXTRA CREDITS) Fork Handle  
In your Assignment 1, you should already know that fork() creates a sub process with the 
same info. Therefore, you should handle how mmap() works when fork() is invoked.

Ensure that the child has the same mapped regions as the parent. Don't forget to increment 
the reference count for a VMA's struct file. In the page fault handler of the child, it is OK to 
allocate a new physical page instead of sharing a page with the parent. The latter would be 
cooler, but it would require more implementation work.

Grading Rules  

Program part 90' + extra credits  

You can test the correctness of your code using the following commands under ~/csc3150-

project3  directory.

// TODO: complete munmap()

uint64

sys_munmap(void)

{

}

//defined in vm.c

void uvmunmap(pagetable_t pagetable, uint64 va, uint64 npages, int do_free);

make qemu

mmaptest

af://n384
af://n387
af://n400
af://n406
af://n407


function points

mmap f 13p

mmap private 5p

mmap read-only 5p

mmap read/write 5p

mmap dirty 5p

mmap two files 5p

not-mapped unmap 12p

mmap offset 5p

mmap half page 15p

Compile Success 20p

fork_test (extra credit)  

make qemu  turns on the xv6 system, and you will see your terminal starting with $ . You can 

execute ls command to see the files including 'mmaptest'. 

'mmaptest' command executes the executable file mmaptest to test your programs. You are 
expected to have the following outputs

 

$ mmaptest

mmap_test starting

test mmap f

test mmap f: OK

test mmap private

test mmap private: OK

test mmap read-only

test mmap read-only: OK

test mmap read/write

test mmap read/write: OK

test mmap dirty

test mmap dirty: OK

test not-mapped unmap

test not-mapped unmap: OK

test mmap two files

test mmap two files: OK

test mmap offset

test mmap offset: OK

test mmap half page

test mmap half page: OK

mmap_test: ALL OK

fork_test starting

fork_test OK

mmaptest: all tests succeeded



Report part 10'  

You shall strictly follow the provided latex template for the report, where we have emphasized 
important parts and respective grading details.Reports based on other templates will not be 
graded.

LaTex Editor  

For your convenience, you might use Overleaf, an online LaTex Editor.

1. Create a new blank project.

2. Click the following highlight bottom and upload the template we provide.

3. Click Recompile and you will see your report in PDF format.

af://n452
af://n454

	CSC3150-Instruction-A3: 
	Introduction
	submission
	Format guide
	Tips on interactions between host and virtual machine
	Instrction Guideline
	Arguments fetching*
	Proc*
	Pages*
	Prots & Flags*
	(TODO) Traps
	Hint:

	File*
	Hint

	(TODO) VMA Struct
	Explanation
	Implementation
	Hint

	(TODO) mmap()
	Progress chart

	(TODO) PageFault Handle
	(TODO) munmap()
	(TODO) Page Alignment
	(EXTRA CREDITS) Fork Handle
	Grading Rules
	Program part 90' + extra credits
	Report part 10'
	LaTex Editor



