
CONCURRENCY: PRACTICE AND EXPERIENCE, VOL. 7(7). 61 5-631 (OCTOBER 1995)

A parallel dynamic load-balancing algorithm for
solution-adaptive finite element meshes on
2D tori
YEH CHING CHUNG, YAA-JYUN YEH AND J -S LlU
Department of Information Engineering & Computer Sc ience
Ten,g Cliici Unrversify
Iorc hung. fiziwan 407, ROC

SUMMARY
To efficiently execute a finite element program on a 2D torus, we need to map nodes of the
corresponding finite element graph to processors of a 2D torus such that each processor has
approximately the same amount of computational load and the communication among proces-
sors is minimized. If nodes of a finite element graph do not increase during the execution of
a program, the mapping only needs to be performed once. However, if a finite element graph
is solution-adaptive, that is, nodes of a finite element graph increase discretely due to the re-
finement of some finite elements during the execution of a program, a dynamic load-balancing
algorithm has to be performed many times in order to balance the computational load of pro-
cessors while keeping the communication cost as low as possible. In the paper we propose a
parallel dynamic load-balancing algorithm (LB) to deal with the load-imbalancing problem
of a solution-adaptive finite element program on a 2D torus. The algorithm uses an iterative
approach to achieve load-balancing. We have implemented the proposed algorithm along with
two parallel mapping algorithms, parallel orthogonal recursive bisection (ORB) and parallel
recursive mincut bipartitioning (MC), on a simulated 2D torus. Three criteria, the execution
time of load-balancing algorithms, the computation time of an application program under dif-
ferent load balancing algorithms, and the total execution time of an application program (under
several refinement phases) are used for performance evaluation. Simulation results show that
(1) the execution of LB is faster than those of MC and ORB; (2) the mappings of LB are better
than those of ORB and MC; and (3) the speedups of LB are better than those of ORB and MC.

1. INTRODUCTION

The finiteelement method is widely used for the structural modeling of physical systems[I] .
In the finite element model, an object can be viewed as afiriite elenlent graph, which is a
connected and undirected graph that consists of a number of finite elements. Each finite
element is composed of a number of nodes. The number of nodes of a finite element is deter-
mined by applications. In Figure l(a), a 40-node finite element graph with 25 4-node finite
elements is shown. Due to the properties of computation-intensiveness and computation-
locality, i t is very attractive to implement the finite element method on distributed-memory
multiprocessors[2-4]. In the context of parallelizing a finite element modeling program
that uses iterative techniques to solve a system of equations[2,3], a parallel program may
be viewed as a collection of tasks represented by the nodes of a finite element graph. Each
node represents a particular amount of computation and can be executed independently. In
each iteration, a node needs to get data from other nodes in the same finite element before
the next iteration can be performed. The communication needed between nodes in the finite
element graph of Figure l(a) is shown in Figure l(b).

C C C 1040-3 108/95/0706 15- 17
01995 by John Wiley & Sons, Ltd.

Received 25 September 1994
Revised 25 Map I555

616 YEH-CHING CHUNG, YAA-JYUN YEH AND J.-S LIU

Figure 1 . An example of a 40-node finite element graph and the communication needed between
nodes: (a) a 40-node finite element graph with 25jniie elements (ihe circled and uncircled numbers
denote the finite element numbers and node numbers, respectively); (b) [he cornrnunication needed

between nodes

To efficiently execute a finite element modeling program on a 2D torus, we need to
map nodes of the corresponding finite element graph to processors of a 2D torus such
that each processor has approximately the same amount of computational load and the
communication among processors is minimized. If nodes of a finite element graph do not
increase during the execution of a program, the mapping only needs to be performed once.
However, if a finite element graph is solution-adaptive, that is, nodes of a finite dement
graph increase discretely due to the refinement of some finite elements during the execution
of a program, a dynamic load-balancing algorithm has to be performed many times in order
to balance the computational load of processors while keeping the communication cost
as low as possible. For example, in Figure 2, a finite element graph is refined twice
during execution. Initially, each processor has 16 nodes. If no load-balancing algorithm is
performed, after the first and the second refinement, the number of nodes assigned to PO
are 36 and 64, respectively, and the number of nodes assigned to P I , P2 and P3 are 16.
However, if a load-balancing algorithm is carried out in each refinement, the load may be
evenly distributed as shown in Figure 2(d).

In fact, the solution-adaptive finite element problem is a subset of a class of irregu-
lar loosely synchronous problems[5]. In [5], types of loosely synchronous problems are
classified into static single phase computations such as explicit unstructured mesh flu-
ids calculation[6,7], multiple phase computations such as unstructured multigridl81 and
particle-in-cell methods[9-10], adaptive irregular computations such as solution-adaptive
finite element methods[4,11] and molecular dynamics calculations[121, implicitmuliiphase
loose synchronous computations such as particle dynamics[131, and static and dynamic
structured problems. Since data-dependency of algorithms for those problems is deter-
mined at run time, a good run-time mapping scheme is critical for the performance of those
algorithms.

