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1 Introduction 

In a hard-real-time embedded system, each task must 
complete the execution by its deadline. A task that executes 
longer than its allocated computation time may lead to 
missed deadlines and the failure of the whole system.  
In such a system, it is required that the WCET of each 
program be known in advance. This knowledge is also often 
required in the schedulability analysis of hard-realtime 

systems (Liu and Layland, 1973; Sha et al., 1990; Sun et al., 
1997). For this reason, the problem of bounding the WCET 
of a program has received a great deal of attentions in  
recent years. 

This paper presents an iterative I-IPET for bounding  
the WCET of a hard-realtime embedded program executed 
on a dynamic architecture where the execution time of an 
instruction varies, depending on the execution of the 
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instruction itself, its adjacent instructions, and concurrent 
I/O activities. The IPET, first developed by Li and Malik 
(1995), converted the problem of bounding the WCET of a 
program into one of solving a set of Integer Linear 
Programming (ILP) problems. This method was later 
extended by Li and Malik (1999) to take into account the 
interferences of instruction caching (direct-mapped and  
set-associative) and data caching. Without loss of 
generality, we illustrate the capability of the I-IPET 
approach on a machine model with instruction caching, 
instruction pipelining and cycle-stealing DMA I/O. 
However, our I-IPET approach can be easily adapted to 
consider the effect of other modern architectures or tighten 
the WCET predictions in addition to bounding the 
interference of cycle-stealing DMA I/O. 

Our I-IPET approach builds on top of the cache-aware 
IPET methodology (Li and Malik, 1999) to bound the 
WCET of a program executing concurrently with an 
independent cycle-stealing DMA I/O operation. DMA 
Controllers (DMAC) are commonly used in hard-real-time 
embedded systems to reduce the CPU usage on interrupt 
service routines. A DMAC that operates in the cycle-
stealing mode transfers data by ‘stealing’ bus cycles from 
the executing program. Bus contention between the 
executing program and the cycle-stealing DMA I/O 
operation retards the progress of both and extends their 
execution times. Our I-IPET approach first follows the 
control flow of the program iteratively to determine the set 
of all possible execution times of each instruction and their 
relationship with its adjacent instructions. We next model 
the execution behaviour of each instruction and its adjacent 
instructions by a directed graph. Each execution time and 
each edge in the directed graph is assigned an execution 
count. These execution counts must satisfy a set of linear 
constraints called DMA-bounding linear constraints. These 
possible execution times, execution counts, DMA-bounding 
and cache-bounding linear constraints are used as inputs to 
an ILP problem, the solution of which is an upper bound of 
the WCET of the program being analysed. 

To demonstrate the efficacy of our method on bounding 
the WCET, we conducted extensive experiments on a 
widely-used embedded microprocessor. We compare our 
WCET predictions with the traditional pessimistic WCET 
predictions for several sample programs. The experimental 
results show that our predictions safely bound the WCETs 
of these programs. In addition, our predictions are as much 
as 47% tighter than the pessimistic predictions. 

The rest of the paper is structured as follows. Section 2 
describes related work. Section 3 describes our machine 
model. For the sake of simplicity, we present our I-IPET 
approach in an incremental way. Section 4 describes the 
methodology for bounding the interference of instruction 
caching and cycle-stealing DMA I/O. Section 5 extends the 
methodology in Section 4 to include the effect of instruction 
pipelining. We present our experimental results in Section 6. 
Finally, Section 7 gives the concluding remarks. 

2 Related work 

A number of methods have been developed by different 
research groups to predict the WCET of a program (Colin 
and Puaut, 2000; Engblom and Ermedahl, 1999, 2000; 
Engblom et al., 2001; Ferdinand et al., 1997; Ferdinand and 
Wilhelm, 1999; Gupta and Gopinath, 1994; Healy et al., 
1999; Kim et al., 1999; Lim et al., 1998; Lundqvist and 
Stenström, 1999a, 1999b; Mueller et al., 1994; Ottosson and 
Sjödin, 1997; Park and Shaw, 1991; Puschner and  
Koza, 1989; Stappert and Altenbernd, 2000). Shaw (1989) 
first proposed a timing schema to represent the execution 
time of a program. Park and Shaw (1991) later extended the 
schema to eliminate infeasible execution paths (i.e., paths 
that can never be executed) and tighten the WCET 
prediction. Similarly, Puschner and Koza (1989) introduced 
several new language constructs with which programmers 
can describe the timing behaviour of a program. Muller  
et al. (1994) developed a static cache simulation to bound 
the WCET of a program executed on a contemporary 
machine with an instruction cache. Lim et al. (1998) 
proposed a timing analysis technique for modern multiple-
issue machines such as superscalar processors. Kim et al. 
(1999) presented quantitative analysis results on the impacts 
of various architecture features on the accuracy of WCET 
predictions. Lundqvist and Stenström (1999a) extended 
cycle-level architectural simulation techniques to calculate 
WCET predictions on high-performance processors. 

Recently, the IPET methodology has been widely used 
to determine the WCET of a program (Engblom et al., 2001; 
Healy et al., 2000; Huang et al., 1996; Li and Malik, 1995, 
1999; Ottosson and Sjödin, 1997; Theiling, 2002;  
Theiling et al., 2000). Li and Malik (1995) presented the 
first IPET approach to convert the problem of bounding  
the WCET into one of solving a set of ILP constraints. 
Users can provide path information in the form of linear 
constraints, called path-bounding linear constraints, to 
eliminate infeasible paths and tighten the WCET prediction. 
Li and Malik (1999) extended their IPET approach to 
include the timing analysis of direct-mapped instruction 
caches. Engblom et al. (2001) converted complex  
control-flow information into a set of linear constraints for 
tighter WCET predictions. Healy et al. (2000) described 
several complementary methods to automatically bound 
loop iterations with linear constraints. Theiling et al. (2000) 
adopted abstract interpretation to analyse the performance 
of modern hardware architectures and used the IPET 
approach to find the longest execution path. Among all the 
IPET extensions, our work is the only one that attempts to 
consider the interference of cycle-stealing DMA I/O and the 
first one that used an iterative IPET approach to model the 
performance of modern hardware architectures. 

