
Int. J. Embedded Systems, Vol. 2, Nos. 3/4, 2006 209

Copyright © 2006 Inderscience Enterprises Ltd.

Performance analysis of hard-real-time embedded
software

Tai-Yi Huang*, Kuang-Li Huang and Yeh-Ching Chung
Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan 300, ROC
E-mail: tyhuang@cs.nthu.edu.tw
E-mail: klhuang@cs.nthu.edu.tw
E-mail: ychung@cs.nthu.edu.tw
*Corresponding author

Abstract: The execution time of an instruction depends on its adjacent instructions and I/O
activities. Our method first iteratively determines the set of all possible execution times of each
instruction. We next construct a set of linear constraints on their execution counts. The maximum
value of the cost function is an upper bound of the worst-case execution time. We demonstrate
the capability of this method on a machine model where a processor has an instruction cache and
pipeline, and cyclestealing DMA I/O is concurrently executing. The experimental results show
that our method safely and tightly bounds the worstcase execution time.

Keywords: hard-real-time systems; worst-case execution time; WCET; integer linear
programming; ILP; embedded software.

Reference to this paper should be made as follows: Huang, T-Y., Huang, K-L. and Chung, Y-C.
(2006) ‘Performance analysis of hard-real-time embedded software’, Int. J. Embedded Systems,
Vol. 2, Nos. 3/4, pp.209–221.

Biographical notes: Tai-Yi Huang received the BS Degree in Computer Science and
Information Engineering from National Taiwan University in 1991. He received both the MS
and PhD Degrees from University of Illinois at Urbana-Champaign in computer science in 1994
and 1996, respectively. From 1996 to 2001, he was a Software Design Engineer in Windows OS
Kernel Performance Group, Microsoft Inc. He joined the Computer Science Department at
National Tsing Hua University as an Assistant Professor in 2002 and became an Associate
Professor in 2006. His research interests include low-power embedded systems, real-time
operating systems, and high-performance clustered storages. He is a member of the IEEE and the
ACM.

Kuang-Li Huang received the BS Degree in Electrical Engineering from Chung-Yuan Christian
University in 2002 and the MS Degree in Computer Science from National Tsing Hua University,
Taiwan, in 2004. He is currently a PhD student in the Computer Science Department at National
Tsing Hua University. His research interests include P2P look up protocols, distributed systems,
and operating systems.

Yeh-Ching Chung received the BS Degree in Information Engineering from Chung Yuan
Christian University in 1983, and the MS and PhD Degrees in Computer and Information Science
from Syracuse University in 1988 and 1992, respectively. He joined the Department of
Information Engineering at Feng Chia University as an Associate Professor in 1992 and became a
full professor in 1999. From 1998 to 2001, he was the Chairman of the Department. In 2002, he
joined the Department of Computer Science at National Tsing Hua University as a Full Professor.
His research interests include parallel and distributed processing, pervasive software, and system
software for SOC design. He is a member of the IEEE Computer Society and ACM.

1 Introduction

In a hard-real-time embedded system, each task must
complete the execution by its deadline. A task that executes
longer than its allocated computation time may lead to
missed deadlines and the failure of the whole system.
In such a system, it is required that the WCET of each
program be known in advance. This knowledge is also often
required in the schedulability analysis of hard-realtime

systems (Liu and Layland, 1973; Sha et al., 1990; Sun et al.,
1997). For this reason, the problem of bounding the WCET
of a program has received a great deal of attentions in
recent years.

This paper presents an iterative I-IPET for bounding
the WCET of a hard-realtime embedded program executed
on a dynamic architecture where the execution time of an
instruction varies, depending on the execution of the

210 T-Y. Huang, K-L. Huang and Y-C. Chung

instruction itself, its adjacent instructions, and concurrent
I/O activities. The IPET, first developed by Li and Malik
(1995), converted the problem of bounding the WCET of a
program into one of solving a set of Integer Linear
Programming (ILP) problems. This method was later
extended by Li and Malik (1999) to take into account the
interferences of instruction caching (direct-mapped and
set-associative) and data caching. Without loss of
generality, we illustrate the capability of the I-IPET
approach on a machine model with instruction caching,
instruction pipelining and cycle-stealing DMA I/O.
However, our I-IPET approach can be easily adapted to
consider the effect of other modern architectures or tighten
the WCET predictions in addition to bounding the
interference of cycle-stealing DMA I/O.

Our I-IPET approach builds on top of the cache-aware
IPET methodology (Li and Malik, 1999) to bound the
WCET of a program executing concurrently with an
independent cycle-stealing DMA I/O operation. DMA
Controllers (DMAC) are commonly used in hard-real-time
embedded systems to reduce the CPU usage on interrupt
service routines. A DMAC that operates in the cycle-
stealing mode transfers data by ‘stealing’ bus cycles from
the executing program. Bus contention between the
executing program and the cycle-stealing DMA I/O
operation retards the progress of both and extends their
execution times. Our I-IPET approach first follows the
control flow of the program iteratively to determine the set
of all possible execution times of each instruction and their
relationship with its adjacent instructions. We next model
the execution behaviour of each instruction and its adjacent
instructions by a directed graph. Each execution time and
each edge in the directed graph is assigned an execution
count. These execution counts must satisfy a set of linear
constraints called DMA-bounding linear constraints. These
possible execution times, execution counts, DMA-bounding
and cache-bounding linear constraints are used as inputs to
an ILP problem, the solution of which is an upper bound of
the WCET of the program being analysed.

To demonstrate the efficacy of our method on bounding
the WCET, we conducted extensive experiments on a
widely-used embedded microprocessor. We compare our
WCET predictions with the traditional pessimistic WCET
predictions for several sample programs. The experimental
results show that our predictions safely bound the WCETs
of these programs. In addition, our predictions are as much
as 47% tighter than the pessimistic predictions.

The rest of the paper is structured as follows. Section 2
describes related work. Section 3 describes our machine
model. For the sake of simplicity, we present our I-IPET
approach in an incremental way. Section 4 describes the
methodology for bounding the interference of instruction
caching and cycle-stealing DMA I/O. Section 5 extends the
methodology in Section 4 to include the effect of instruction
pipelining. We present our experimental results in Section 6.
Finally, Section 7 gives the concluding remarks.

2 Related work

A number of methods have been developed by different
research groups to predict the WCET of a program (Colin
and Puaut, 2000; Engblom and Ermedahl, 1999, 2000;
Engblom et al., 2001; Ferdinand et al., 1997; Ferdinand and
Wilhelm, 1999; Gupta and Gopinath, 1994; Healy et al.,
1999; Kim et al., 1999; Lim et al., 1998; Lundqvist and
Stenström, 1999a, 1999b; Mueller et al., 1994; Ottosson and
Sjödin, 1997; Park and Shaw, 1991; Puschner and
Koza, 1989; Stappert and Altenbernd, 2000). Shaw (1989)
first proposed a timing schema to represent the execution
time of a program. Park and Shaw (1991) later extended the
schema to eliminate infeasible execution paths (i.e., paths
that can never be executed) and tighten the WCET
prediction. Similarly, Puschner and Koza (1989) introduced
several new language constructs with which programmers
can describe the timing behaviour of a program. Muller
et al. (1994) developed a static cache simulation to bound
the WCET of a program executed on a contemporary
machine with an instruction cache. Lim et al. (1998)
proposed a timing analysis technique for modern multiple-
issue machines such as superscalar processors. Kim et al.
(1999) presented quantitative analysis results on the impacts
of various architecture features on the accuracy of WCET
predictions. Lundqvist and Stenström (1999a) extended
cycle-level architectural simulation techniques to calculate
WCET predictions on high-performance processors.

