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Abstract Grid performance are usually measured by the average turnaround time
of all jobs in the system. A job’s turnaround time consists of two parts: queue wait-
ing time and actual execution time, which in a heterogeneous grid environment, are
severely affected by the resource fragmentation and speed heterogeneity factors. Most
existing processor allocation methods focus on one of these two factors only. This pa-
per proposes processor allocation methods, which consider both resource fragmenta-
tion and speed heterogeneity, to improve system performance of heterogeneous grids.
Extensive simulation studies have been conducted to show that the proposed methods
can effectively deliver better performance under most resource and workload condi-
tions.

Keywords Grid · Speed heterogeneity · Resource fragmentation · Processor
allocation

1 Introduction

Grid performance can be measured by several different performance metrics. Among
them, the most popular one may be average turnaround time of all jobs in the sys-
tem. A job’s turnaround time consists of two parts: queue waiting time and actual
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execution time. Shortening the time of these two parts thus becomes the main focus
of different job management mechanisms. Job management in parallel and distrib-
uted systems usually entails two steps. Job scheduling decides the job sequence for
processor allocation. Processor allocation is concerned with the assignment of the
required number of processors for the selected job.

Traditionally, job scheduling methods are thought to be responsible for queue
waiting time, while processor allocation methods for actual execution time. For exam-
ple, Shortest-Job-First (SJF) has long been known to be the best scheduling method
for producing the shortest average waiting time on single processor [32]. Backfilling
based methods [26, 33] have been widely used in parallel system to manipulate the
job execution order for reducing the waiting time of some jobs through improving
system utilization. Processor allocation methods usually try to allocate a job to the
fastest computing resource among those available in a distributed system for it to run
as soon as possible.

However, things become complicated in a heterogeneous grid environment, where
processor allocation not only influence job execution time but also affect queue
waiting time. A heterogeneous grid usually integrates several parallel computers or
clusters which may run at different speeds and be located in geographically distant
sites. Communications between processors within the same site are usually achieved
through high-speed networking devices, while messages passed across different sites
have to go through a much slower wide-area network or Internet. A job allocated to a
pool of processors within the same site can usually run faster than if it is assigned to
processors across different sites. Therefore, the system tends to allocate a job within
a single site to achieve high performance.

Because of speed heterogeneity, allocating a job onto different clusters may lead
to different job execution times. Moreover, different processor allocation decisions
for a certain job may also affect the queue waiting time of the jobs behind it because
of the resource fragmentation issue. Resource fragmentation in grid environments,
similar to the external fragmentation of memory space for dynamic memory man-
agement in operating systems [32], occurs when there is no single cluster being able
to accommodate a parallel job although the number of total free processors of all
clusters is larger than the job’s requirement. Once resource fragmentation occurs, the
jobs in the queue would be kept waiting for more time, inducing longer queue waiting
time. Processor allocation decisions determine the probability of resource fragmen-
tation. Therefore, processor allocation becomes a crucial issue in a heterogeneous
grid environment because it affects both queue waiting time and job execution time.
An effective processor allocation method for heterogeneous grid environments has
to cope with both speed heterogeneity and resource fragmentation. However, most
existing processor allocation methods focus on one of these two issues only.

For the resource fragmentation issue, earlier research results [19, 20] in homo-
geneous grids showed that the best-fit policy can deliver good performance. In this
policy, upon allocation decision making a particular site in the grid is chosen on
which a parallel job will leave the least number of free processors if it is allocated to
that site. Regarding speed heterogeneity, the fastest-first policy [21] is a commonly
used heuristic which always allocate a job to the fastest one among those sites able
to accommodate it. This paper proposes processor allocation methods which intelli-
gently switch between the best-fit and the fastest-first policies at runtime to achieve
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good system performance. Extensive experiments based on simulations under differ-
ent workload conditions were conducted to evaluate the proposed methods.

It is believed that no single processor allocation method can always perform the
best under all possible workload conditions. However, careful and extensive analysis
of the performances of different methods under various workload conditions could
lead to better understanding of the root causes of the performance difference between
the methods. The understanding could in turn help develop more effective processor
allocation methods.

The remainder of this paper is organized as follows. Section 2 discusses related
works. Section 3 presents the grid model and assumptions of this paper. In Sect. 4, we
analyze the potential strength of existing allocation methods and present the proposed
intelligent allocation methods. Section 5 presents and discusses experiment results.
Conclusion of this paper is given in Sect. 6.