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 617

p2 p3

(a) The initial finite element graph.

Pn ! PI

(b) The finite element graph after
the first refinement.

Pn ! ! PI

p2 I p3 P3 !
I

(c) The finite element graph after
the second refinement.

(d) Nodes remapping for (c).

Figure 2. An example of solution-adaptivefinite element graph and load redistribution

To solve the load-imbalancing problem of a solution-adaptive finite element program,
nodes of a refined finiteelement graph can be remapped (nodes remapping approach) or load
of a refined finite element graph can be redistributed based on the current load of processors
(load redistribution approach). For the former case, nodes remapping can be performed by
some fast mapping algorithms. In the load redistribution approach, after a finite element

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

618 YEH-CHING CHUNG, YAA-JYUN YEH AND J.-S LIU

graph is refined, a load-balancing heuristic is applied to balance the computational load of
processors. For both approaches, a good node remapping or load redistribution algorithm
should have two properties. Firstly, its execution is fast. Secondly, it should produce a good
mapping. Algorithms for node remapping and load-redistribution are called load-balancing
algorithms throughout this paper.

In this paper we present a parallel dynamic load-balancing algorithm to deal with the
load-imbalancing problem of a solution-adaptive finite element program. The algorithm
uses iterative approach to achieve load-balancing. We have implemented the algorithm on
a simulated 2D torus along with two parallel mapping algorithms, orthogonal recursive
bisection[4] and recursive min-cut bipartitioning[141. Three criteria, the execution time of
load-balancing algorithms, the computation time of an application program under different
load-balancing algorithms, and the total execution time of an application program (under
several refinement phases) are used for performance evaluation. Simulation results show
that the proposed load balancing algorithm outperforms the other two and produces very
good mapping results.

In Section 2, a brief survey of related work is presented. The definition of a 2D torus and
the proposed parallel dynamic load-balancing algorithm are described in Section 3. The
comparisons of the proposed parallel dynamic load-balancing algorithm, parallel orthogonal
recursive bisection and parallel recursive min-cut bipartitioning are given in Section 4.

2. RELATED WORK

Many finite element mapping algorithms have been addressed in the literature. In [5] ,
a binary decomposition approach was used to partition a non-uniform mesh graph into
modules such that each module has the same amount of computational load. These modules
were then mapped on meshes, trees and hypercubes. This method does not try to minimize
the communication cost.

Sadayappan and Ercal[161 proposed a nearest-neighbor mapping approach to map planar
finite element graphs on processor meshes. This approach used the stripes partition (stripes
mapping) strategy to minimize the communication cost of processors and then used the
boundary refinement heuristic to balance the computational load of processors. However,
the boundary refinement heuristic does not guarantee the balancing of computational load.

In [171, a pairwise interchange algorithm was proposed to map finite element graphs
onto a finite element machine[181. This approach assumes that the number of nodes of a
finite element graph is less than or equal to the number of processors of a finite element
machine. An initial mapping is generated by assigning node i of a finite element graph to
processor i of the finite element machine. Then the pairwise interchange heuristic is .applied
to minimize the communication cost of processors.

Grama and Kumar[191 presented scalabilty analysis of three finite element graph par-
titioning strategies, namely striped partitioning, binary decomposition and scattered de-
composition. The analysis was performed using the Isoeficiency metric, which helps in
predicting the performance of these schemes on a range of processors and architectures.

In [20] and [2 1] , a two-way stripes partition mapping and a greedy assignment mapping
algorithm were proposed. The two-way stripes partition mapping tried to minimize the
communication cost by assigning a node and its neighbor nodes of a finite element graph to
the same processors or neighbor processors of a hypercube. Then a load transfer heuristic
was performed to balance the computational load of processors. The greedy assignment

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 619

Figure 3. Two-dimensional meshes: (a) a mesh without wraparound connections: (b) a mesh with
wraparound connections

mapping tried to minimize the communication cost and balance the computational load
simultaneously.

Williams[4] proposed three parallel load-balancing algorithms, orthogonal recursive
bisection, eigenvector recursive bisection and a simple parallel simulated annealing, to
deal with the load-imbalancing problem of a solution-adaptive finite element program.
The performance analysis shows that the time to execute orthogonal recursive bisection
is the fastest, and the execution of parallel simulated annealing is time-consuming. But
the mapping produced by simulated annealing saves 21% in the execution time of a finite
element mesh over the mapping produced by orthogonal recursive bisection.

Of the papers mentioned above, only the work of [4] deals with the load-imbalancing
problem of a solution-adaptivefinite element program. Others assume that nodes of a finite
element graph do not change during the execution of a program.