The first IPET approach (Li and Malik, 1995) 
decomposes a program into a number of basic blocks.  
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The execution time ci of a basic block Bi is equal to the sum 
of the execution times of all instructions in the block. Let xi 
be the execution count of the basic block Bi. The execution 
time of the program can be computed by summing the 
products of the execution counts of the basic blocks in the 
program and their corresponding execution times.  
To analyse the effect of instruction caching, Li and  
Malik (1995) further partition each basic block into one or 
more l-blocks. An l-block is a sequence of contiguous 
instructions within the same basic block that are mapped to 
the same cache line. Let ,

h
i jc  and ,

m
i jc  denote the cache-hit 

and cache-miss execution times of the l-block Bi,j and let 
,
h
i jx  and ,

m
i jx  denote its cache-hit count and cache-miss 

count, respectively. The execution count of Bi,j is equal to 
the execution count xi of Bi i.e., 

, , , 1, , ,h m
i i j i j ix x x j n= + = …  

where ni is the number of l-block in Bi. Let N be the number 
of basic blocks in a program. The cost function of the 
execution time of the program is 

, , , ,
1 1

( ).
inN

h h m m
i j i j i j i j

i j
c x c x

= =

+∑∑  (1) 

A set of cache-bounding linear constraints on ,
h
i jx  and ,

m
i jx  

are generated to bound the relationship of each l-block.  
The maximum value of the cost function in equation (1) 
under the path-bounding linear constraints on the xi’s and 
the cache-bounding linear constraints on the ,

h
i jx ’s and ,

m
i jx ’ 

s is an upper bound of the WCET of the program executed 
alone on a machine model with instruction caching. 

3 The machine model 

We develop our I-IPET approach on top of the cost  
function in equation (1) and the path-bounding and the 
cache-bounding linear constraints. We adopt here the 
commonly-used machine model shown in Figure 1.  
The program being analysed is executed in the CPU with 
instruction caching and pipelining. An independent DMA 
I/O operation, issued by another program, is executed 
concurrently by the DMAC. The DMAC operates in the 
cycle-stealing mode. Either the CPU or the DMAC, but not 
both, can hold the bus and transfer data at any time instant. 
For the sake of concreteness, we assume that bus contention 
between the CPU and the DMAC is regulated according to 
the VMEbus (Black et al., 1981) bus access protocol. This 
protocol is sufficiently general that our analysis may be 
easily applied to many other commonly-used bus protocols. 
 
 
 
 
 
 

Figure 1 The machine model 

 

An instruction cycle consists of a sequence of operations to 
fetch and execute an instruction. The sequence takes one or 
more machine cycles. A machine cycle requires one to 
several processor clock cycles to execute. We assume that 
the CPU is synchronous: the beginning of each machine 
cycle is triggered by the processor clock. We classify all 
machine cycles into one of two categories: bus-access (B) 
cycles and execution (E) cycles. B-cycles are those machine 
cycles during which the CPU uses the I/O bus. In contrast, 
during E-cycles, the CPU does not use the bus. In general, 
there may be several consecutive E-cycles in an instruction 
cycle. 

The DMAC transfers data only when the CPU is in  
E-cycles. Let m be the maximum units of data the  
DMAC can transfer during the sequence of cycles, 
Bi → E1 → E2 → … Ek → Bi+1. When the CPU enters E1 
from Bi, there is a short delay called the Bus Master 
Transfer (BMT) time, while the DMAC gains control of the 
bus. The DMAC keeps transferring data as long as the CPU 
continues to be in E-cycles. The CPU sends a bus request 
when it is ready to enter Bi+i from Ek. The DMAC checks 
whether there is any pending bus request only at the  
end of each data transfer. If there is a bus request, the 
DMAC releases the bus. After another BMT delay,  
the CPU gains control of the bus and enters the  
Bi+1 cycle. We assume that the transfer of each unit  
of data by the DMAC takes the same amount of time  
and denote this time by DT. Let T be the total  
execution time of the k consecutive E-cycles. We can 
compute m by the equation 

BMT .
DT

Tm − =   
 (2a) 

The worst-case delay suffered by the CPU execution of the 
sequence of machine cycles is 

DT 2 BMT ,c
c

m Tr T
T

 × + × −= × 
 

 (2b) 

where Tc is the period of a clock cycle. The details of the 
derivation for these equations can be found in Huang and 
Liu (1995). 
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4 Instruction catching and DMA I/O 

In this section we extend the cost function in equation (1) to 
bound the WCET of a program executing concurrently with 
DMA I/O on a machine model with instruction caching.  
To simplify the discussion, we assume that instruction 
pipelining in the machine model shown in Figure 1 is 
disabled. We will later enable instruction pipelining in the 
next section. 

When DMA I/O is concurrently executing, the execution 
time of an l-block is equal to the sum of its execution time 
when it executes alone and the delay caused by DMA I/O. A 
DMA transfer can cross two l-blocks if the first l-block ends 
with an E-cycle and the second l-block begins with  
an E-cycle (i.e., it causes a cache hit). Consequently, the 
delay suffered by an l-block varies, depending upon the 
concurrent execution of DMA I/O, the l-block itself and its 
adjacent l-blocks. Our I-IPET approach follows the control 
flow of the program iteratively to determine the set of 
possible execution times of each l-block. The method may 
examine an l-block repeatedly and will terminate only after 
all possible execution times have been determined. 

In the following, we first describe the methodology to 
determine the set of possible execution times of an l-block 
when it causes a cache miss. We next discuss the case when 
it causes a cache hit. Suppose that, when DMA I/O is 
present, our I-IPET approach determines that an l-block Bk,i 
has, totally, tk,i possible execution times when it causes  
a cache hit. Let , ,1 , ,2 , , ,, , ,

k

h h h
k l k l k l t lc c c…  denote these execution 

times. Let  
 denote the execution counts of these execution times, 

respectively. The sum of these execution counts is equal to 
the cache-hit count of Bk,l, i.e., 

, , ,1 , ,2 , , , .
k

h h h h
k l k l k l k l t 1x x x x= + + +"  (3) 

Similarly, suppose that Bk,i has totally sk,i possible execution 
times when it causes a cache miss and these execution times 
are denoted by , ,1 , ,2 , , ,, , , .

k

m m m
k l k l k l s lc c c… Let , ,1 , ,2 , , ,, , ,

k

m m m
k l k l k l s lx x x…  

denote their execution counts. The sum of these execution 
counts is equal to the cache-miss count of Bk,l, i.e., 

, , ,1 , ,2 , , , .
k

m m m m
k l k l k l k l s lx x x x= + + +"  (4) 