2 Related works

Both job scheduling [22, 23] and processor allocation [27, 31] received a lot of
research attention on earlier hypercube-based parallel computers. On a hypercube
computer, allocating a job to different sub-cubes, although having little or no impact
on that single job’s performance, might lead to diverse overall system performance.
This is because different allocation decisions lead to different distributions of left-
over processors and, in turn, different probabilities of successful allocation of subse-
quent jobs. Later, when switch-based parallel computers and cluster-based comput-
ing systems being widely used, job scheduling become a more important issue than
processor allocation. This stemmed from the fact that on such systems allocation
can be made with any portion of the system and with any number of processors, in
contrast to the power-of-two restriction on earlier hypercube computers. Therefore,
the resource fragmentation problem was eliminated and processor allocation seemed
straightforward. Many research efforts [16, 17, 24, 26, 33] have been spent on the job
scheduling issue on such switch-based parallel computers or cluster-based comput-
ing systems. However, as grid [14, 18] becomes a promising computing platform, the
resource fragmentation problem is coming back again and processor allocation needs
to deal with it.

England and Weissman in [9] analyzed the costs and benefits of load sharing of
parallel jobs in the computational grid. Experiments were performed for both homo-
geneous and heterogeneous grids. However, in their works simulations of a heteroge-
neous grid only captured the differences in capacities and workload characteristics.
The computing speeds of nodes on different sites are assumed to be identical. In this
paper, we deal with heterogeneous grids in which nodes on different sites may have
different computing speeds.

As for job scheduling in grid environments, previous works discussed several
strategies for a grid scheduler. One approach is the modification of traditional list
scheduling strategies for usage on grid [10, 11, 13, 19, 30]. Some economic based
methods are also being discussed [7, 8, 12, 35]. For processor allocation, there are
several methods possible for selecting which site to allocate a job. In homogeneous
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grid environments, the major issue for processor allocation is resource fragmentation.
Earlier simulation studies in our previous work [20] and in the literature [19] showed
that the best-fit policy can deliver the best performance. In this paper, we explore
possible processor allocation methods for a heterogeneous grid environment, where
nodes on different sites may run at different speeds.

Some previous works investigated the co-allocation issues in grid environments
[1–6, 10, 11, 13, 19, 20, 29, 34], where a parallel job can run across different sites
to resolve the resource fragmentation problem. However, multisite parallel execu-
tion may incur high communication overhead because of the slower communication
speed between different sites compared to the intra-site communication. Moreover,
not all communication libraries support such kind of cross-site parallel execution.
Even worse is that in heterogeneous grid environments cross-site parallel execution
can lead to inefficient resource utilization because of speed heterogeneity. Therefore,
in this paper, we focus on processor allocation methods which allocate an entire par-
allel job onto a single site in a grid.

3 Grid model

In order to evaluate the performance of processor allocation methods in a grid envi-
ronment, a grid model is first presented to clarify the assumption of the underlying
computing platform. The grid model consists of a resource model, a job model, and a
performance model. In the resource model, there are several independent computing
sites with their own local workload and management system. The grid integrates the
sites and shares their incoming jobs. Each participating site itself is a homogeneous
parallel computer system with the same computing speed while the grid is heteroge-
neous in the sense that nodes on different sites may differ in computing speed and
different sites may have different numbers of nodes. The nodes within each site are
linked with a fast interconnection network that does not favor any specific communi-
cation pattern [16]. The parallel computer system uses space-sharing and run the jobs
in an exclusive fashion. Once a job starts execution, it runs to finish without interrupt.
Neither live migration nor job preemption is allowed. Each job can only be executed
in single site, that is, single job executed on multiple sites (it is sometimes referred to
multisite execution or resource co-allocation) is not considered in this paper.

In the job model, each job is submitted to the system in an on-line manner, that is,
without any knowledge of future job submission. The jobs under consideration are
restricted to batch jobs because this job type is dominant on most parallel computer
systems running scientific and engineering applications. Each job is assumed to be
rigid and is associated with a requirement of a specific number of processors. We
assume that the job execution time is not known in advanced. For the sake of simplic-
ity, we assume a global queue to accommodate all the submitted jobs and a global
grid scheduler to handles all job scheduling and resource allocation activities. Local
schedulers are only responsible for starting the jobs after their allocation by the global
scheduler. Theoretically a single central scheduler could be a critical limitation con-
cerning efficiency and reliability. However, practical distributed implementations are
possible, in which site-autonomy is still maintained but the resulting schedule would
be the same as created by a central scheduler [14].
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To evaluate the proposed allocation methods, we used the average turnaround time
(ART) of all jobs as the performance metric in all simulations. The ART is defined
by (1).