3. THE PROPOSED LOAD-BALANCING ALGORITHM

In this section we first give the definition of a 2D torus. Then we describe the proposed
parallel dynamic load-balancing algorithm in detail.

3.1. 2D tori

A 2 0 torus network is a variant of the mesh network, where nodes are arranged into a
two-dimensional lattice. Figure 3(a) illustrates a two-dimensional mesh. A 2D torus allows
wrap-around connections between processors on the edge of the mesh. These connections
may connect processors in the same row and column (Figure 3(b)). We use P(a, b) to denote
the processor in row a and column b of an m x n torus, where 0 5 a < m and 0 5 b < n . In
an nt x n torus, each processor has north, east, west and south neighbors. The north, east,
west, and south neighbors of a processor f (a , b) are P((a-1) mod m, b), P(a, (b+ l) mod n),
f (a , (b-1) mod n) and P((a+l) mod m, b) , respectively, where 0 5 a < m and 0 5 b < n .
Also, we use P, to denote the processor P(x/m, x mod n) in an m x n torus. For example, in
Figure 3(b), processor Po (or P(0,O)) has a north neighbor Pi2 (or P(3,0)), an east neighbor
P I (or P(0, l)), a west neighbor P3 (or P(0,3)) and a south neighbor P4 (or P(1,O)).

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

620 YEH-CHING CHUNG, YAA-JYUN YEH AND J:S LIU

3.2.

Many dynamic load-balancing algorithms have been addressed in the literature[22-25].
However, the problem addressed in this paper is different from that in [22-251. At run time,
the computational load increased in a solution-adaptive finite element program is discrete
in nature while that in [22-251 is continuous. Therefore, those approaches proposed in
[22-251 cannot efficiently handle the load-imbalancing issue presented in this paper.

In this paper we propose a parallel dynamic load-balancing algorithm to deal with the
load-imbalancing problem of a solution-adaptive finite element program. The algorithm
uses an iterative approach to achieve load-balancing. For an m x n torus, if tn > n i t
will first balance the computational load of processors at the same column. Then, it will
balance the computational load of processors at the same row. If m 5 n, it will balance the
computational load of processors at the same row followed by balancing the computational
load of processors at the same column. The process of balancing the computational load
of processors at the same row is performed as follows. Initially, every processor P(a,
b) with even (odd) column co-ordinate will balance its current computational load and
the current computational load of its east (west) neighbor processor, where 0 5 a < m
and 0 5 b < n. Then, processor P(a, b) will balance its current computational load
and the current computational load of its west (east) processor. The balancing process of
processor P(a, b) with its east and west neighbor processors is performed in turn until the
computational load of processors at the same row is balanced. The process of balancing the
computational load of two adjacent processors P(a, b) and P(a, c) consists of two phases:

Determine the number of nodes needed to be sent from one processor to
another.
Perform load transfer while keeping the communication cost of finite ele-
ment nodes of these two processors as low as possible.

Let the current computational load of processors P(a, b) and P(a, c) be denoted by
load(P(a, b)) and load(P(a, c)), respectively. In phase 1, if load(P(a, b)) > load(P(a, c)),
then processor P(a, b) needs to send N = (load(P(a,b)) - load(P(a,c))) / 2 1 nodes to
processor P(a, c). If load(P(a, b)) < load(P(a, c)), then processor P(a, c) needs to send N
= [(load(P(a, c)) - load(P(a, 6))) / 2 1 n3des to processor P(a, b). In phase 2, load transfer
I S performed. Assume that processor P(a, b) needs to send N nodes to processor P(a, c).
In order to minimize the communication cost of finite element nodes of processors P(a, 6)
and P(a, c) , we have the following four cases:

A parallel dynamic load-balancing algorithm

Phase 1:

Phase 2:

Case I :
Case 2:

Case 3:
Case 4:

Send nodes in P(a, b) that are only adjacent to nodes of P(a, c) to P(a, c).
Send nodes in P(a, 6) that are not adjacent to nodes of other processors to
P(a, c).
Send nodes in P(a, b) that are adjacent to nodes of P(a, c) to P(u, c).
Send a node in P(a, b) to P(a, c).

To send nodes from processor P(a, b) to processor P(a, c), nodes in case 1 are considered.
If nodes in case 1 do not exist, then nodes in case 2 are considered, and so on. Let M denote
the set of nodes in P(a, b) that are selected from one of the cases stated above. If IMI is less
than N , then nodes adjacent to those of M are selected. If the sum of IMI and the number
of nodes adjacent to those of M is less than N , then nodes adjacent to those nodes adjacent
to nodes of M are selected. This process is continued until the number of nodes selected is
equal to N . Then those nodes are transferred from processor P(a, 6) to processor P(a, c).