We can, therefore, express the total execution time of Bk,l as 

, ,

, , , , , , , ,
1 1

.
k l k lt s

h h m m
k l d k l d k l d k l d

d d
c x c x

= =

+∑ ∑  (5) 

The cost function in equation (1) should be replaced by the 
new cost function 

, ,

, , , , , , , ,
1 1 1 1

.
i j i ji t snN

h h m m
i j d i j d i j d i j d

i j d d
c x c x

= = = =

  + 
  

∑∑ ∑ ∑  (6) 

when we want to take into account of the effect of DMA 
I/O. We bound the WCET of the program by the maximum 
value of the new cost function under a set of path-bounding 
linear constraints on the xi’s, a set of cache-bounding  
linear constraints on the ,

h
i jx ’s and ,

m
i jx ’s and a set of  

DMA-bounding linear constraints on the , ,
h
i j dx ’s and 

, ,
m
i j dx ’s. 

The rationale that can be used to determine the set  
of possible execution times of each l-block Bk,l and the 
DMA-bounding linear constraints on their execution count 
is presented next. We describe the I-IPET approach that 
implements the rationale at the end of this section. 

4.1 Cache-miss execution times 

An instruction that executes alone has two possible 
instruction cycles; one when it causes a cache hit and one 
when it causes a cache miss. For the sake of simplicity,  
we assume that querying the status of the instruction cache 
is instantaneous. Therefore, the cache-hit instruction cycle 
begins with an E-cycle to fetch the instruction from the  
on-chip instruction cache, and the cache-miss instruction 
cycle begins with one or more B-cycles to fetch the 
instruction and the subsequent instructions in the l-block 
from the main memory. Due to the iterative analysis, 
however, our I-IPET approach can be easily adapted to 
work on other machine models that may require extra  
E-cycles to determine whether the requested l-block is in the 
instruction cache. 

We obtain the cache-miss sequence of machine cycles of 
the l-block Bk,l by concatenating the cache-miss instruction 
cycle of the first instruction and the cache-hit instruction 
cycles of the rest of the instructions in the l-block.  
We denote this sequence of cycles by ,

m
k lB . 

The delay suffered by ,
m
k lB  due to DMA I/O is the sum 

of the delays suffered by all E-cycle sequences in ,
m
k lB . 

Because ,
m
k lB  begins with a B-cycle, a predecessor of the 

sequence (i.e., an instruction executed immediately before 
this sequence) does not affect the execution time of ,

m
k lB .  

On the other hand, if ,
m
k lB  ends with an E-cycle, a DMA 

transfer can cross ,
m
k lB  and a successor of the sequence  

(i.e., an instruction executed immediately after the 
sequence) if the successor causes a cache hit and ,

m
k lB  may 

affect the execution time of the successor. Consequently, the 
set of possible execution times of ,

m
k lB  depends on whether 

,
m
k lB  ends with a B-cycle or an E-cycle. 

,
m
k lB  ends with a B-cycle. If ,

m
k lB  ends with a B-cycle, no 

DMA transfer can cross it or any of its successors. We can, 
therefore, use equation (2) to calculate the delay suffered by 
each E-cycle sequence in ,

m
k lB . We then obtain an execution 

time of ,
m
k lB  by summing ,

m
k lc  and the delays of all E-cycle 

sequences. It is the only possible execution time of ,
m
k lB  in 

this case. In other words, the number sk,l of possible 
execution times of ,

m
k lB  is one. 

,
m
k lB  ends with an E-cycle. If ,

m
k lB ends with an E-cycle, 

the delay suffered by the last E-cycle sequence in ,
m
k lB  

depends on whether its successor causes a cache miss or a 
cache hit. This fact is illustrated by Figure 2. We first use 
equation (2) to calculate the delay suffered by each E-cycle 
sequence except the last one. When its successor causes  
a cache hit, the last E-cycle sequence suffers no delay 
because a DMA transfer can cross ,

m
k lB  and the successor, as 

shown in Figure 2(a). In contrast, when its successor causes 
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a cache miss, as shown in Figure 2(b), the last E-cycle 
sequence suffers a delay that is given by equation (2). 
Hence, ,

m
k lB  has totally two possible execution times: , ,1

m
k lc , 

which is equal to ,
m
k lc , plus the total delays suffered (due to 

concurrent DMA I/O) by all but the last E-cycle sequence; 
and , ,2

m
k lc , which is equal to , ,1

m
k lc  plus the delay suffered by 

the last E-cycle sequence. sk,l is two in this case. 

4.2 The execution-time-dependency graph 
We represent the dependency of the execution times of  
Bk,l on the behaviour of its predecessors and successors by 
an execution-time-dependency graph, a part of which is 
illustrated in Figure 2(c). Each node under ,

m
k lB  represents a 

possible execution behaviour of ,
m
k lB  that leads to a possible 

execution time of this l-block; the node is labelled with  
the corresponding execution time and execution count. 
Here, the node labelled , ,1 , ,1( )m m

k l k lc x  represents the case 
shown in Figure 2(a) and the node labelled , ,2 , ,2( )m m

k l k lc x  
represents the case shown in Figure 2(b). In the former case 
(where a successor of ,

m
k lB  causes a cache hit), the last DMA 

transfer in ,
m
k lB  affects the delay suffered by the first E-cycle 

sequence of a successor. We represent this fact by a directed 
edge from this node (the source of the edge) to the node 
representing the cache-hit case of a successor (the target of 
the edge). We will later replace the target of the edge by a 
node representing a specific execution behaviour of this 
successor. In general, a directed edge represents the fact that  
the delay suffered by the first E-cycle sequence in the  
l-block represented by the target node is affected by the last 
DMA transfer in the l-block represented by the source node. 

Figure 2 The execution times of ,
m
k lB  if it ends with an E-cycle: 

(a) the execution time of ,
m
k lB  when its successor 

causes a cache hit; (b) the execution time of ,
m
k lB   

when its successor causes a cache miss and (c) the 
dependence on the successors of ,

m
k lB  

 
 (a) 

 
 (b) 

 
 (c) 

An I-IPET implementation, which we will describe  
at the end of this section, constructs and uses such a graph. 
This graph may be modified as each l-block is analysed  
in the manner described in this section. In our subsequent 
discussion, rather than saying a DMA transfer (or a cycle)  
in an l-block when the execution behaviour of the l-block  
is represented by a node, we will simply say “a DMA 
transfer (or a cycle) in the node”. Let , ,1

m
k lb  denote the length 

of time from when the last DMA transfer in the node 
labelled , ,1 , ,1( )m m

k l k lc x  starts to when the last E-cycle sequence 
in the node ends, as shown in Figure 2(a). We call this 
length the elapsed time of the last DMA transfer in the node. 