Recently, the IPET methodology has been widely used
to determine the WCET of a program (Engblom et al., 2001;
Healy et al., 2000; Huang et al., 1996; Li and Malik, 1995,
1999; Ottosson and Sjödin, 1997; Theiling, 2002;
Theiling et al., 2000). Li and Malik (1995) presented the
first IPET approach to convert the problem of bounding
the WCET into one of solving a set of ILP constraints.
Users can provide path information in the form of linear
constraints, called path-bounding linear constraints, to
eliminate infeasible paths and tighten the WCET prediction.
Li and Malik (1999) extended their IPET approach to
include the timing analysis of direct-mapped instruction
caches. Engblom et al. (2001) converted complex
control-flow information into a set of linear constraints for
tighter WCET predictions. Healy et al. (2000) described
several complementary methods to automatically bound
loop iterations with linear constraints. Theiling et al. (2000)
adopted abstract interpretation to analyse the performance
of modern hardware architectures and used the IPET
approach to find the longest execution path. Among all the
IPET extensions, our work is the only one that attempts to
consider the interference of cycle-stealing DMA I/O and the
first one that used an iterative IPET approach to model the
performance of modern hardware architectures.

The first IPET approach (Li and Malik, 1995)
decomposes a program into a number of basic blocks.

 Performance analysis of hard-real-time embedded software 211

The execution time ci of a basic block Bi is equal to the sum
of the execution times of all instructions in the block. Let xi
be the execution count of the basic block Bi. The execution
time of the program can be computed by summing the
products of the execution counts of the basic blocks in the
program and their corresponding execution times.
To analyse the effect of instruction caching, Li and
Malik (1995) further partition each basic block into one or
more l-blocks. An l-block is a sequence of contiguous
instructions within the same basic block that are mapped to
the same cache line. Let ,

h
i jc and ,

m
i jc denote the cache-hit

and cache-miss execution times of the l-block Bi,j and let
,
h
i jx and ,

m
i jx denote its cache-hit count and cache-miss

count, respectively. The execution count of Bi,j is equal to
the execution count xi of Bi i.e.,

, , , 1, , ,h m
i i j i j ix x x j n= + = …

where ni is the number of l-block in Bi. Let N be the number
of basic blocks in a program. The cost function of the
execution time of the program is

, , , ,
1 1

().
inN

h h m m
i j i j i j i j

i j
c x c x

= =

+∑∑ (1)

A set of cache-bounding linear constraints on ,
h
i jx and ,

m
i jx

are generated to bound the relationship of each l-block.
The maximum value of the cost function in equation (1)
under the path-bounding linear constraints on the xi’s and
the cache-bounding linear constraints on the ,

h
i jx ’s and ,

m
i jx ’

s is an upper bound of the WCET of the program executed
alone on a machine model with instruction caching.

3 The machine model

We develop our I-IPET approach on top of the cost
function in equation (1) and the path-bounding and the
cache-bounding linear constraints. We adopt here the
commonly-used machine model shown in Figure 1.
The program being analysed is executed in the CPU with
instruction caching and pipelining. An independent DMA
I/O operation, issued by another program, is executed
concurrently by the DMAC. The DMAC operates in the
cycle-stealing mode. Either the CPU or the DMAC, but not
both, can hold the bus and transfer data at any time instant.
For the sake of concreteness, we assume that bus contention
between the CPU and the DMAC is regulated according to
the VMEbus (Black et al., 1981) bus access protocol. This
protocol is sufficiently general that our analysis may be
easily applied to many other commonly-used bus protocols.

Figure 1 The machine model

An instruction cycle consists of a sequence of operations to
fetch and execute an instruction. The sequence takes one or
more machine cycles. A machine cycle requires one to
several processor clock cycles to execute. We assume that
the CPU is synchronous: the beginning of each machine
cycle is triggered by the processor clock. We classify all
machine cycles into one of two categories: bus-access (B)
cycles and execution (E) cycles. B-cycles are those machine
cycles during which the CPU uses the I/O bus. In contrast,
during E-cycles, the CPU does not use the bus. In general,
there may be several consecutive E-cycles in an instruction
cycle.

The DMAC transfers data only when the CPU is in
E-cycles. Let m be the maximum units of data the
DMAC can transfer during the sequence of cycles,
Bi → E1 → E2 → … Ek → Bi+1. When the CPU enters E1
from Bi, there is a short delay called the Bus Master
Transfer (BMT) time, while the DMAC gains control of the
bus. The DMAC keeps transferring data as long as the CPU
continues to be in E-cycles. The CPU sends a bus request
when it is ready to enter Bi+i from Ek. The DMAC checks
whether there is any pending bus request only at the
end of each data transfer. If there is a bus request, the
DMAC releases the bus. After another BMT delay,
the CPU gains control of the bus and enters the
Bi+1 cycle. We assume that the transfer of each unit
of data by the DMAC takes the same amount of time
and denote this time by DT. Let T be the total
execution time of the k consecutive E-cycles. We can
compute m by the equation

BMT .
DT

Tm − =
 (2a)

The worst-case delay suffered by the CPU execution of the
sequence of machine cycles is

DT 2 BMT ,c
c

m Tr T
T

 × + × −= ×

 (2b)

where Tc is the period of a clock cycle. The details of the
derivation for these equations can be found in Huang and
Liu (1995).

212 T-Y. Huang, K-L. Huang and Y-C. Chung

4 Instruction catching and DMA I/O

In this section we extend the cost function in equation (1) to
bound the WCET of a program executing concurrently with
DMA I/O on a machine model with instruction caching.
To simplify the discussion, we assume that instruction
pipelining in the machine model shown in Figure 1 is
disabled. We will later enable instruction pipelining in the
next section.

When DMA I/O is concurrently executing, the execution
time of an l-block is equal to the sum of its execution time
when it executes alone and the delay caused by DMA I/O. A
DMA transfer can cross two l-blocks if the first l-block ends
with an E-cycle and the second l-block begins with
an E-cycle (i.e., it causes a cache hit). Consequently, the
delay suffered by an l-block varies, depending upon the
concurrent execution of DMA I/O, the l-block itself and its
adjacent l-blocks. Our I-IPET approach follows the control
flow of the program iteratively to determine the set of
possible execution times of each l-block. The method may
examine an l-block repeatedly and will terminate only after
all possible execution times have been determined.