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 62 1

A lgorithm dynamic-load-bnlancingSor_2D-tori()
/* For an m x n torus, perform the load transfer for every processor P(a,b) */
if (m 5 n) then (balance-row_co/umn(m, n , 1); balance-row_column(m, n, 2);)

else (balance-row-column(m, n, 2); balance_row-column(m, n, 1);)
end_of-d~namic_load-balancing for-2D-tori

Algorithm balance_row-column(m, n , row-col)
I . i t o .
2. For every processor P, = P(a,b) do {
3. if (row-col= 1) then
4. if (b and i are both even or odd)
S .
6. else if (b and i are both even or odd)
7. then Py = P((a+l) mod m, b) else fy = P((a-I) mod m, b)
8. Send load(P,) to Py and receive load(f,)'from P y .
9. if (load(f,) < load(fy)) then { /* P, needs to receive nodes from Pv */
10.

'

11.
12.
13.
14.
15.

then Py = P(a, (b+1) mod n) else Py = P(a, (b-I) mod n)

N t r(load(Py) - load(P,) + 21; load(P,) t load(F',) + N .
Receive N nodes from Py. }

if (load(P,) > /oad(P,)) then { I* P, needs to send nodes to Py */
N t r(load(P,) -.load(Py) + 21; load(P,) t load(P,) - N.
M t 0. M I t 0. done = false.
K = the set of nodes assigned to P,,.

16. do I
17. M + M U MI.
18.
19.
20.
21.
22.
23.
24.
25. LI:
26.
21.
28.
29. ; t i + I .
30.

M I = the set of nodes of f , that are only adjacent to nodes of K u M .
if (M I <> 0) then goto LI.
M I = the set of a node of P, that are not adjacent to nodes of other processors.
if (MI <> 0) then goto LI.

M I = the set of nodes o f f , that are adjacent to nodes of K u M .
if (M I <> 0) then goto LI.
M I = the set of a node of P,.
if (IMI + lM~l< N) then M t M u MI else done = true.

} until (done = true)
M t M u M2, where M2
Send the set M to P,.. }

} until (load is balanced)

MI and IMI + lM2l= N .

end-of-balance-row-column

Figure 4 . The proposed parallel dynamic load-balancing algorithm

The process of balancing the computational load of processors at the same column is
similar to that of balancing the computational load of processors at the same row. The
proposed algorithm is given in Figure 4.

In algorithm balance-row-column, lines 1-10, 12-17, 19, 21, 23-27 and 29-30 take
constant time. Lines 18 ,20 and 22 take L time, where L is the maximum number of nodes

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

622 YEH-CHING CHUNG. YAA-JYUN YEH A h D J.-S LIU

assigned to processors. Let the time for a processor to send (receive) T nodes of data to
(from) its adjacent processor on a 2D torus take ts + T x tm time, where tS is the startup
time and the t , is the data transmission time per data. Then lines 11 and 28 take t , + T x t ,
time. Lines 2-23 and 16-26 form loops. The loops are executed O(m) or O(n) and O(1)
time, respectively, where m and n are the length of the row and column of the torus. The
complexity of algorithm balance-row-column is O((m+n) x (t , + T x 1,)). The complexity
of algorithm dynamicloaddalancingfor2D-tori is O((m+n) x (ts + T x I , , ,)) .

We now give an example to show how algorithm dynarnicloadbalancingfor2D-tori
works. Assume that, initially, we are given a 64-node finite element mesh and nodes of the
finite element mesh are evenly distributed to a 1 x 4 torus as shown in Figure 5(a), that is,
each processor is assigned 16 nodes. During the execution, the finite element mesh is refined
once. After the refinement, Po, PI , P2 and P3 have 32, 20, 16 and 16 nodes, respectively,
which is shown in Figure 5(b). When algorithm dynamic-loadbalancingfor-2D-tori is
applied, at the first iteration, the number of nodes N which need to be sent or received
is calculated for every processor. After the calculation of N , a load transfer heuristic is
performed to balance the computational load of processors as shown in Figure S(c). The
calculation of N and the physical load transfer execution for the next iteration are ijhown in
Figure 5(d). After the execution of algorithm dynamic-loaddalancingfor2D-tori, nodes
are evenly distributed to each processor (as shown in Figure 5(d)).