We add a directed edge from the node labelled 
, ,1 , ,1( )m m

k l k lc x  to the cache-hit case of each successor, as shown 
in Figure 2(c). We assign each directed edge with an 
execution count that represents the number of times the 
control flow passes from the source node to the target node 
of the edge. The execution counts of these edges satisfy the 
following constraint. 

Constraint 1: The sum of the execution counts of the 
directed edges leaving the node labelled , ,1 , ,1( )m m

k l k lc x  is equal 
to the execution count , ,1( )m

k lx . 

4.3 Cache-hit execution times 

We now examine the case when ,k lB  causes a cache hit.  
We use ,

h
k lB  to denote the sequence of machine cycles that 

is the concatenation of the cache-hit instruction cycles of all 
instructions in the l-block ,k lB . We again need to consider 
two cases: when ,

h
k lB  ends with a B-cycle, and when ,

h
k lB  

ends with an E-cycle. 

,
h
k lB  ends with a B-cycle. Again, when ,

h
k lB  ends with a  

B-cycle, we need not be concerned with its successors. 
However, because ,

h
k lB  begins with an E-cycle, a 

predecessor that ends with an E-cycle affects the delay 
suffered by the first E-cycle sequence in ,

h
k lB . As a result, in 

order to determine all the possible execution times of ,
h
k lB  

we first need to examine its predecessors. 
We use equation (2) to calculate the delay suffered  

by each E-cycle sequence in ,
h
k lB  except the first one. 

Suppose that, after all the predecessors of ,
h
k lB  have been 

analysed, there are p directed edges pointing to ,
h
k lB  in the 

execution-time-dependency graph. We group together  
the edges from sources in which the elapsed times of the last 
DMA transfers are the same. Suppose that this procedure 
partitions the p edges into u disjoint groups. Let bi denote 
the elapsed time of the last DMA transfer in the sources of 
the edges in group i, i = 1. Figure 3 shows the case where a 
predecessor of ,

h
k lB  ends with an E-cycle and the elapsed 

time of the last DMA transfer in the predecessor is bi.  
We can calculate the delay suffered by the first E-cycle 
sequence of ,

h
k lB  using a slight modification of equation (2); 

we replace T in equation (2) with the expression 

BMT ,f  iT +  +b  (7) 
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where Tf is the execution time of the first E-cycle sequence 
when it executes alone. Accordingly, we can obtain an 
execution time of ,

h
k lB  for group i. Let , ,

h
k l ic  denote this 

execution time. We add a node in the execution-time-
dependency graph to represent the execution behaviour ,

h
k lB  

for group i and label the node with the execution time , ,
h
k l ic  

and the execution count , ,
h
k l ix . Because there are u such 

groups, we have u such nodes. We change the targets of the 
edges in group i to the node labelled with , , , ,1( )h h

k l i k lc x .  
The execution counts of the edges in each group i satisfy the 
following constraint. 

Figure 3 The execution time of ,
h
k lB  for the edges in group i 

 

Constraint 2: The sum of the execution counts of the 
directed edges entering the node labelled , , , ,( )h h

k l i k l ic x is 
equal to the execution count , ,

h
k l ix . 

A predecessor that ends with a B-cycle can not affect the 
execution time of ,

h
k lB . Hence, there is no directed edge 

between such a predecessor and ,
h
k lB . We can use equation 

(2) directly to calculate the delay suffered by the first  
E-cycle sequence and obtain another execution time , , 1

h
k l uc +  

of ,
h
k lB . We add a node to represent this execution behaviour 

of ,
h
k lB  if it has a predecessor that ends with a B-cycle.  

In summary, ,
h
k lB  may have u + 1 possible execution times 

when ,
h
k lB  ends with a B-cycle. There are u + 1 nodes 

labelled by these execution times and the corresponding 
execution counts. The sum of these u + 1 execution counts 
is equal to the cache-hit count of ,

h
k lB , as described in 

equation (3). 

,
h
k lB  ends with an E-cycle. ,

h
k lB  may end with an E-cycle.  

In this case, we have to be concerned with its successors as 
well as its predecessors. We use equation (2) to calculate the 
delay suffered by each E-cycle sequence except the first one 
and the last one. As stated above, we must analyse  
the predecessors of ,

h
k lB  first in order to calculate all the 

possible values for the delay suffered by the first E-cycle 
sequence in ,

h
k lB . Again, we consider first the case of 

predecessors of ,
h
k lB  that end with an E-cycle. For this case, 

let u denote the number of possible values for the delay 
suffered by the first E-cycle sequence in ,

h
k lB . In addition, 

the delay suffered by the last E-cycle sequence in ,
h
k lB  has 

two possible values; one when a successor causes a  
cache hit and one when a successor causes a cache miss. 
Thus, ,

h
k lB  has 2u possible execution times in this case.  

We add two nodes to represent these two execution 
behaviours of ,

h
k lB  for each group i of incoming edges and  

 

label them , ,2 1 , ,2 1( )h h
k l i k l ic x− −  and , ,2 , ,2( )h h

k l i k l ic x , as shown in 
Figure 4. We have 2u such nodes. In addition, we replace  
each incoming edge in group i with two edges which have 
the same source as the original edge but have as targets the 
nodes labelled , ,2 1 , ,2 1( )h h

k l i k l ic x− −  and , ,2 , ,2( )h h
k l i k l ic x . Both the 

execution counts of the edges entering the node labelled 
, ,2 1 , ,2 1( )h h

k l i k l ic x− −  and the execution counts of the edges 
entering the node labelled , ,2 , ,2( )h h

k l i k l ic x must satisfy a linear 
constraint similar to Constraint 2. 