ART =
∑

∀ job i endTimei − submitTimei

TotalNumberOfJobs
(1)

To clarify the following presentation, we first define several terms which will be
used hereafter in this paper.

• CSj —the computing speed of site j .
• AveCS—the average computing speed of all sites.
• NPj —the number of free processors in site j .
• NRPi—the number of required processors of job i.
• WQ—the waiting queue which contains all jobs waiting for available resources in

their arriving order.
• SizeWQ—the size of waiting queue, represented by the total number of jobs in the

waiting queue.
• Sbf(i)— represent the site selected for computing job i by the best-fit method.
• Sff(i)—represent the site selected for computing job i by the fastest-first method.
• FJ—the first job in WQ.

4 Intelligent allocation methods

In this section, we begin by analyzing the pros and cons of existing processor alloca-
tion methods in Sect. 4.1. Then several intelligent allocation methods are introduced
from Sect. 4.2 to 4.4. The name “intelligent” represents the idea of taking advantage
of different existing allocation algorithms by dynamically switching the allocation
decision among them intelligently. We expect that the proposed intelligent methods
can effectively deliver better performance under most workload and resource condi-
tions.

4.1 Existing processor allocation methods

We first analyze two existing processor allocation methods named best-fit and fastest-
first. The best-fit method [19, 20] allocates a job to the site which can yield the small-
est resource fragmentation. This scheme works fine in a homogeneous grid. However,
in a heterogeneous grid with computing speed differences among participating sites,
the best-fit method may not perform well since it does not consider the speed het-
erogeneity [21]. In such an environment another processor allocation method called
fastest-first has been proposed [21]. The fastest-first method focuses on speed hetero-
geneity in a heterogeneous grid and allocates a job to the fastest one among all the
sites which can accommodate the job. Since fastest-first does not consider the dif-
ference between the amount of required processors and a site’s free capacity, it may
result in larger fragmentation than best-fit.

Besides, the relative performance of these two methods would largely depend on
several factors such as computing speed heterogeneity, system loading, workload
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Table 1 Relative strength analysis of different allocation methods

System loading (High) System loading (Low)

Speed heterogeneity (High) undistinguishable fastest-first

Speed heterogeneity (Low) best-fit undistinguishable

condition, and so on. In this paper, speed heterogeneity is measured by the variance
of computing speeds of all participating sites in a grid. System loading can be simply
observed and represented by the average length of the job waiting queue. Workload
condition includes many attributes such as job arrival process, probability distribution
of the numbers of required processors, execution time distribution, etc. Some of these
parameters can be seen as random variables that dynamically change with time (e.g.,
system loading and workload condition). It is hard to have any allocation method that
can surpass all other methods in all workload conditions. To this end, we focus on
identifying the potential strength of each existing allocation method under different
conditions, and then propose new allocation methods to combine all the advantages.

Table 1 shows the relative strength analysis of best-fit and fastest-first under differ-
ent levels of speed heterogeneity and system loading. Since best-fit does not consider
speed difference among participating sites, it is more suitable to be used when speed
heterogeneity is low. Additionally, best-fit were shown to yield less resource fragmen-
tation and lead to higher resource utilization than the first-fit method, which inspects
the participating sites in a fixed order and allocates a job to the first site found to be
able to accommodate the job [20]. Since fastest-first can be viewed as another form
of first-fit if the sites in a grid are arranged in the descending order of computing
speed, best-fit can be expected to outperform fastest-first in reducing resource frag-
mentation and raising resource utilization. When system loading is high, resource
utilization rate is crucial to the overall system performance. Therefore, best-fit has
higher potential to perform better than fastest-first when system loading is high. It
is then clear that in the case of low speed heterogeneity and high system loading,
best-fit is a better choice. On the contrary, when resource heterogeneity is high and
system loading is low (one can image the extreme case when the waiting queue is
always empty), computing speed of each job has higher influence on the overall sys-
tem performance than the resource fragmentation effect. Therefore, fastest-first can
potentially perform better than best-fit in this case.