4. SIMULATION AND EXPERIMENTAL RESULTS

Since we do not have a 2D torus machine and a 2D torus can be embedded in a hypercube,
algorithms for 2D torus are implemented on a 16-node NCUBE-2. To embed a 2" x 2''
torus on an (x+y)-cube, the binary reflected Gray code (BRGC) coding scheme is used. The
binary reflected Gray code is defined as follows:

if k=l
+ lNk-I* if k>l Nk= {

where + and * represent sequence concatenation and sequence reversal operations, respec-
tively. For example, Nl = (O,l), Nl* = (O, l)* = (1,O); N2 = ON1 + IN1* = O(0,l) + l(1,O) =
(00,Ol) + (1 1,lO) = (00,01, 11, lo); N 3 = (000, 001, 01 1,010, 110, 1 11, 101, loo), N3(0)
= 000, and N3(3) = 010. Note that Nk(r) denotes the (r+l)th element of Nk, where r = 0, ...,
2k - 1 . To embed a 2" x 2,' torus in an (x+y)-cube, we assign processor P(i , j) of a torus to
the processor of an (x+y)-cube according to the following equation:

f(i , j)=Nx(i) A N J j) (2)

where 0 5 i 5 2" - 1,O 5 j 5 2y - 1, and A is the binary string concatenation operation. An
example of embedding a 2 x 4 torus in a 3-cube by using the embedding method mentioned
above is shown in Figure 6. In Figure 6(b), the addresses of P(0,2) and P(1,O) are Nl(0) A
N2(2) = 01 1 and Nl(1) A N2(0) = 100, respectively.

We have implemented algorithm dynamic-loadbalancingfor2d~ori (LB) on a simu-
lated 2D torus along with two parallel mapping algorithms, orthogonal recursive bisection
(ORB)[4] and recursive min-cut bipartitioning (MC)[141. All programs are written in EX-
PRESS C. Three criteria, the execution time of load-balancing algorithms, the computation
time of an application program under different load-balancing algorithms, and i.he total

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 623

(a) Initial status.

6 nodes -
PO PI

0 node
t----w
p2 p3

= 16
= 16
= 16
= 16

(b) Status after a refinement.

Calculate N .

(c) Load transfer for the first iteration.

5 nodes -
PI p2

5 nodes -
PO p3

Calculate N .

load(P0) = 32
load(P 1) = 20
load(P2) = 16
load(P3) = 16

load(P0) = 26
load(P 1) = 26
load(P2) = 16
load(P3) = 16

load(Po) = 2 1
load(P 1) = 21
load(P2) = 2 1
load(P3) = 21

(d) Load transfer for the second iteration.

Figure 5. The behavior of the parallel dynamic load-balancing algorithm on a 2 0 torus

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

YEH-CHING CHUNG, YAA-JYUN YEH AND J.-S LIU 624

01 1 fq/:oo
010 110

(a) A 3-cube.

loo H 101 H 111 H 110

(b) The emulation of a 2 x 4 2D-torus.

Figure 6. An example of embedding a 2 x 4 mesh in a 3-cube

execution time of an application program (under several refinement phases) are used for
performance evaluation.

In dealing with finite element meshes, the distributed irregular mesh environment
(DIME)[26] is used to generate test samples. DIME is a programming environment for
doing distributed calculations with unstructured triangular meshes. The mesh covers a two-
dimensional manifold, whose boundaries may be defined by straight lines, arcs of circles
or Bezier cubic sections. It also provides functions for creating, manipulating and refining
unstructured triangular meshes. Although DIME is a programming environment, in this
paper we only use DIME to generate desired finite element meshes.

To create test samples, an initial finite element mesh, which has 310 nodes, is created
by DIME. Then, the initial finite element mesh is refined five times. The refined process is
carried out by DIME. In each refinement, the corresponding mesh structure is saved to a
data file. Those data files will be used as test samples. The number of nodes for test samples
are shown in Table 1.

To emulate the execution of a solution-adaptive finite element program on a simulated
2D torus we first read the mesh structure of the initial finite element mesh (sample 1).
Then, algorithm ORB or MC is applied to map nodes of the initial finite element mesh to
processors. After the mapping, the Computation for each processor is carried out. In our
example, the computation is to solve Laplaces’s equation (Laplace solver). The algorithm
of solving Laplaces’s equation is similar to that of [27]. Since it is difficult to predict
the number of iterations for the convergence of a Laplace solver, we assume that the
maximum iterations executed by our Laplace solver is 10,000. When the computation is
converged, the mesh structure of the first refined finite element mesh (sample 2) is read.
To balance the computational load, ORB or MC or LB is applied. After a load-balancing
algorithm is performed, the computation for each processor is carried out. The refinement,
load-balancing, and computation processes are performed in turn until the execution of a
solution-adaptive finite element program is completed.

To evaluate the performance of ORB, MC and LB, five cases are considered:

Case 1:
Case 2:

The test samples are executed sequentially.
Nodes in the initial finite element mesh are mapped to processors by ORB.
In each refinement, ORB is applied to balance the computational load of
processors.