In the following, we first describe the methodology to
determine the set of possible execution times of an l-block
when it causes a cache miss. We next discuss the case when
it causes a cache hit. Suppose that, when DMA I/O is
present, our I-IPET approach determines that an l-block Bk,i
has, totally, tk,i possible execution times when it causes
a cache hit. Let , ,1 , ,2 , , ,, , ,

k

h h h
k l k l k l t lc c c… denote these execution

times. Let
 denote the execution counts of these execution times,

respectively. The sum of these execution counts is equal to
the cache-hit count of Bk,l, i.e.,

, , ,1 , ,2 , , , .
k

h h h h
k l k l k l k l t 1x x x x= + + +" (3)

Similarly, suppose that Bk,i has totally sk,i possible execution
times when it causes a cache miss and these execution times
are denoted by , ,1 , ,2 , , ,, , , .

k

m m m
k l k l k l s lc c c… Let , ,1 , ,2 , , ,, , ,

k

m m m
k l k l k l s lx x x…

denote their execution counts. The sum of these execution
counts is equal to the cache-miss count of Bk,l, i.e.,

, , ,1 , ,2 , , , .
k

m m m m
k l k l k l k l s lx x x x= + + +" (4)

We can, therefore, express the total execution time of Bk,l as

, ,

, , , , , , , ,
1 1

.
k l k lt s

h h m m
k l d k l d k l d k l d

d d
c x c x

= =

+∑ ∑ (5)

The cost function in equation (1) should be replaced by the
new cost function

, ,

, , , , , , , ,
1 1 1 1

.
i j i ji t snN

h h m m
i j d i j d i j d i j d

i j d d
c x c x

= = = =

 +

∑∑ ∑ ∑ (6)

when we want to take into account of the effect of DMA
I/O. We bound the WCET of the program by the maximum
value of the new cost function under a set of path-bounding
linear constraints on the xi’s, a set of cache-bounding
linear constraints on the ,

h
i jx ’s and ,

m
i jx ’s and a set of

DMA-bounding linear constraints on the , ,
h
i j dx ’s and

, ,
m
i j dx ’s.

The rationale that can be used to determine the set
of possible execution times of each l-block Bk,l and the
DMA-bounding linear constraints on their execution count
is presented next. We describe the I-IPET approach that
implements the rationale at the end of this section.

4.1 Cache-miss execution times

An instruction that executes alone has two possible
instruction cycles; one when it causes a cache hit and one
when it causes a cache miss. For the sake of simplicity,
we assume that querying the status of the instruction cache
is instantaneous. Therefore, the cache-hit instruction cycle
begins with an E-cycle to fetch the instruction from the
on-chip instruction cache, and the cache-miss instruction
cycle begins with one or more B-cycles to fetch the
instruction and the subsequent instructions in the l-block
from the main memory. Due to the iterative analysis,
however, our I-IPET approach can be easily adapted to
work on other machine models that may require extra
E-cycles to determine whether the requested l-block is in the
instruction cache.

We obtain the cache-miss sequence of machine cycles of
the l-block Bk,l by concatenating the cache-miss instruction
cycle of the first instruction and the cache-hit instruction
cycles of the rest of the instructions in the l-block.
We denote this sequence of cycles by ,

m
k lB .

The delay suffered by ,
m
k lB due to DMA I/O is the sum

of the delays suffered by all E-cycle sequences in ,
m
k lB .

Because ,
m
k lB begins with a B-cycle, a predecessor of the

sequence (i.e., an instruction executed immediately before
this sequence) does not affect the execution time of ,

m
k lB .

On the other hand, if ,
m
k lB ends with an E-cycle, a DMA

transfer can cross ,
m
k lB and a successor of the sequence

(i.e., an instruction executed immediately after the
sequence) if the successor causes a cache hit and ,

m
k lB may

affect the execution time of the successor. Consequently, the
set of possible execution times of ,

m
k lB depends on whether

,
m
k lB ends with a B-cycle or an E-cycle.

,
m
k lB ends with a B-cycle. If ,

m
k lB ends with a B-cycle, no

DMA transfer can cross it or any of its successors. We can,
therefore, use equation (2) to calculate the delay suffered by
each E-cycle sequence in ,

m
k lB . We then obtain an execution

time of ,
m
k lB by summing ,

m
k lc and the delays of all E-cycle

sequences. It is the only possible execution time of ,
m
k lB in

this case. In other words, the number sk,l of possible
execution times of ,

m
k lB is one.

,
m
k lB ends with an E-cycle. If ,

m
k lB ends with an E-cycle,

the delay suffered by the last E-cycle sequence in ,
m
k lB

depends on whether its successor causes a cache miss or a
cache hit. This fact is illustrated by Figure 2. We first use
equation (2) to calculate the delay suffered by each E-cycle
sequence except the last one. When its successor causes
a cache hit, the last E-cycle sequence suffers no delay
because a DMA transfer can cross ,

m
k lB and the successor, as

shown in Figure 2(a). In contrast, when its successor causes

 Performance analysis of hard-real-time embedded software 213

a cache miss, as shown in Figure 2(b), the last E-cycle
sequence suffers a delay that is given by equation (2).
Hence, ,

m
k lB has totally two possible execution times: , ,1

m
k lc ,

which is equal to ,
m
k lc , plus the total delays suffered (due to

concurrent DMA I/O) by all but the last E-cycle sequence;
and , ,2

m
k lc , which is equal to , ,1

m
k lc plus the delay suffered by

the last E-cycle sequence. sk,l is two in this case.

4.2 The execution-time-dependency graph
We represent the dependency of the execution times of
Bk,l on the behaviour of its predecessors and successors by
an execution-time-dependency graph, a part of which is
illustrated in Figure 2(c). Each node under ,

m
k lB represents a

possible execution behaviour of ,
m
k lB that leads to a possible

execution time of this l-block; the node is labelled with
the corresponding execution time and execution count.
Here, the node labelled , ,1 , ,1()m m

k l k lc x represents the case
shown in Figure 2(a) and the node labelled , ,2 , ,2()m m

k l k lc x
represents the case shown in Figure 2(b). In the former case
(where a successor of ,

m
k lB causes a cache hit), the last DMA

transfer in ,
m
k lB affects the delay suffered by the first E-cycle

sequence of a successor. We represent this fact by a directed
edge from this node (the source of the edge) to the node
representing the cache-hit case of a successor (the target of
the edge). We will later replace the target of the edge by a
node representing a specific execution behaviour of this
successor. In general, a directed edge represents the fact that
the delay suffered by the first E-cycle sequence in the
l-block represented by the target node is affected by the last
DMA transfer in the l-block represented by the source node.

Figure 2 The execution times of ,
m
k lB if it ends with an E-cycle:

(a) the execution time of ,
m
k lB when its successor

causes a cache hit; (b) the execution time of ,
m
k lB

when its successor causes a cache miss and (c) the
dependence on the successors of ,

m
k lB

 (a)

 (b)

 (c)

An I-IPET implementation, which we will describe
at the end of this section, constructs and uses such a graph.
This graph may be modified as each l-block is analysed
in the manner described in this section. In our subsequent
discussion, rather than saying a DMA transfer (or a cycle)
in an l-block when the execution behaviour of the l-block
is represented by a node, we will simply say “a DMA
transfer (or a cycle) in the node”. Let , ,1

m
k lb denote the length

of time from when the last DMA transfer in the node
labelled , ,1 , ,1()m m

k l k lc x starts to when the last E-cycle sequence
in the node ends, as shown in Figure 2(a). We call this
length the elapsed time of the last DMA transfer in the node.

We add a directed edge from the node labelled
, ,1 , ,1()m m

k l k lc x to the cache-hit case of each successor, as shown
in Figure 2(c). We assign each directed edge with an
execution count that represents the number of times the
control flow passes from the source node to the target node
of the edge. The execution counts of these edges satisfy the
following constraint.