Figure 4 The execution times of ,
h
k lB  if it ends with an E-cycle 

 

In the case when a predecessor ends with a B-cycle, we can 
use equation (2) directly to calculate the delay suffered by 
the first E-cycle sequence in ,

h
k lB . Because of this case, ,

h
k lB  

has two more possible execution times. Let , ,2 1
h
k l uc +  and 

, ,2 2
h
k l uc + denote these two execution times. We construct two 

more nodes to represent these two execution behaviours of 
the l-block. Including the 2u nodes described above, ,

h
k lB  

has 2u + 2 nodes and thus 2u + 2 possible execution times. 
Finally, we add a directed edge from each node labelled 

with the execution time , ,2 1, 1, , 1,h
k l ic i u− = +…  to the node 

representing the cache-hit case of each successor and  
label this edge with a corresponding execution count.  
The execution counts of these edges must satisfy a linear 
constraint similar to Constraint 1. 

4.4 An Iterative Implicit Path Enumeration 
Technique (I-IPET) implementation 

As shown in Section IV-C, to determine the set of possible 
execution times of an l-block ,

h
k lB , we must first determine 

the set of possible execution times of all its predecessors 
that end with an E-cycle. This requirement may lead to a 
cycle of dependencies. An example is the loop in the 
control-flow graph shown in Figure 5. Each node in this 
graph represents an l-block and each edge represents a 
control flow edge. Suppose that the l-blocks B and C each 
end with an E-cycle. Because C is a predecessor of B, the 
execution time of B depends on C. Since B is a predecessor 
of G, the execution time of C depends on B. In this section 
we describe an I-IPET implementation to determine the set 
of possible execution times of each l-block. Because there  
is only a finite set for the elapsed times of the last DMA 
transfer in an l-block, the iterative analysis will eventually 
terminate. 
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Figure 5 A simple loop 

 

We now describe in detail the algorithm to generate the 
expression of the cost function (equation (6)) and the set of 
DMA-bounding linear constraints. Let K denote the number 
of the possible values for the elapsed time of the last DMA 
transfer in an l-block. Let J denote the maximum number of 
predecessors of each l-block. The complexity of this 
algorithm is O(KJN) for a program with N l-blocks. 

• The main procedure. Figure 6 shows the main 
procedure. This procedure requires as input the l-block 
control structure of the program to be analysed and the 
instructions in each l-block. Let the first l-block in the 
program be denoted. The procedure creates an 
execution-time-dependency graph G = (V, D); the 
nodes and edges in this graph were described earlier.  
It uses a variable L to hold the list of l-blocks waiting  
to be analysed. Moreover, for each l-block there is a  
list of edges whose targets are the cache-hit case of the 
l-block. These edges are yet to be examined; hence this 
list is called the unprocessed list of the l-block. This list 
is initially empty and is modified each time the l-block 
is analysed. 

Figure 6 The main procedure 

 

Initially, L contains only the l-block B1,1. The unprocessed 
list of B1,1 is empty, denoted by Ø. Similarly, both the node 
set V and edge set D of the graph G are empty. During each 
iteration of the while loop (lines 2–4), the l-block (called 

,
h
k lB ) at the head of L is dequeued and its execution time is 

analysed by the procedure analyze (described below). 
The analyze procedure checks each successor of the  
l-block ,

h
k lB . A successor is added to the list L if the 

successor is not yet examined (i.e., visited), or if analyze 
has added a new directed edge to the cache-hit case of the 
successor and the edge is not yet processed. This iterative 

process continues until L becomes empty, at which time all 
l-blocks and all directed edges between pairs of l-blocks 
have been analysed. We next construct a set of linear 
constraints for each l-block (lines 5 and 6). These linear 
constraints are ones for bounding the cache-hit and  
cache-miss counts (equations (3) and (4)) and ones for 
bounding the execution counts of the directed edges 
entering and leaving each node (Constraints 1 and 2).  
We also construct the total execution time expression for 
each l-block (equation (5)). Finally, the cost function for the 
program is constructed (line 7). The cost function and linear 
constraints thus obtained, in addition to path-bounding and 
cache-bounding linear constraints, are inputs to an ILP 
program which computes the maximum of the cost function 
for all values of execution counts that satisfy the constraints. 

• The analyze procedure. The analyse procedure adds 
to the graph G nodes that represent (some of) ,k lB ’s 
possible execution behaviours and directed edges that 
represent the dependencies of the execution times of its 
predecessors and successors on the l-block, in the 
manner described earlier. 

Figure 7 gives the pseudo code of the analyze procedure. 
If this is the first time that ,k lB  is visited, we add two sets of 
nodes to the node set V: a set of nodes representing the 
execution behaviours of ,

m
k lB  and a set of nodes representing 

the execution behaviours of ,
h
k lB if any predecessor ends 

with a B-cycle. We label each node with the corresponding 
execution time and its execution count. (Lines 1–5) 

Figure 7 The analyze procedure 

 

If there are edges in the unprocessed list of ,k lB , we process 
each edge in the list in turn and remove it from the list  
(lines 6–12). If ,k lB  ends with an E-cycle, we replace each  
edge with a pair of new edges which has the same source as 
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the original edge. We then process each edge to achieve two 
goals: first, to put the edge in one of the groups of edges so 
that the elapsed time of the last DMA transfer in the same 
group are the same and second, to change the target of the 
edge to the node labelled with the corresponding execution 
time and execution count of ,k lB . 

For each node added to V, if the last DMA transfer in 
the node affects the execution time of a successor, we add to 
D a directed edge from the node to the cache-hit case of the 
successor. We then add this edge to the unprocessed list of 
the successor (Line 13). 

Finally, we add to the list L any of the successor l-blocks 
of ,k lB which have not yet been visited or to which we just 
constructed an edge (Line 14). 

5 Instruction caching, pipelining and DMA I/O 

We now enable instruction pipelining in the machine model 
which allows multiple instructions to be overlapped in 
execution. We represent the execution of an l-block when it 
executes alone by two reservation tables, one when it causes 
a cache hit and one when it causes a cache miss. We call 
them the cache-hit reservation table and the cache-miss 
reservation table, respectively. A reservation table describes 
the activities within a pipeline (Kogge, 1981). We classify 
all pipeline stages into two categories: B-stages and  
E-stages. B-stages are those pipeline stages during which 
there is bus-access activity. In contrast, during E-stages, 
there is no bus-access activity. 