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 625

Table 1. The number of nodes of test samples

Sample no. Number of nodes

Sample 1 (the initial mesh)
Sample 2 (the first refinement)
Sample 3 (the second refinement)
Sample 4 (the third refinement)
Sample 5 (the fourth refinement)
Sample 6 (the fifth refinement)

31 1
870
1824
2928
4671
9347

Case 3:

Case 4 :

Case 5:

Nodes in the initial finite element mesh are mapped to processors by ORB. In
each refinement, LB is applied to halance the computational load of proces-
sors. We use O R B L B to represent the proposed load-balancing algorithm
used in this case.
Nodes in the initial finite element mesh are mapped to processors by MC.
In each refinement, MC is applied to halance the computational load of
processors.
Nodes in the initial finite element mesh is mapped to processors by MC. In
each refinement, LB is applied to balance the computational load of pro-
cessors. We use M C L B to represent the proposed load-balancing algorithm
used in this case.

4.1.
The execution time of ORB, ORBLB, MC and M C L B for test samples on 1 x 16, 2 x 8
and 4 x 4 tori are shown in Figure 7. From Figure 7 we can see that the execution time of
MC ranges from hundreds of seconds to a few hours, the execution time of ORB ranges
from a few seconds to hundreds of seconds, the execution time of O R B L B ranges from
a few seconds to tens of seconds, and the execution time of M C L B is a few seconds.
Obviously, the execution time of LB is less than those of ORB and MC. We also observe
that the execution times of O R B L B and M C L B are high when the torus is not symmetrical.
For example, on a 1 x 16 torus, the execution times of O R B L B and M C L B for the fifth
refinement (sample 5) are 95.98 s and 22.18 s, respectively. For a 4 x 4 torus, the execution
times of O R B L B and M C L B for the fifth refinement (sample 5) are 50.85 s and 1 1.87 s,
respectively. The execution time of the 1 x 16 torus is almost twice that of the 4 x 4 torus.
This is because for a 4 x 4 torus the number of steps to reach load-balancing is less than
that of a 1 x 16 torus.

Comparisons of the execution times of ORB, MC and LB

4.2. Comparisons of the execution time of test samples under different load balancing
algorithms

In Table 2 we show the time for the Laplace solver to execute one iteration (computation +
communication) for test samples under different load-balancing algorithms on 1 x 16,2 x 8
and 4 x 4 tori. Let T,(S) denote the time for the Laplace solver to execute one iteration
for sample i under load-balancing algorithm S, where i = 1,2 , ..., 6 and %{ORB, ORBLB,
MC, MCLB}. From Table 2, if we assume that the Laplace solver executes the same
number of iterations for each test samples, then cp=, T;(MCILB) < ct, T,(ORBILB) <
Cp=, T,(ORB) < I;=, T;(MC) for a 2 x 8 torus, and cp=, T,(MCILB) < x:=l T,(ORB/LB) <
Cf=, T,(MC) < If=, Ti(0RB) for I x 16 and 4 x 4 tori. From the above observations,

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

626 YEH-CHING CHUNG, YAA-JYUN YEH AND J.-S LIU

PN= 16 Time (see)
100000.00

loooO.00

lOOO.00

100.00

10.00

1 .oo

0.10
0 1 2 3 4 5
refinement (a) 1 x 16 torus.

lime (see)

PN= 16 Time (ree)
100000.00

1oooO.00

lOOO.00

100.00

I 0.00

1 .oo

0.1c
2 3 4 5 0 1

refinement
(b) 2 x 8 toms

PN= 16

0.10 I
0 1 2 3 4 5
refinement (c) 4 x 4 torus.

Figure 7. The execution time of ORB, ORBLB, MC and MC/LB on 20 tori

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 627

Table 2. The time for the Laplace solver to execute one iteration (computation + communication)
for the test samples under different load-balancing algorithms on 2D ton

Torus Sample/ Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Total
Algorithm

I x 1 Sequential 10.8 30.5 64.3 100.0 165.6 335.2 706 4
ORB 15.3 18.9 22.7 26.9 33.3 51.2 I68 3
ORBLB 15.2 17.4 21.4 25.4 32.2 51.9 163 6

1x16 MC 14.5 18.6 24.9 25.5 31.9 49 1644
M C L B 14.5 17.2 20.5 24.1 29.2 43.6 149 1

ORB 10.3 12.8 15.5 18.4 22.7 34.6 114.3
ORBLB 10.3 11.8 14.2 17.2 20.3 32.5 106.3

2 x 8 MC 9 11.7 15.7 21 24.9 33.6 115.9
MCLB 9.1 1 1 12.7 14.8 18 26.7 92.3

ORB 8.5 10.6 12.6 14.9 18 26.1 90.7
ORBLB 8.6 9.6 11.2 12.Y 15.6 24.1 82.6

4 x 4 MC 7 9.3 12.5 16.9 18.1 26 89.8
M C L B 7.3 8.6 10.2 I l . Y 14.5 22.2 14.7

Time unit: I x 10-3s

LB produces better mappings than those of MC and ORB. One possible reason is that LB
uses the locality characteristic of a finite element mesh to do load transfer (see algorithm
ci!lnamicloadbalancingfor_2D_tori) which results in a better mapping.