Constraint 1: The sum of the execution counts of the
directed edges leaving the node labelled , ,1 , ,1()m m

k l k lc x is equal
to the execution count , ,1()m

k lx .

4.3 Cache-hit execution times

We now examine the case when ,k lB causes a cache hit.
We use ,

h
k lB to denote the sequence of machine cycles that

is the concatenation of the cache-hit instruction cycles of all
instructions in the l-block ,k lB . We again need to consider
two cases: when ,

h
k lB ends with a B-cycle, and when ,

h
k lB

ends with an E-cycle.

,
h
k lB ends with a B-cycle. Again, when ,

h
k lB ends with a

B-cycle, we need not be concerned with its successors.
However, because ,

h
k lB begins with an E-cycle, a

predecessor that ends with an E-cycle affects the delay
suffered by the first E-cycle sequence in ,

h
k lB . As a result, in

order to determine all the possible execution times of ,
h
k lB

we first need to examine its predecessors.
We use equation (2) to calculate the delay suffered

by each E-cycle sequence in ,
h
k lB except the first one.

Suppose that, after all the predecessors of ,
h
k lB have been

analysed, there are p directed edges pointing to ,
h
k lB in the

execution-time-dependency graph. We group together
the edges from sources in which the elapsed times of the last
DMA transfers are the same. Suppose that this procedure
partitions the p edges into u disjoint groups. Let bi denote
the elapsed time of the last DMA transfer in the sources of
the edges in group i, i = 1. Figure 3 shows the case where a
predecessor of ,

h
k lB ends with an E-cycle and the elapsed

time of the last DMA transfer in the predecessor is bi.
We can calculate the delay suffered by the first E-cycle
sequence of ,

h
k lB using a slight modification of equation (2);

we replace T in equation (2) with the expression

BMT ,f iT + +b (7)

214 T-Y. Huang, K-L. Huang and Y-C. Chung

where Tf is the execution time of the first E-cycle sequence
when it executes alone. Accordingly, we can obtain an
execution time of ,

h
k lB for group i. Let , ,

h
k l ic denote this

execution time. We add a node in the execution-time-
dependency graph to represent the execution behaviour ,

h
k lB

for group i and label the node with the execution time , ,
h
k l ic

and the execution count , ,
h
k l ix . Because there are u such

groups, we have u such nodes. We change the targets of the
edges in group i to the node labelled with , , , ,1()h h

k l i k lc x .
The execution counts of the edges in each group i satisfy the
following constraint.

Figure 3 The execution time of ,
h
k lB for the edges in group i

Constraint 2: The sum of the execution counts of the
directed edges entering the node labelled , , , ,()h h

k l i k l ic x is
equal to the execution count , ,

h
k l ix .

A predecessor that ends with a B-cycle can not affect the
execution time of ,

h
k lB . Hence, there is no directed edge

between such a predecessor and ,
h
k lB . We can use equation

(2) directly to calculate the delay suffered by the first
E-cycle sequence and obtain another execution time , , 1

h
k l uc +

of ,
h
k lB . We add a node to represent this execution behaviour

of ,
h
k lB if it has a predecessor that ends with a B-cycle.

In summary, ,
h
k lB may have u + 1 possible execution times

when ,
h
k lB ends with a B-cycle. There are u + 1 nodes

labelled by these execution times and the corresponding
execution counts. The sum of these u + 1 execution counts
is equal to the cache-hit count of ,

h
k lB , as described in

equation (3).

,
h
k lB ends with an E-cycle. ,

h
k lB may end with an E-cycle.

In this case, we have to be concerned with its successors as
well as its predecessors. We use equation (2) to calculate the
delay suffered by each E-cycle sequence except the first one
and the last one. As stated above, we must analyse
the predecessors of ,

h
k lB first in order to calculate all the

possible values for the delay suffered by the first E-cycle
sequence in ,

h
k lB . Again, we consider first the case of

predecessors of ,
h
k lB that end with an E-cycle. For this case,

let u denote the number of possible values for the delay
suffered by the first E-cycle sequence in ,

h
k lB . In addition,

the delay suffered by the last E-cycle sequence in ,
h
k lB has

two possible values; one when a successor causes a
cache hit and one when a successor causes a cache miss.
Thus, ,

h
k lB has 2u possible execution times in this case.

We add two nodes to represent these two execution
behaviours of ,

h
k lB for each group i of incoming edges and

label them , ,2 1 , ,2 1()h h
k l i k l ic x− − and , ,2 , ,2()h h

k l i k l ic x , as shown in
Figure 4. We have 2u such nodes. In addition, we replace
each incoming edge in group i with two edges which have
the same source as the original edge but have as targets the
nodes labelled , ,2 1 , ,2 1()h h

k l i k l ic x− − and , ,2 , ,2()h h
k l i k l ic x . Both the

execution counts of the edges entering the node labelled
, ,2 1 , ,2 1()h h

k l i k l ic x− − and the execution counts of the edges
entering the node labelled , ,2 , ,2()h h

k l i k l ic x must satisfy a linear
constraint similar to Constraint 2.

Figure 4 The execution times of ,
h
k lB if it ends with an E-cycle

In the case when a predecessor ends with a B-cycle, we can
use equation (2) directly to calculate the delay suffered by
the first E-cycle sequence in ,

h
k lB . Because of this case, ,

h
k lB

has two more possible execution times. Let , ,2 1
h
k l uc + and

, ,2 2
h
k l uc + denote these two execution times. We construct two

more nodes to represent these two execution behaviours of
the l-block. Including the 2u nodes described above, ,

h
k lB

has 2u + 2 nodes and thus 2u + 2 possible execution times.
Finally, we add a directed edge from each node labelled

with the execution time , ,2 1, 1, , 1,h
k l ic i u− = +… to the node

representing the cache-hit case of each successor and
label this edge with a corresponding execution count.
The execution counts of these edges must satisfy a linear
constraint similar to Constraint 1.

4.4 An Iterative Implicit Path Enumeration
Technique (I-IPET) implementation

As shown in Section IV-C, to determine the set of possible
execution times of an l-block ,

h
k lB , we must first determine

the set of possible execution times of all its predecessors
that end with an E-cycle. This requirement may lead to a
cycle of dependencies. An example is the loop in the
control-flow graph shown in Figure 5. Each node in this
graph represents an l-block and each edge represents a
control flow edge. Suppose that the l-blocks B and C each
end with an E-cycle. Because C is a predecessor of B, the
execution time of B depends on C. Since B is a predecessor
of G, the execution time of C depends on B. In this section
we describe an I-IPET implementation to determine the set
of possible execution times of each l-block. Because there
is only a finite set for the elapsed times of the last DMA
transfer in an l-block, the iterative analysis will eventually
terminate.

 Performance analysis of hard-real-time embedded software 215

Figure 5 A simple loop

We now describe in detail the algorithm to generate the
expression of the cost function (equation (6)) and the set of
DMA-bounding linear constraints. Let K denote the number
of the possible values for the elapsed time of the last DMA
transfer in an l-block. Let J denote the maximum number of
predecessors of each l-block. The complexity of this
algorithm is O(KJN) for a program with N l-blocks.