Figure 8 shows an l-block and its cache-hit and  
cache-miss reservation tables for example. The instruction 
pipeline consists of four stages. An instruction is fetched 
during the Instruction Fetch (IF) stage and decoded during 
the Instruction Decode (ID) stage. The instruction executes 
during the Execution (EX) stage and data produced by the 
instruction are written to the memory during the Write Back 
(WB) stage. The cache-miss reservation table shown in 
Figure 8(c) begins with several B-stages to fetch the first 
and subsequent instructions in the l-block from the main 
memory. Each of the subsequent instructions begins with an 
E-stage to fetch instruction from the on-chip instruction 
cache. Because none of the instructions in the l-block 
fetches any operand, all ID stages are E-stages. Finally, all 
EX stages are E-stages and all WB stages are B-stages. 

We call a processor cycle a B-cycle if at the processor 
cycle any stage in the instruction pipeline is a B-stage. 
Otherwise, we call a processor cycle an E-cycle. The CPU 
uses the system bus only during B-cycles. To analyse the 
bus contention between the CPU and the DMAC during the 
cache-miss execution of the l-block shown in Figure 8(c), 
we represent the pipelined execution of the l-block by a 
sequence of B-cycles and E-cycles, as shown in Figure 9. 
Let m be the number of units of data the DMAC transfers  
between B4 cycle and B8 cycle. Let R be the length of time 
the pipelined execution stalls. The DMAC operates as 
described in Section III. Similarly, we can use equation (2) 
to calculate m and R. 

Figure 8 An l-block and its cache-hit and cache-miss reservation 
tables: (a) an 1-block; (b) its cache-hit reservation table 
and (c) its cache-miss reservation table 

 
 (a) 

 
 (b) 

Figure 9 The concurrent execution of the DMAC and a sequence 
of processor cycles 

 

5.1  The execution time of an l-block 

Figure 10 illustrates how the cache-miss execution of the  
l-block shown in Figure 8(c) affects the execution time  
of a successor when DMA I/O is present. Figure 10(a), a 
simplified version of Figure 9, shows the pipelined 
execution of the l-block when it executes concurrently with 
DMA I/O. Here we define the tail of a reservation table as 
its last few columns, starting from the column at which the 
CPU is ready to fetch the first instruction of a successor to 
the last column of the table. For example, the tail of the 
cache-miss reservation table shown in Figure 10(a) consists 
of Columns 11–13. 

Figure 10(b) shows the cache-hit reservation table of a 
successor. To determine the execution time of the successor, 
we concatenate the tail of the l-block’s reservation table and 
the successor’s cache-hit reservation table to obtain another 
reservation table shown in Figure 10(c). The first four 
processor cycles of the new reservation table are E-cycles 
and the next one is a B-cycle. The pipelined execution stalls 
due to DMA I/O between the end of the first four E-cycles 
and the start of the next B-cycle. To determine the length Rs 
of time the pipelined execution stalls, we need to determine 
if any DMA transfer crosses the execution of E10 cycle of 
the l-block and the first instruction of the successor. If there 
is one such DMA transfer, let b denote the elapsed time of 
the last DMA transfer of the l-block, as shown in Figure 9. 
We can calculate Rs using a slight modification of  
equation (7). In contrast, if there is no such DMA transfer, 
we use equation (2) directly to calculate Rs. 
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Figure 10 The interference of DMA I/O on the pipelined 
execution of a successor: (a) an 1-block;  
(b) a successor when it causes a cache hit tail  
and (c) the pipelined execution of the successor 

 

Finally, we define the execution time of an l-block to be the 
interval from the time when the CPU is ready to fetch the 
first instruction of the l-block to the time when the CPU is 
ready to fetch the first instruction of a successor, if the  
l-block has any successor, or to the time when the CPU 
finishes the execution of the l-block, if the l-block has no 
successor (i.e., the last l-block). In the example shown in 
Figure 10, the execution time of the l-block is (R + 10 × Tc) 
and the execution time of the successor is (Rs + 6 × Tc), if it 
has any successor, or (Rs + 9 × Tc), otherwise. 

5.2 Iterative timing analysis 

We represent the dependency of the execution times of an  
l-block ,k lB  on the behaviour of its predecessors and 
successors by an execution-time-dependency graph similar 
to the one described in Section 4.2. Each node under ,k lB  
now represents a reservation table with stalls due to DMA 
I/O that leads to a possible execution time of this l-block 
and the node is labelled with the corresponding execution 
time and execution count. Each directed edge between two 
nodes represents the fact that the execution time of the  
l-block represented by the target node is affected by the 

elapsed time of the last DMA transfer of the l-block 
represented by the source node. 

To bound the WCET of a program executing 
concurrently with DMA I/O on an advanced architecture 
with instruction caching and pipelining, we apply the  
I-IPET approach described in Section 4.4 to determine the 
set of possible execution times of each l-block, construct a 
set of DMA-bounding linear constraints on the execution 
counts and generate a new cost function. The maximum 
value of the new cost function under the path-bounding, 
cache-bounding and DMA-bounding linear constraints 
bounds the WCET of the program. 

6 Experimental results 

We conducted extensive experiments to demonstrate the 
efficacy of our I-IPET approach on bounding the WCETs of 
programs. We evaluated the performance of our method by 
comparing our WCET predictions with the traditional 
pessimistic WCET predictions for several sample programs. 
In the following we first describe the experiments. We next 
describe the experimental results on each of the two 
architectures discussed in this paper. 

6.1 The experiments 

Figure 11 describes the control flow of the experiment. 
Table 1 lists the sample programs in our tested workload. 
For each sample program, we compiled it into a MC68030 
assembly program and executed the assembly program on a 
MC68030 simulator with the worst-case data set to obtain 
the worst-case execution path. We identified the worst-case 
data set of each sample program by a careful study of  
the program. Column 2 of Table 1 lists the number of 
instructions in the worst-case execution path of each 
program. From the tested program, Mtx2 is obtained by 
unrolling the innermost loop of Mtxm. We used the 
MC68030 in this experiment because it is a widely-used 
embedded microprocessor for which instruction timing 
information is available. 

Figure 11 The control flow of the experiment 

 

Table 1 The tested set of programs 

Name Worst-case path insts. Description 

Sels 11,713 Selection sort 
Gaus 47,272 Gaussian elimination 
Mtxm 40,789 Matrix multiplication 
Tdsm 8,450 DMA I/O simulator 
Mtx2 10,592 Loop-unrolled Mtxm 
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This experiment is divided into two parts: static analysis 
and dynamic analysis. 