4.3. Comparisons of the total execution time for test samples
The total execution time of test samples on a 2D torus is defined as follows:

6

~ l o t ~ ~ (~) = ~ c . r ~ c (~) + C T,(s) x iter-cctiort, (3)

where S E {ORB, ORBLB, MC, MCLB}, T,,,,[,/(S) is the total execution time of test
samples under load-balancing algorithm S, Tcxe,,(S) is the total execution time of load-
balancing algorithm S for test samples, and iterntion, is the number of iterations executed
by the Laplace solver for sample i. From equation (3), we can derive the speedup of a
load-balancing algorithm as follows:

i= I

where S E {ORB, O R B L B , MC, MCLB}, Speedup(S) is the speedup achieved by a load-
balancing algorithm S, and Seq, is the time for the Laplace solver to execute one iteration
for sample i on one processor. The maximum speedup of a load-balancing algorithm S is
derived by setting the value of iteration, to 03. Then, we have the following equation:

h h

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

628 YEH-CHING CHUNG, YAA-JYUN YEH AND J.-S LIU

Table 3. The maximum speedups achieved by load-balancing
algorithms for test samples on 2D tori

~~

n-cube 1x16 2 x 8 4 x 4
Algorithm

ORB 4.22 6.21 7.83
ORBLB 4.34 6.68 8.59
MC 4.32 6.12 7.90
MCLB 4.76 7.69 9.50

where S E {ORB, ORBLB, MC, MCLB} and Speedup,,,(S) is the maximum speedup
achieved by a load-balancing algorithm S.

The speedups for test samples under different load-balancing algorithms are shown
in Figure 8. Since it is difficult to predict the number of iterations executed by the
Laplace solver for test samples, in Figure 8 we assume that the Laplace solver executes
the same number of iterations for each test sample. From Figure 8 we can see that, in
general, Speedup(MC/LB) > Speedup(0RBLB) > Speedup(0RB) > SpeedupCMC). We
also observe that, if the number of iterations executed by the Laplace solver is less
than 10,000, Speedup(MC) is less than 1. This implies that if the convergence rate of
a Laplace solver is fast, MC is not a good load-balancing algorithm for a solution-adaptive
finite element program. The maximum speedups of load-balancing algorithms for test
samples on 2D tori are shown in Table 3. From Table 3, we observe that, in general,
Speedup,,(MCLB) > Speedup-(ORBLB) > Speedup,,(MC) > Speedup,,,(ORB).
From Figure 8 and Table 3 we can see that the speedups of LB are better than those of MC and
ORB.

5. CONCLUSIONS

In this paper, a parallel dynamic load-balancing algorithm (LB) is proposed to deal with
the load-imbalancing problem of a solution-adaptive finite element program on a 2D torus.
We have implemented the proposed algorithm along with two parallel mapping algorithms,
parallel orthogonal recursive bisection (ORB) and parallel recursive min-cut bipartitioning
(MC), on a simulated 2D torus. Three criteria, the execution time of load-balancing al-
gorithms, the computation time of an application program under different loatl-balancing
algorithms, and the total execution of an application program (under several refinement
phases) are used for performance evaluation. Simulation results show that (1) the execution
time of LB is faster than those of MC and ORB; (2) the mappings of LB are better than
those of ORB and MC; and (3) the speedups of LB are better than those of ORB and
MC.

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ALGORITHM FOR SOLUTION-ADAPTIVE FlNITE ELEMENT MESHES ON 2D TORI 629

Soeedup
5:0

4.5

4.0

3.S

3.0

- . 7 <

2 0

1.5

I .o

0.5

0.0
l o o lo00 loo00 i m 1 m

iteration
(a) 1 X 16 torus

Speedup

Speedup

100 lo00 loo00 1 m IOOOOOO
rteratlon

(b) 2 X 8 torus.

(c) 4 x 4 torus.

Figure 8. The speedups for rhe testfinite element meshes under direrent load-balancing algorithms
on 2 0 tori

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

630 YEH-CHING CHUNG, YAA-JYUN YEH AND J.-S LIU

REFERENCES

I . L. Lapidus and G.F. Pinder, Numerical Solution of Partial Differential Equations in Science arid
EtiRineering, Wiley, 1983.

2. C. Aykanat, F. Ozguner, S. Martin and S.M. Doraivelu, ‘Parallelization of a finite element appli-
cation program on a hypercube multiprocessor,’ Hypercube Multiprocessor, 662-673 (1 987).

3. C. Aykanat, F. Ozguner, F. Ercal and P. Sadayaooan, ‘Iterative algorithms for solution of large
sparsc systems of linear equations on hypercubes,’ IEEE Trans., C-37, (1 2), 1554-1 568 (1 988).