• The main procedure. Figure 6 shows the main
procedure. This procedure requires as input the l-block
control structure of the program to be analysed and the
instructions in each l-block. Let the first l-block in the
program be denoted. The procedure creates an
execution-time-dependency graph G = (V, D); the
nodes and edges in this graph were described earlier.
It uses a variable L to hold the list of l-blocks waiting
to be analysed. Moreover, for each l-block there is a
list of edges whose targets are the cache-hit case of the
l-block. These edges are yet to be examined; hence this
list is called the unprocessed list of the l-block. This list
is initially empty and is modified each time the l-block
is analysed.

Figure 6 The main procedure

Initially, L contains only the l-block B1,1. The unprocessed
list of B1,1 is empty, denoted by Ø. Similarly, both the node
set V and edge set D of the graph G are empty. During each
iteration of the while loop (lines 2–4), the l-block (called

,
h
k lB) at the head of L is dequeued and its execution time is

analysed by the procedure analyze (described below).
The analyze procedure checks each successor of the
l-block ,

h
k lB . A successor is added to the list L if the

successor is not yet examined (i.e., visited), or if analyze
has added a new directed edge to the cache-hit case of the
successor and the edge is not yet processed. This iterative

process continues until L becomes empty, at which time all
l-blocks and all directed edges between pairs of l-blocks
have been analysed. We next construct a set of linear
constraints for each l-block (lines 5 and 6). These linear
constraints are ones for bounding the cache-hit and
cache-miss counts (equations (3) and (4)) and ones for
bounding the execution counts of the directed edges
entering and leaving each node (Constraints 1 and 2).
We also construct the total execution time expression for
each l-block (equation (5)). Finally, the cost function for the
program is constructed (line 7). The cost function and linear
constraints thus obtained, in addition to path-bounding and
cache-bounding linear constraints, are inputs to an ILP
program which computes the maximum of the cost function
for all values of execution counts that satisfy the constraints.

• The analyze procedure. The analyse procedure adds
to the graph G nodes that represent (some of) ,k lB ’s
possible execution behaviours and directed edges that
represent the dependencies of the execution times of its
predecessors and successors on the l-block, in the
manner described earlier.

Figure 7 gives the pseudo code of the analyze procedure.
If this is the first time that ,k lB is visited, we add two sets of
nodes to the node set V: a set of nodes representing the
execution behaviours of ,

m
k lB and a set of nodes representing

the execution behaviours of ,
h
k lB if any predecessor ends

with a B-cycle. We label each node with the corresponding
execution time and its execution count. (Lines 1–5)

Figure 7 The analyze procedure

If there are edges in the unprocessed list of ,k lB , we process
each edge in the list in turn and remove it from the list
(lines 6–12). If ,k lB ends with an E-cycle, we replace each
edge with a pair of new edges which has the same source as

216 T-Y. Huang, K-L. Huang and Y-C. Chung

the original edge. We then process each edge to achieve two
goals: first, to put the edge in one of the groups of edges so
that the elapsed time of the last DMA transfer in the same
group are the same and second, to change the target of the
edge to the node labelled with the corresponding execution
time and execution count of ,k lB .

For each node added to V, if the last DMA transfer in
the node affects the execution time of a successor, we add to
D a directed edge from the node to the cache-hit case of the
successor. We then add this edge to the unprocessed list of
the successor (Line 13).

Finally, we add to the list L any of the successor l-blocks
of ,k lB which have not yet been visited or to which we just
constructed an edge (Line 14).

5 Instruction caching, pipelining and DMA I/O

We now enable instruction pipelining in the machine model
which allows multiple instructions to be overlapped in
execution. We represent the execution of an l-block when it
executes alone by two reservation tables, one when it causes
a cache hit and one when it causes a cache miss. We call
them the cache-hit reservation table and the cache-miss
reservation table, respectively. A reservation table describes
the activities within a pipeline (Kogge, 1981). We classify
all pipeline stages into two categories: B-stages and
E-stages. B-stages are those pipeline stages during which
there is bus-access activity. In contrast, during E-stages,
there is no bus-access activity.

Figure 8 shows an l-block and its cache-hit and
cache-miss reservation tables for example. The instruction
pipeline consists of four stages. An instruction is fetched
during the Instruction Fetch (IF) stage and decoded during
the Instruction Decode (ID) stage. The instruction executes
during the Execution (EX) stage and data produced by the
instruction are written to the memory during the Write Back
(WB) stage. The cache-miss reservation table shown in
Figure 8(c) begins with several B-stages to fetch the first
and subsequent instructions in the l-block from the main
memory. Each of the subsequent instructions begins with an
E-stage to fetch instruction from the on-chip instruction
cache. Because none of the instructions in the l-block
fetches any operand, all ID stages are E-stages. Finally, all
EX stages are E-stages and all WB stages are B-stages.

We call a processor cycle a B-cycle if at the processor
cycle any stage in the instruction pipeline is a B-stage.
Otherwise, we call a processor cycle an E-cycle. The CPU
uses the system bus only during B-cycles. To analyse the
bus contention between the CPU and the DMAC during the
cache-miss execution of the l-block shown in Figure 8(c),
we represent the pipelined execution of the l-block by a
sequence of B-cycles and E-cycles, as shown in Figure 9.
Let m be the number of units of data the DMAC transfers
between B4 cycle and B8 cycle. Let R be the length of time
the pipelined execution stalls. The DMAC operates as
described in Section III. Similarly, we can use equation (2)
to calculate m and R.

Figure 8 An l-block and its cache-hit and cache-miss reservation
tables: (a) an 1-block; (b) its cache-hit reservation table
and (c) its cache-miss reservation table

 (a)

 (b)

Figure 9 The concurrent execution of the DMAC and a sequence
of processor cycles

5.1 The execution time of an l-block

Figure 10 illustrates how the cache-miss execution of the
l-block shown in Figure 8(c) affects the execution time
of a successor when DMA I/O is present. Figure 10(a), a
simplified version of Figure 9, shows the pipelined
execution of the l-block when it executes concurrently with
DMA I/O. Here we define the tail of a reservation table as
its last few columns, starting from the column at which the
CPU is ready to fetch the first instruction of a successor to
the last column of the table. For example, the tail of the
cache-miss reservation table shown in Figure 10(a) consists
of Columns 11–13.

Figure 10(b) shows the cache-hit reservation table of a
successor. To determine the execution time of the successor,
we concatenate the tail of the l-block’s reservation table and
the successor’s cache-hit reservation table to obtain another
reservation table shown in Figure 10(c). The first four
processor cycles of the new reservation table are E-cycles
and the next one is a B-cycle. The pipelined execution stalls
due to DMA I/O between the end of the first four E-cycles
and the start of the next B-cycle. To determine the length Rs
of time the pipelined execution stalls, we need to determine
if any DMA transfer crosses the execution of E10 cycle of
the l-block and the first instruction of the successor. If there
is one such DMA transfer, let b denote the elapsed time of
the last DMA transfer of the l-block, as shown in Figure 9.
We can calculate Rs using a slight modification of
equation (7). In contrast, if there is no such DMA transfer,
we use equation (2) directly to calculate Rs.

 Performance analysis of hard-real-time embedded software 217

Figure 10 The interference of DMA I/O on the pipelined
execution of a successor: (a) an 1-block;
(b) a successor when it causes a cache hit tail
and (c) the pipelined execution of the successor

Finally, we define the execution time of an l-block to be the
interval from the time when the CPU is ready to fetch the
first instruction of the l-block to the time when the CPU is
ready to fetch the first instruction of a successor, if the
l-block has any successor, or to the time when the CPU
finishes the execution of the l-block, if the l-block has no
successor (i.e., the last l-block). In the example shown in
Figure 10, the execution time of the l-block is (R + 10 × Tc)
and the execution time of the successor is (Rs + 6 × Tc), if it
has any successor, or (Rs + 9 × Tc), otherwise.