In the static analysis part, we compared our WCET 
prediction with the pessimistic WCET prediction of the 
structured program. In the dynamic analysis part, we 
compared our WCET prediction with the pessimistic WCET 
prediction of the worst-case execution path. 

Static analysis. Given an assembly program, we first 
computed its WCET when it executes without any 
interference of DMA I/O. Here we use the cache-aware 
IPET solution (Li and Malik, 1999) to obtain this prediction. 
We denote this value by As. We next used our I-IPET 
approach to compute the WCET of the program when it 
executes concurrently with DMA I/O and denote this value 
by Ws. In addition, we computed the maximum units of data 
which the DMAC can transfer during the execution of Ws. 
We denote this value by Ms. We also used a pessimistic 
method to predict the WCET of the concurrent execution of 
the program and a DMA I/O operation that transfers  
Ms units of data. The pessimistic method bounds the 
WCET by the sum of As and the execution time of  
the DMA I/O operation when it is carried out alone.  
We denote this pessimistic prediction by a

sW . We measure 
the effectiveness of our method by the percentage Ps of 
reduction from the pessimistic prediction, i.e., 

100%.
a

s s
s a

s

P −= ×W W
W

 

Dynamic analysis. The approach we took to demonstrate the 
improvement of our method on each program’s worst-case 
execution path is similar to the one used in the static 
analysis. We first computed the execution time of a trace 
when it executes alone and denote this value by Ad. We next 
simulated the concurrent execution of the trace and DMA 
I/O to find the execution time of the trace when it executes 
concurrently with DMA I/O and the number of units of data 
that the DMAC transfers. We denote them by Wd and Md, 
respectively. The trace can be treated as a program with 
only straight-line code. Since the program contains only one 
execution path, our WCET prediction was exactly the same 
as Wd. Let a

dW  denote the pessimistic WCET prediction  
of the concurrent execution of the trace and the DMA I/O 
operation. We measure the effectiveness of our method  
by the percentage of reduction from the pessimistic 
prediction, i.e., 

100%.
a

d d
d a

d

P −= ×W W
W

 

In addition, we evaluated the accuracy of our method  
by comparing the execution time Wd of the worst-case 
execution trace with our WCET prediction Ws of the 
structured program. 
 

6.2 Results on an instruction-cache architecture 

For each program in the test set, we first used equation (1) 
to compute the WCET of the program when it executes 
alone. We next used the I-IPET approach described in 
Section 4 to compute the WCET when the program  
executes concurrently with DMA I/O. Table 2 shows the 
static-analysis experimental results when the on-chip 
instruction cache is organised as 16 16-byte lines. Columns 
2 and 3 give the values of Ws and a

sW , respectively, after 
each is normalised to As. Column 4 gives the value of Ps for 
each program. For example, according to our predictions, 
DMA I/O extends the WCET of the program Sels for up to 
15%. Assuming that the DMA I/O operation is carried out 
alone, the pessimistic method estimates the delay caused by 
DMA I/O to be 104% on the same program, which results in 
a 44% reduction by our method. Among the tested 
programs, our method produces up to 47% reduction from 
the pessimistic WCET prediction on the Mtxm program. 

Table 2 The 16-line static-analysis results on the  
instruction-cache architecture 

Name Ws/As 
a

s sW A  Ps (%) 
Sels 1.15 2.04 44 
Gaus 1.18 2.00 41 
Mtxm 1.02 1.92 47 
Tdsm 1.04 1.93 46 
Mtx2 1.03 1.85 44 

In order to study the relationship between the reduction 
percentage Ps and the size of the instruction cache, we 
conducted the same experiment on processor configurations 
with instruction caches of 4, 8 and 32 16-byte cache lines. 
Figure 12 gives the result Ps recorded in each of these 
experiments. A program has a higher cache-hit ratio when it 
executes on a processor configuration with more cache 
lines. The higher cache-hit ratio increases the percentage of 
E-cycles in the execution of the program and thus allows 
more concurrent DMA I/O transfers. Consequently, when a 
program executes on a processor configuration with more 
cache lines, it has a larger value of Ps. 

Figure 12 The static-analysis results on the instruction-cache 
architecture 
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Table 3 shows the dynamic-analysis experimental results on 
a processor configuration with 16 16-byte cache lines. 
Column 2 gives the cache-hit ratio of each trace. Column 3 
gives the bus utilisation of each trace when it executes 
alone. The bus utilisation of a trace is the amount of time 
the CPU uses the system bus to the execution time of the 
trace. In general, a trace with a higher cache-hit ratio  
has a larger percentage of E-cycles. Thus, it will have a 
lower bus utilisation and allow more concurrent DMA I/O 
transfers. Columns 4 and 5 give the values of Wd and a

dW , 
respectively, after each is normalised to Ad. Column 6 gives 
the value of Pd for each trace. Our method produces a larger 
reduction percentage Pd on a trace with a higher cache-hit 
ratio and a lower bus utilisation. Specifically, our method 
produces a 47% reduction from the pessimistic WCET 
prediction on the traces of Sels and Mtxm, each with a 100% 
cache-hit ratio. We conducted the same experiment on 
processor configurations with instruction caches of 4, 8 and 
32 16-byte lines. Figure 13 gives the results Pd in each 
experiment. A trace has a higher cache-hit ratio, a lower bus 
utilisation and thus a larger reduction percentage Pd when it 
executes on a processor configuration with more cache 
lines. 

Table 3 The 16-line dynamic-analysis results on the 
instruction-cache architecture 

Name 
Cache-
hit ratio 

Bus 
utilisation Wd/Ad a

d dW A  Pd (%) Wd/Ws

Sels 1.00 0.11 1.01 1.90 47 0.45 
Gaus 0.81 0.23 1.04 1.79 42 0.58 
Mtxm 1.00 0.09 1.02 1.92 47 1.00 
Tdsm 0.95 0.12 1.04 1.93 46 0.83 
Mtx2 0.90 0.17 1.03 1.85 44 1.00 

Figure 13 The dynamic-analysis results on the instruction-cache 
architecture 

 

Column 7 of Table 3 gives the value of Wd/Ws, which is 
smaller than or equal to one for each of the five tested 
programs. In fact, throughout the whole experiment on the  
 
 

instruction-cache architecture, Wd/Ws is less than or equal 
to one for any of the tested programs for any processor 
configuration. This fact shows that our WCET prediction 
Ws of any tested program safely bounds the execution time 
Wd of the worst-case execution path of the program when 
DMA I/O is present. A program is deterministic if it 
contains only an execution path. Among the tested 
programs, Mtxm and its loop-unrolled version Mtx2 are 
deterministic. An execution trace of a deterministic program 
is its only execution path, and the execution time of the 
trace is the actual WCET of the program. For each of  
the Mtxm and Mtx2 programs, the execution time Wd of the 
trace is equal to our WCET prediction Ws of the program, 
i.e., Wd/Ws = 1, at any processor configuration. This fact 
shows that our method does not impose any pessimistic 
assumptions and, therefore, tightly bounds the WCET of  
a program executing concurrently with DMA I/O. 