To utilize the result in Table 1, we further analyze the situation when allocation
operation takes place. In general, an allocation event is triggered when a new job
is submitted to the system or when a running job finishes its execution. For each
allocation event the system tries to continuously allocate as many jobs as possible. It
stops allocation only when there are no sites being able to accommodate the first job
in the waiting queue or when the waiting queue becomes empty. Note that not every
triggered allocation event leads to actual allocation since there might be no enough
resources or no jobs to allocate. Table 2 classifies all possible allocation events into
four types of situations according to the status of waiting queue and the causes that
trigger the events. The symbol “X” represents that there will be no actual allocation
in that situation. Since we apply FCFS as the scheduling policy, SizeWQ > 0 implies
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Table 2 Classification of
allocation events Submit Finish

SizeWQ = 0 (a) X

SizeWQ > 0 X (b)

that there is no site being able to accommodate the first job in waiting queue and
that the newly submitted job must wait in the rear of waiting queue. For the case that
SizeWQ = 0 and the triggering event is job finish, there are no jobs to allocate and
therefore no actual allocation happens. Only situations (a) and (b) in Table 2 would
lead to actual allocation if there is any site which can accommodate the submitted job
or the first job in waiting queue.

We use a parentheses pair to represent speed heterogeneity and system loading. For
example, (low, high) represents the situation that heterogeneity is low and loading is
high. In situation (a), SizeWQ = 0 implies the system loading is low so it comprises
the (low, low) or (high, low) cases mentioned in Table 1. In situation (b), it comprises
all the cases in Table 1 since SizeWQ > 0 does not imply the system loading is high.
Therefore, we need some further strategies to distinguish different cases in each sit-
uation to make better allocation decisions. These strategies will be discussed in the
following sections.

4.2 Threshold-based approaches

The main idea of the threshold-based approaches is to dynamically switch the alloca-
tion decision between best-fit and fastest-first based on the analysis in Sect 4.1. The
first allocation method we propose is named static intelligent (SI). In SI, we use the
waiting queue length to distinguish between the situation (a) and situation (b) based
on Table 2. In situation (a), we simply apply fastest-first and in situation (b) best-fit
is employed. The decision of SI is shown in (2).

Decision SI =
{

best-fit, if SizeWQ > 0
fastest-first, if SizeWQ = 0 (2)

Since static intelligent method does not consider the speed heterogeneity, another
allocation method named threshold intelligent (TI) is then proposed which further
exploits the analysis result in Table 1. To do so, two problems must be considered.
The first is how to determine the speed heterogeneity and the system loading while
the second is how to set the threshold value appropriately. For speed heterogeneity
(SH), we measure it by calculating the variance of the computing speeds of all the
participating sites by (3).

SH =
∑

∀ site j (CSj − AveCS)2

TotalNumberOfSites
(3)

For system loading (SL), we calculate the ratio of the total number of required
processors of all jobs in waiting queue to the total number of free processors in all
sites by (4). Note that the denominator in (4) might be zero when processors in all
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sites are all occupied by some jobs. In this case, we force the denominator to be one
to prevent the divide-by-zero problem.

SL =
∑

∀ job i in WQ NRPi
∑

∀ site j NPj

(4)

Based on above SH and SL calculations, the TI method works as follows. First, it
uses the same way as the static intelligent method to distinguish between situations
(a) and (b). In (a), it applies speed heterogeneity threshold (SHT) to choose fastest-
first or best-fit based on (5). In (b), a system loading threshold (SLT) is employed for
choosing fastest-first or best-fit based on (6).

Decision TI in situation (a) =
{

best-fit, if SH ≤ SHT
fastest-first, if SH > SHT ,

(5)

Decision TI in situation (b) =
{

best-fit, if SL > SLT
fastest-first, if SL ≤ SLT

(6)

For the values of SHT and SLT, we use simulations to decide appropriate settings
which will be discussed in Sect. 5.2.

4.3 Queue-based approach

The main idea of queue-based approach is to further exploit the information provided
by job waiting queue to guide the allocation decision. In this paper though we assume
neither job execution time nor job submission time are known in advance, the jobs
that have already been submitted and waited in job queue can be seen as an “off-line”
behavior. Thus, the job execution order and the required number of processors of each
job in waiting queue provide new information and new opportunities to develop more
efficient intelligent allocation methods.

In this section, we will present the queue-based intelligent allocation method
named adaptive intelligent 2 (AI2), which is inspired by the adaptive allocation strat-
egy presented in our previous work [21] (we will call it adaptive intelligent (AI) here-
after in this paper). In the following, we first introduce the AI before going through
AI2.