5.2 Iterative timing analysis

We represent the dependency of the execution times of an
l-block ,k lB on the behaviour of its predecessors and
successors by an execution-time-dependency graph similar
to the one described in Section 4.2. Each node under ,k lB
now represents a reservation table with stalls due to DMA
I/O that leads to a possible execution time of this l-block
and the node is labelled with the corresponding execution
time and execution count. Each directed edge between two
nodes represents the fact that the execution time of the
l-block represented by the target node is affected by the

elapsed time of the last DMA transfer of the l-block
represented by the source node.

To bound the WCET of a program executing
concurrently with DMA I/O on an advanced architecture
with instruction caching and pipelining, we apply the
I-IPET approach described in Section 4.4 to determine the
set of possible execution times of each l-block, construct a
set of DMA-bounding linear constraints on the execution
counts and generate a new cost function. The maximum
value of the new cost function under the path-bounding,
cache-bounding and DMA-bounding linear constraints
bounds the WCET of the program.

6 Experimental results

We conducted extensive experiments to demonstrate the
efficacy of our I-IPET approach on bounding the WCETs of
programs. We evaluated the performance of our method by
comparing our WCET predictions with the traditional
pessimistic WCET predictions for several sample programs.
In the following we first describe the experiments. We next
describe the experimental results on each of the two
architectures discussed in this paper.

6.1 The experiments

Figure 11 describes the control flow of the experiment.
Table 1 lists the sample programs in our tested workload.
For each sample program, we compiled it into a MC68030
assembly program and executed the assembly program on a
MC68030 simulator with the worst-case data set to obtain
the worst-case execution path. We identified the worst-case
data set of each sample program by a careful study of
the program. Column 2 of Table 1 lists the number of
instructions in the worst-case execution path of each
program. From the tested program, Mtx2 is obtained by
unrolling the innermost loop of Mtxm. We used the
MC68030 in this experiment because it is a widely-used
embedded microprocessor for which instruction timing
information is available.

Figure 11 The control flow of the experiment

Table 1 The tested set of programs

Name Worst-case path insts. Description

Sels 11,713 Selection sort
Gaus 47,272 Gaussian elimination
Mtxm 40,789 Matrix multiplication
Tdsm 8,450 DMA I/O simulator
Mtx2 10,592 Loop-unrolled Mtxm

218 T-Y. Huang, K-L. Huang and Y-C. Chung

This experiment is divided into two parts: static analysis
and dynamic analysis.

In the static analysis part, we compared our WCET
prediction with the pessimistic WCET prediction of the
structured program. In the dynamic analysis part, we
compared our WCET prediction with the pessimistic WCET
prediction of the worst-case execution path.

Static analysis. Given an assembly program, we first
computed its WCET when it executes without any
interference of DMA I/O. Here we use the cache-aware
IPET solution (Li and Malik, 1999) to obtain this prediction.
We denote this value by As. We next used our I-IPET
approach to compute the WCET of the program when it
executes concurrently with DMA I/O and denote this value
by Ws. In addition, we computed the maximum units of data
which the DMAC can transfer during the execution of Ws.
We denote this value by Ms. We also used a pessimistic
method to predict the WCET of the concurrent execution of
the program and a DMA I/O operation that transfers
Ms units of data. The pessimistic method bounds the
WCET by the sum of As and the execution time of
the DMA I/O operation when it is carried out alone.
We denote this pessimistic prediction by a

sW . We measure
the effectiveness of our method by the percentage Ps of
reduction from the pessimistic prediction, i.e.,

100%.
a

s s
s a

s

P −= ×W W
W

Dynamic analysis. The approach we took to demonstrate the
improvement of our method on each program’s worst-case
execution path is similar to the one used in the static
analysis. We first computed the execution time of a trace
when it executes alone and denote this value by Ad. We next
simulated the concurrent execution of the trace and DMA
I/O to find the execution time of the trace when it executes
concurrently with DMA I/O and the number of units of data
that the DMAC transfers. We denote them by Wd and Md,
respectively. The trace can be treated as a program with
only straight-line code. Since the program contains only one
execution path, our WCET prediction was exactly the same
as Wd. Let a

dW denote the pessimistic WCET prediction
of the concurrent execution of the trace and the DMA I/O
operation. We measure the effectiveness of our method
by the percentage of reduction from the pessimistic
prediction, i.e.,

100%.
a

d d
d a

d

P −= ×W W
W

In addition, we evaluated the accuracy of our method
by comparing the execution time Wd of the worst-case
execution trace with our WCET prediction Ws of the
structured program.

6.2 Results on an instruction-cache architecture

For each program in the test set, we first used equation (1)
to compute the WCET of the program when it executes
alone. We next used the I-IPET approach described in
Section 4 to compute the WCET when the program
executes concurrently with DMA I/O. Table 2 shows the
static-analysis experimental results when the on-chip
instruction cache is organised as 16 16-byte lines. Columns
2 and 3 give the values of Ws and a

sW , respectively, after
each is normalised to As. Column 4 gives the value of Ps for
each program. For example, according to our predictions,
DMA I/O extends the WCET of the program Sels for up to
15%. Assuming that the DMA I/O operation is carried out
alone, the pessimistic method estimates the delay caused by
DMA I/O to be 104% on the same program, which results in
a 44% reduction by our method. Among the tested
programs, our method produces up to 47% reduction from
the pessimistic WCET prediction on the Mtxm program.

Table 2 The 16-line static-analysis results on the
instruction-cache architecture

Name Ws/As
a

s sW A Ps (%)
Sels 1.15 2.04 44
Gaus 1.18 2.00 41
Mtxm 1.02 1.92 47
Tdsm 1.04 1.93 46
Mtx2 1.03 1.85 44

In order to study the relationship between the reduction
percentage Ps and the size of the instruction cache, we
conducted the same experiment on processor configurations
with instruction caches of 4, 8 and 32 16-byte cache lines.
Figure 12 gives the result Ps recorded in each of these
experiments. A program has a higher cache-hit ratio when it
executes on a processor configuration with more cache
lines. The higher cache-hit ratio increases the percentage of
E-cycles in the execution of the program and thus allows
more concurrent DMA I/O transfers. Consequently, when a
program executes on a processor configuration with more
cache lines, it has a larger value of Ps.

Figure 12 The static-analysis results on the instruction-cache
architecture

 Performance analysis of hard-real-time embedded software 219

Table 3 shows the dynamic-analysis experimental results on
a processor configuration with 16 16-byte cache lines.
Column 2 gives the cache-hit ratio of each trace. Column 3
gives the bus utilisation of each trace when it executes
alone. The bus utilisation of a trace is the amount of time
the CPU uses the system bus to the execution time of the
trace. In general, a trace with a higher cache-hit ratio
has a larger percentage of E-cycles. Thus, it will have a
lower bus utilisation and allow more concurrent DMA I/O
transfers. Columns 4 and 5 give the values of Wd and a

dW ,
respectively, after each is normalised to Ad. Column 6 gives
the value of Pd for each trace. Our method produces a larger
reduction percentage Pd on a trace with a higher cache-hit
ratio and a lower bus utilisation. Specifically, our method
produces a 47% reduction from the pessimistic WCET
prediction on the traces of Sels and Mtxm, each with a 100%
cache-hit ratio. We conducted the same experiment on
processor configurations with instruction caches of 4, 8 and
32 16-byte lines. Figure 13 gives the results Pd in each
experiment. A trace has a higher cache-hit ratio, a lower bus
utilisation and thus a larger reduction percentage Pd when it
executes on a processor configuration with more cache
lines.