4. R.D. Williams, ‘Performance of dynamic load balancing algorithms for unstructured mesh
calculations,’ Coi~ncurrenc~: Pract. Exp., 3, (3,457-481 (1991).

5 . G.C. Fox et i d , ‘A classification of irregular loosely synchronous problems and their ~ ~ p p o r t in
scalable parallel software systems,’ NPAC-SCCS Technical Report, Syracuse University, April
1992.

6. S. Hammond And R. Schreiber, ‘Mapping unstructured grid problems to the connection machine,’
Technical Report 90.22, RIACS, October 1990.

7. D.L. Whitaker, D.C. Slack andR.W. Walters, ‘Solution algorithms for the two-dimensional Euler
equations on unstructured meshes,’ ProceedingsofAIAA 28thAerospace ScienceMeering, Reno
Nevada, January 1990.

8. D.J. Mavriplis, ‘Three dimensional unstructured multigrid for the Euler equations,’ Proceedings
ofAIAA IOtIi Conipiitational Fluid Dynamics Conference, June 199 1.

9. P.C. Liewcr, B.A. Zimmerman, V.K. Decyk, J.M. Dawson and G.C. Fox, ‘A general concur-
rent algorithm for plasma particle-in-cell simulations,’ Technical Report C3P -758, California
Institute of Technology, March 1989.

10. P.C. Liewer and V.K. Decyk, ‘A general concurrent algorithm for plasma particle-in-cell simu-
lation codes’, J. Comput. Phys., 85, (2), 302-322 (1989).

1 1 . M.J. Berger and A. Jameson, ‘Automatic adaptive grid refinement for the euler equations,’ AAIA

12. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan and M . Karplus,
‘Charmm : a program for macromolecular energy, minimization, and dynamics calculations,’ J.
Conipui. Chem.. 4, 187 (1 983).

13. J . Carrier, L. Greegard and V. Rokhlin, ‘A fast adaptive multipole algorithm for particle simula-
tions,’ SIAM J. Sci. Stat. Comput., 9, 669-686 (1 988).

13. F. Ercal, J. Ramanujam and P. Sadayappan, ‘Cluster partitioning approaches to mapping parallel
programs onto a hypercube,’ Parallel Cornput., 13, 1-1 6 (1 990).

IS. M. J. Bcrgcr and A. Jameson, ‘A partitioning strategy for nonuniform problems on rnultiproces-
sors,’ IEEE Trans., C-36, (5) . 570-580 (1987).

16. P. Sadayappan and F. Ercal, ‘Nearest-neighbor mapping of finite element graphs on processor
meshes,’ IEEE Trans., C-36, (1 2). 1408-1424 (1987).

17. S.H. Bokhari, ‘On the mapping problem,’ IEEE Trans., C-30, 207-214(1981).
18. H. Jordan. ‘A special purpose architecture for finite element analysis,’ Proceedings of Interna-

tional Conference on Parallel Processing, 1978, pp. 263-266.
19. A.Y. Grama and V. Kumar, ‘Scalability analysis of partitioning strategy for finite element graphs:

a summary of results,’ Proceedings ofsupercomputing ’92, 1992, pp. 83-92.
20. Y.C. Chung and S. Ranka, ‘Mapping finite element graphs on hypercubes,’ J. Sicpercoinput., 6 .

2 1. Y.C. Chung and S. Ranka, ‘Mapping finite element graphs onto hypercubes,’ Proceedings of
Frontier of Massively Parallel Computations, 1990. pp. 135-144.

22. D.Y. Hinz, ‘A run-time load balancing strategy for highly parallel systems,’ Proceedings of
Distributed Memory Midtiprocessor Conference, 1990, pp. 95 1-96 1.

23. D. King and E.J. Wegman, ‘Hypercube dynamic load balancing,’ Proceedings oJ Distribiired
Memory Midtiprocessor Conference, 1990, pp. 962-965.

24. V.K. Saletore, ‘A distributed and adaptive dynamic load-balancing algorithm for parallel pro-
ccssing of medium-grain tasks,’ f roceedirigs of Distributed Memory Multiprocessor Conference,

25. J. Xu and K . Hwang, ‘Heuristic methods for dynamic load balancing in a message-passing
supercomputer,’ Proceedings of Supercimputirig ’90, 1990, pp. 888-897.

J . , 23, 561-568 (1985).

(3), 257-282 (1992).

1990, pp. 994-999.

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 63 1

26. R.D. Williams, ‘DIME a user’s manual,’ Caltech Concurrent Computation Report C3P 861,
February 1990.

27. I.G. Angus, G.C.Fox, J.S. Kim and D.W. Walker, Solving Problems on ConcurrentProcessors,
Vol. I , Prentice-Hall, 1990.

 10969128, 1995, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.4330070704 by T

he C
hinese U

niversity O
f H

ong, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