In both AI and AI2, we first distinguish between situation (a) and situation (b)
using the same way as in the static intelligent method. In situation (a), since there
is no job in waiting queue, both methods directly compare the computing speeds of
the sites selected by different allocation methods to make the allocation decision.
The allocation decision is determined by (7), where FJ stands for the first job in the
waiting queue.

Decision AI & AI2 in situation (a) =
{

best-fit, if CSSbf(FJ) ≥ CSSff(FJ)

fastest-first, if CSSbf(FJ) < CSSff(FJ)
(7)

In situation (b), these two methods act differently. In AI, with the information
provided by waiting queue, the decision is made based on a calculation of which
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method can further allocate more jobs in waiting queue for immediate execution. The
number of allocation NoA(i) of job i is calculated by (8)

NoA(i) =
{1, if job i can be allocated to at least one site

and NoA(i − 1) = 1.
0, if job i can not be allocated to any site.

(8)

NoAbf(i) and NoAff(i) are used to denote the number of allocation using best-fit
and fastest-first, respectively. Thus the total number of successful allocations by best-
fit and fastest-first are denoted by TNoAbf and TNoAff and defined in (9) and (10),
respectively.

TNoAff = NoAff(FJ) +
∑

∀i in WQ exclude FJ

NoAbf(i) (9)

TNoAbf =
∑

∀i in WQ

NoAbf(i) (10)

A value AIScore which represents the relative performance of applying best-fit or
fastest-first for the first job in waiting queue is then calculated by (11).

AIScore = CSSff(FJ) − CSSbf(FJ) − (TNoAbf − TNoAff) × CSSbf(FJ) (11)

The allocation decision of AI for the first job in waiting queue in situation (b) is
then determined by (12).

Decision AI in situation (b) =
{

best-fit, if AIScore < 0
fastest-first, if AIScore ≥ 0

(12)

The pseudo code of the AI allocation method is shown in Fig. 1. Note that though
in (9) and (10) we attempt to allocate as many jobs as possible, however, these steps
are just a simulation to calculate the AIScore and will not actually perform allocation
for those jobs. In the end, we only make the allocation decision for the first job in
waiting queue.

Here, we start to introduce the proposed AI2 allocation method. The major dif-
ference in AI2 is to take the speed heterogeneous into account. In AI2, we make the
allocation decision in situation (b) by calculating which allocation method can allow
subsequent jobs in waiting queue to consume more computing capacity. The comput-
ing capacity CC(i) consumed by job i is calculated by (13).

CC(i) =
{

CSj × NRPi , if job i is allocated to site j and CC(i − 1) > 0.
0, if job i can not be allocated to any site.

(13)

We use CCbf(i) and CCff(i) to denote the computing capacity consumed by job
i when using best-fit and fastest-first, respectively. The total computing capacities
consumed using best-fit and fastest-first are denoted by TCCbf and TCCff and defined
in (14) and (15), respectively.

TCCff = CCff(FJ) +
∑

∀i in WQ exclude FJ

CCbf(i), (14)
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Fig. 1 Pseudo code of the
adaptive intelligent (AI)
allocation method

Method AdaptiveIntelligent()
{

calculate Sbf(FJ) and Sff(FJ)

if Sbf(FJ) = Sff(FJ)

choose the site suggested by both methods
end if
if SizeWQ = 0 and event = Submit

if CSSbf(FJ) ≥ CSSff(FJ)

choose best-fit
otherwise

choose fastest-first
end if

end if
calculate AIScore
if AIScore >= 0

choose fastest-first
otherwise

choose best-fit
end if

}

TCCbf =
∑

∀i in WQ

CCbf(i) (15)

A value AI2Score which represents the relative performance of applying best-fit or
fastest-first for the first job in waiting queue is then calculated by (16).

AI2Score = CSSff(FJ)

CSSbf(FJ)

× TCCff

TCCbf
(16)

The allocation decision for AI2 in situation (b) is then determined by (17).

DecisionAI2 in situation (b) =
{

best-fit, if AI2Score ≤ 1
fastest-first, if AI2Score > 1

(17)

The pseudo code of AI2 is almost the same as AI (see Fig. 1), only replacing the
AIScore with AI2Score.