Table 3 The 16-line dynamic-analysis results on the
instruction-cache architecture

Name
Cache-
hit ratio

Bus
utilisation Wd/Ad a

d dW A Pd (%) Wd/Ws

Sels 1.00 0.11 1.01 1.90 47 0.45
Gaus 0.81 0.23 1.04 1.79 42 0.58
Mtxm 1.00 0.09 1.02 1.92 47 1.00
Tdsm 0.95 0.12 1.04 1.93 46 0.83
Mtx2 0.90 0.17 1.03 1.85 44 1.00

Figure 13 The dynamic-analysis results on the instruction-cache
architecture

Column 7 of Table 3 gives the value of Wd/Ws, which is
smaller than or equal to one for each of the five tested
programs. In fact, throughout the whole experiment on the

instruction-cache architecture, Wd/Ws is less than or equal
to one for any of the tested programs for any processor
configuration. This fact shows that our WCET prediction
Ws of any tested program safely bounds the execution time
Wd of the worst-case execution path of the program when
DMA I/O is present. A program is deterministic if it
contains only an execution path. Among the tested
programs, Mtxm and its loop-unrolled version Mtx2 are
deterministic. An execution trace of a deterministic program
is its only execution path, and the execution time of the
trace is the actual WCET of the program. For each of
the Mtxm and Mtx2 programs, the execution time Wd of the
trace is equal to our WCET prediction Ws of the program,
i.e., Wd/Ws = 1, at any processor configuration. This fact
shows that our method does not impose any pessimistic
assumptions and, therefore, tightly bounds the WCET of
a program executing concurrently with DMA I/O.

6.3 Results on an advanced architecture

In this experiment both the instruction cache and the
instruction pipeline on MC68030 were enabled. We used
the method described in Section 5 to compute the WCET
of a program when it executes concurrently with DMA I/O.
A similar method, without considering the stalls caused
by DMA I/O, can be used to compute the WCET
of the program when it executes alone. Table 4 shows the
static-analysis results with 16 16-byte cache lines, and
Figure 14 shows the reduction percentage Ps on processor
configurations with 4, 8, 16 and 32 cache lines.
As explained earlier, a program has a higher hit ratio
and therefore, has a larger value of Ps when it executes
on a processor configuration that has more cache lines.
Because pipelined execution decreases the fraction of the
execution time of a program which can be overlapped with
DMA I/O transfers, our method produces a smaller Ps on an
advanced architecture than on an instruction-cache
architecture. However, the reduction Ps observed in this
experiment is only slightly smaller. This is because there
are only two stages in the instruction pipeline on MC68030.
We expect that our method will produce a much smaller Ps
on an advanced architecture that has more stages in the
instruction pipeline.

Table 4 The 16-line static-analysis results on the advanced
architecture

Name Ws/As a
s sW A Ps (%)

Sels 1.06 1.88 44
Gaus 1.08 1.77 39
Mtxm 1.03 1.94 47
Tdsm 1.04 1.93 46
Mtx2 1.02 1.81 44

220 T-Y. Huang, K-L. Huang and Y-C. Chung

Figure 14 The static-analysis results on the advanced architecture

Table 5 shows the dynamic-analysis experimental results
on a processor configuration with 16 16-byte cache lines.
Figure 15 shows the reduction percentage Pd for all
processor configurations. The cache-hit ratio of each trace is
equal to the one we obtained on an instruction-cache
architecture. Again, our method produces a larger reduction
percentage Pd for a trace with more cache lines. Because of
pipelined execution, each trace has a larger bus utilisation.
Therefore, each trace has a smaller reduction percentage Pd.
Finally, that fact that Wd/Ws ≤ 1 in all our experiments
demonstrates that our method safely and tightly bounds the
WCET.

Table 5 The 16-line dynamic-analysis results on the advanced
architecture

Name
Cache-
hit ratio

Bus
utilisation Wd/Ad

a
d dW A Pd (%) Wd/Ws

Sels 1.00 0.17 1.06 1.87 43 0.52
Gaus 0.81 0.26 1.05 1.75 40 0.57
Mtxm 1.00 0.10 1.03 1.94 47 1.00
Tdsm 0.95 0.14 1.03 1.91 46 0.78
Mtx2 0.90 0.20 1.02 1.82 44 1.00

Figure 15 The dynamic-analysis results on the advanced
architecture

7 Concluding remarks

A hard-real-time embedded system is required to process
tasks with timing requirements that must be met to ensure
the correctness of the system. The analysis which
determines whether a particular system can meet its timing
requirements relies on prior information on the WCET of
each task. The problem of determining the WCET of a
program has received a lot of attention recently. However,

all of the previous research on bounding the WCET assumes
that the program being analysed executes without any
interference of I/O activities. Our work is the first one
that considers the interference of concurrently executing
cycle-stealing DMA I/O in bounding the WCET of a
program.

In this paper we presented an iterative I-IPET
approach for bounding the WCET of a program executing
concurrently with cycle-stealing DMA I/O. Our I-IPET
approach follows the control flow of the program iteratively
to determine the set of possible execution times of each
instruction and construct a set of linear constraints on their
execution counts. The maximum value of the cost function
under the set of linear constraints bounds the WCET of
the program. We conducted extensive experiments on a
widely-used microprocessor to demonstrate the efficacy of
our approach. The experimental results show that our
method safely and tightly bounds the WCET of a program.
As we do not impose any architecture-specific restriction in
our I-IPET approach, we believe our method can be easily
adapted to accurately bound the WCET of a program
executed on other modern architectures.

The number of linear constraints generated by our
I-IPET approach depends heavily on the complexity of the
program being analysed as well as the dynamic architectural
features.

Due to the simplicity of the tested programs and the
architecture used in the experiments, the iterative procedure
shown in Section 4.4 generates <100 constraints for each of
the tested programs given in Table 1 and a standard ILP
solver can calculate the WCET in less than a couple of
seconds. We expect the number of constraints to increase
significantly when the complexity of programs and the
machine model increases. Obtaining a WCET estimation in
an efficient way at the input of a large number of constraints
requires an optimised ILP solver, which is beyond the scope
of this paper.

Our I-IPET approach is an extension of the
cache-aware IPET solution developed by Li and Malik
(1999). Our I-IPET approach significantly improves the
analysis capability of the IPET methodology in two
directions: to include the timing analysis of cycle-stealing
DMA I/O and to model the performance of modern
hardware architectures such as instruction pipelining. In
addition, our DMA I/O analysis can be easily incorporated
with other IPET extensions developed later to produce
tighter WCET predictions. For example, we can integrate
with the extension developed by Li and Malik (1999) to
consider the interference of data caching, the extension
developed by Engblom and Ermedahl (2000) to analyse the
control flow information, the extension by Theiling (2002)
to take into account the effect of different invocations to the
same function and the extension by Theiling et al. (2000) to
reduce the complexity of the ILP problems by using abstract
interpretation. In summary, our work advances the IPET
methodology significantly and encourages the inclusion of
I/O activities and modern hardware architectures in
hard-real-time embedded systems.