6.3  Results on an advanced architecture 

In this experiment both the instruction cache and the 
instruction pipeline on MC68030 were enabled. We used 
the method described in Section 5 to compute the WCET  
of a program when it executes concurrently with DMA I/O. 
A similar method, without considering the stalls caused  
by DMA I/O, can be used to compute the WCET  
of the program when it executes alone. Table 4 shows the 
static-analysis results with 16 16-byte cache lines, and 
Figure 14 shows the reduction percentage Ps on processor 
configurations with 4, 8, 16 and 32 cache lines.  
As explained earlier, a program has a higher hit ratio  
and therefore, has a larger value of Ps when it executes  
on a processor configuration that has more cache lines. 
Because pipelined execution decreases the fraction of the 
execution time of a program which can be overlapped with 
DMA I/O transfers, our method produces a smaller Ps on an 
advanced architecture than on an instruction-cache 
architecture. However, the reduction Ps observed in this 
experiment is only slightly smaller. This is because there  
are only two stages in the instruction pipeline on MC68030. 
We expect that our method will produce a much smaller Ps 
on an advanced architecture that has more stages in the 
instruction pipeline. 

Table 4 The 16-line static-analysis results on the advanced 
architecture 

Name Ws/As a
s sW A  Ps (%) 

Sels 1.06 1.88 44 
Gaus 1.08 1.77 39 
Mtxm 1.03 1.94 47 
Tdsm 1.04 1.93 46 
Mtx2 1.02 1.81 44 
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Figure 14 The static-analysis results on the advanced architecture 

 

Table 5 shows the dynamic-analysis experimental results  
on a processor configuration with 16 16-byte cache lines. 
Figure 15 shows the reduction percentage Pd for all 
processor configurations. The cache-hit ratio of each trace is 
equal to the one we obtained on an instruction-cache 
architecture. Again, our method produces a larger reduction 
percentage Pd for a trace with more cache lines. Because of 
pipelined execution, each trace has a larger bus utilisation. 
Therefore, each trace has a smaller reduction percentage Pd. 
Finally, that fact that Wd/Ws ≤ 1 in all our experiments 
demonstrates that our method safely and tightly bounds the 
WCET. 

Table 5 The 16-line dynamic-analysis results on the advanced 
architecture 

Name 
Cache-
hit ratio 

Bus 
utilisation Wd/Ad

a
d dW A  Pd (%) Wd/Ws

Sels 1.00 0.17 1.06 1.87 43 0.52 
Gaus 0.81 0.26 1.05 1.75 40 0.57 
Mtxm 1.00 0.10 1.03 1.94 47 1.00 
Tdsm 0.95 0.14 1.03 1.91 46 0.78 
Mtx2 0.90 0.20 1.02 1.82 44 1.00 

Figure 15 The dynamic-analysis results on the advanced 
architecture 

 

7 Concluding remarks 

A hard-real-time embedded system is required to process 
tasks with timing requirements that must be met to ensure 
the correctness of the system. The analysis which 
determines whether a particular system can meet its timing 
requirements relies on prior information on the WCET of  
each task. The problem of determining the WCET of a 
program has received a lot of attention recently. However, 

all of the previous research on bounding the WCET assumes 
that the program being analysed executes without any 
interference of I/O activities. Our work is the first one  
that considers the interference of concurrently executing 
cycle-stealing DMA I/O in bounding the WCET of a 
program. 

In this paper we presented an iterative I-IPET  
approach for bounding the WCET of a program executing 
concurrently with cycle-stealing DMA I/O. Our I-IPET 
approach follows the control flow of the program iteratively 
to determine the set of possible execution times of each 
instruction and construct a set of linear constraints on their 
execution counts. The maximum value of the cost function 
under the set of linear constraints bounds the WCET of  
the program. We conducted extensive experiments on a 
widely-used microprocessor to demonstrate the efficacy of 
our approach. The experimental results show that our 
method safely and tightly bounds the WCET of a program. 
As we do not impose any architecture-specific restriction in 
our I-IPET approach, we believe our method can be easily 
adapted to accurately bound the WCET of a program 
executed on other modern architectures. 

The number of linear constraints generated by our  
I-IPET approach depends heavily on the complexity of the 
program being analysed as well as the dynamic architectural 
features. 

Due to the simplicity of the tested programs and the 
architecture used in the experiments, the iterative procedure 
shown in Section 4.4 generates <100 constraints for each of 
the tested programs given in Table 1 and a standard ILP 
solver can calculate the WCET in less than a couple of 
seconds. We expect the number of constraints to increase 
significantly when the complexity of programs and the 
machine model increases. Obtaining a WCET estimation in 
an efficient way at the input of a large number of constraints 
requires an optimised ILP solver, which is beyond the scope 
of this paper. 

Our I-IPET approach is an extension of the  
cache-aware IPET solution developed by Li and Malik 
(1999). Our I-IPET approach significantly improves the 
analysis capability of the IPET methodology in two 
directions: to include the timing analysis of cycle-stealing 
DMA I/O and to model the performance of modern 
hardware architectures such as instruction pipelining. In 
addition, our DMA I/O analysis can be easily incorporated 
with other IPET extensions developed later to produce 
tighter WCET predictions. For example, we can integrate 
with the extension developed by Li and Malik (1999) to 
consider the interference of data caching, the extension 
developed by Engblom and Ermedahl (2000) to analyse the 
control flow information, the extension by Theiling (2002) 
to take into account the effect of different invocations to the 
same function and the extension by Theiling et al. (2000) to 
reduce the complexity of the ILP problems by using abstract 
interpretation. In summary, our work advances the IPET 
methodology significantly and encourages the inclusion of 
I/O activities and modern hardware architectures in  
hard-real-time embedded systems. 
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