 Performance analysis of hard-real-time embedded software 221

Acknowledgements
The authors would like to thank Jane Liu and David Hull for
their comments on this paper. We also would like to thank
Steve Li and Sharad Malik for providing their timing tool,
with which we obtained the pessimistic WCET predictions.
This research was supported in part by National Science
Council, ROC, under Grant NSC 92-2213-E-007-015 and
by the Ministry of Education, ROC, under Grant MOE
89-E-FA04-1-4.

References
Black, J., McKenna, C. and Kaplinsky, C. (1981) The VMEbus

Specification, Motorola.
Colin, A. and Puaut, I. (2000) ‘Worst case execution time analysis

for a processor with branch prediction’, Journal of Real-Time
Systems, Vol. 18, Nos. 2-3, May, pp.249–274.

Engblom, J. and Ermedahl, A. (1999) ‘Pipeline timing analysis
using a tracedriven simulator’, Proceedings of the 6th
International Conference on Real-Time Computing Systems
and Applications, December, Hong Kong, China, pp.88–95.

Engblom, J. and Ermedahl, A. (2000) ‘Modeling complex flows
for worst-case execution time analysis’, Proceedings of the
21st Real-Time System Symposium, November, Orlando,
Florida, USA, pp.163–174.

Engblom, J., Ermedahl, A., Sjoedin, M., Gubstafsson, J.
and Hansson, H. (2001) ‘Worst-case execution-time
analysis for embedded real-time systems’, Journal of
Software Tools for Technology Transfer, Vol. 4, No. 4,
February, pp.437–455.

Ferdinand, C. and Wilhelm, R. (1999) ‘Efficient and precise
cache behavior prediction for real-time systems’, Journal of
Real-Time Systems, Vol. 17, Nos. 2–3, pp.131–181.

Ferdinand, C., Martin, F. and Wilhelm, R. (1997) ‘Applying
compiler techniques to cache behavior prediction’, ACM
SIGPLAN Workshop on Languages, Compilers and Tools
for Real-Time Systems, pp.37–46.

Gupta, R. and Gopinath, P. (1994) ‘Correlation analysis techniques
for refining execution time estimates of real-time
applications’, Proceedings of the IEEE Workshop on
Real-Time Operating Systems and Software, May, pp.54–58.

Healy, C., Arnold, R., Mueller, F., Whalley, D. and Harmon, M.
(1999) ‘Bounding pipeline and instruction cache
performance’, IEEE Transactions on Computers, January,
Vol. 48, No. 1, pp.53–70.

Healy, C.A., Sjodin, M., Rustagi, V., Whalley, D.B. and
van Engelen, R. (2000) ‘Supporting timing analysis by
automatic bounding of loop iterations’, Journal of Real-Time
Systems, Vol. 18, Nos. 2–3, pp.129–156.

Huang, T-Y. and Liu, J.W-S. (1995) ‘Predicting the worst-case
execution time of the concurrent execution of instructions and
cycle-stealing DMA I/O operations’, ACM SIGPLAN Notices,
Vol. 30, No. 11, November, pp.1–6.

Huang, T-Y., Liu, J.W-S. and Hull, D. (1996) ‘A method for
bounding the effect of DMA I/O interference on program
execution time’, Proceedings of the 17th Real-Time System
Symposium, December, Washington, DC, USA, pp.275–285.

Kim, S-K., Ha, R. and Min, S.L. (1999) ‘Analysis of the impacts
of overestimation sources on the accuracy of worst case
timing analysis’, Proceedings of the 20th Real-Time System
Symposium, December, Phoenix, AZ, USA, pp.22–31.

Kogge, P.M. (1981) The Architecture of Pipelined Computers,
Hemisphere Publishing Corp., New York, NY.

Li, Y-T.S. and Malik, S. (1995) ‘Performance analysis of
embedded software using implicit path enumeration’,
Proceedings of the 32nd ACM/IEEE Design Automation
Conference, June, pp.456–561.

Li, Y-T.S. and Malik, S. (1999) Performance Analysis of
Real-Time Embedded Software, Kluwer Academic Publishers,
Princeton, NJ, USA.

Lim, S-S., Han, J.H., Kim, J. and Min, S.L. (1998) ‘A worst case
timing analysis technique for multiple-issue machines’,
Proceedings of the 19th Real-Time System Symposium,
December, Washington, DC, USA, pp.334–345.

Liu, C.L. and Layland, J. (1973) ‘Scheduling algorithms for
multiprogramming in a hard real-time environment’, Journal
of the ACM, Vol. 10, No. 1, pp.46–61.

Lundqvist, T. and Stenström, P. (1999) ‘An integrated path and
timing analysis method based on cycle-level symbolic
execution’, Journal of Real-Time Systems, Vol. 17, Nos. 2–3,
pp.183–207.

Lundqvist, T. and Stenström, P. (1999) ‘Timing anomalies in
dynamically scheduled microprocessors’, Proceedings of the
20th Real-Time System Symposium, December, pp.12–21.

Mueller, F., Whalley, D. and Harmon, M. (1994) ‘Predicting
instruction cache behavior’, ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time Systems,
June, pp.23–40.

Ottosson, G. and Sjödin, M. (1997) ‘Worst-case execution time
analysis for modern hardware architectures’, ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Real-Time
Systems, June, pp.47–55.

Park, C-Y. and Shaw, A.C. (1991) ‘Experiments with a program
timing tool based on source-level timing schema’, IEEE
Computer, Vol. 24, No. 5, May, pp.48–57.

Puschner, P. and Koza, C. (1989) ‘Calculating the maximum
execution time of real-time programs’, Journal of Real-Time
Systems, Vol. 1, pp.159–176.

Sha, L., Rajkumar, R. and Lehoczky, J.P. (1990) ‘Priority
inheritance protocols: an approach to real-time
synchronisation’, IEEE Transactions on Computers, Vol. 39,
No. 9, pp.1175–1185.

Shaw, A.C. (1989) ‘Reasoning about time in higher-level language
software’, IEEE Transactions on Software Engineering, July,
Vol. 15, No. 7, pp.875–889.

Stappert, F. and Altenbernd, P. (2000) ‘Complete worst-case
execution time analysis of straight-line hard real-time
programs’, Journal of Systems Architecture, Vol. 46, No. 4,
pp.339–355.

Sun, J., Gardner, M. and Liu, J.W-S. (1997) ‘Bounding completion
times of jobs with arbitrary release times, variable execution
times, and resource sharing’, IEEE Transactions on Software
Engineering, October, Vol. 23, No. 10, pp.603–615.

Theiling, H. (2002) ‘ILP-based interprocedural path analysis’,
Proceedings of the Second International Workshop on
Embedded Software, December, Grenoble, France,
pp.349–363.

Theiling, H., Ferdinand, C. and Wilhelm, R. (2000) ‘Fast and
precise WCET prediction by separated cache and path
analyses’, Journal of Real-Time Systems, Vol. 18, Nos. 2–3,
pp.157–179.