4.4 Mixed approaches

The main idea of the mixed approaches is to combine the advantages of the threshold-
based approaches and the queue-based approaches. Here the mixed intelligent allo-
cation method named threshold-based adaptive intelligent (TAI) and threshold-based
adaptive intelligent 2 (TAI2) are proposed. In both methods, we extend the analysis
result in Table 1 by replace the “undistinguishable” cases with AI or AI2, respectively.
The idea of the TAI and TAI2 is show in Table 3. Note that the TAI and TAI2 are only
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Table 3 The idea of the proposed TAI and TAI2 allocation methods

TAI (TAI2) System Loading (SL)

Low High

Speed Heterogeneity (SH) Low AI (AI2) BF

High FF AI (AI2)

Table 4 Time complexity of each allocation method

Allocation method Time complexity Allocation method Time complexity

BF O(m) AI O(mq)

FF O(m) AI2 O(mq)

SI O(m) TAI O(m + q + mq)

TI O(m + q) TAI2 O(m + q + mq)

different in the (low, low) and (high, high) cases where in TAI the AI method is in-
voked and in TAI2 the AI2 method is invoked, respectively. For both TAI and TAI2,
we use the same way as in the threshold intelligent method to determine the speed
heterogeneity and system loading. SHT and SLT are applied to distinguish the level
of speed heterogeneity and system loading respectively.

For the values of SHT and SLT in both TAI and TAI2, we also apply simulations
to decide appropriate settings which will be discussed in Sect. 5.2.

4.5 Time complexity analysis of all intelligent methods

Here, the time complexity is calculated for a single allocation event. Suppose that
the grid environment has m sites and the average length of waiting queue is q . In BF
and FF, the worse case is to traverse all m sites to make the allocation decision. So,
the time complexity of these two methods is O(m). In SI, based on SizeWQ either BF
or FF will be invoked for allocation accordingly. Thus, the time complexity of SI is
a linear combination of the time complexity of BF and FF. Since both BF and FF
have the same time complexity O(m), the time complexity of SI is O(m) as well.
In TI, two threshold related variables SH and SL are required for calculation. Since
SH is only required to be calculated once in grid start-up, its time complexity can be
ignored. For SL, it needs to traverse all the jobs in waiting queue and all the sites,
thus it takes m + q step for the calculation. Then at most, m steps are required by
either BF or FF. Therefore, the time complexity of TI is O(2m + q) = O(m + q). In
AI and AI2, it is required to simulate the allocation for all the jobs in waiting queue.
Thus, the time complexity of both methods is O(mq). Both TAI and TAI2 require the
calculation of SL, and then either AI or AI2 is invoked for final decision. Therefore,
the time complexity of both methods is O(m+q +mq). Table 4 summarizes the time
complexity of each allocation method mentioned above.
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Table 5 Characteristics of the workload log on SDSC’s SP2

Queue
number

Number of
jobs

Maximum execution
time (sec)

Average execution
time (sec)

Maximum
NRPi

Average
NRPi

Queue 1 5038 21922 393.99 8 3.27

Queue 2 8838 510209 7029.57 128 17.00

Queue 3 27075 172832 7357.81 128 12.56

Queue 4 12859 452520 10620.82 128 12.17

Queue 5 231 64828 1051.76 50 4.01

Total 54041

5 Experiments and discussion

In the following experiments, both publicly downloadable workload traces and syn-
thetic workload models [28] are used for performance evaluation of the proposed
methods. The detail setting of the workload log and synthetic workload models are
covered in Sect. 5.1. Section 5.2 presents the effects of various threshold settings
on the performance of TI, TAI, and TAI2. Then the performance comparisons of the
six proposed intelligent allocation methods are covered in Sect. 5.3. In Sect. 5.4, we
study the potential of dynamic threshold setting as a further research direction.

5.1 Experimental settings

For real workload traces, we used the SDSC’s SP2 workload log on [28] as the ba-
sic input workload in the following simulations. The workload log on SDSC’s SP2
contains 73496 records collected on a 128-node IBM SP2 machine at San Diego Su-
percomputer Center (SDSC) from May 1998 to April 2000. After excluding some
problematic records based on the completed field in the log, the simulations in this
paper use 54041 job records as the input workload. The detailed workload character-
istics are shown in Table 5.

In simulations, we use the following three attributes of each job record gotten from
the SDSC SP2’s workload log.

• Number of processors. It is the number of processors a job uses according to the
data recorded in the workload log.

• Submission time. This provides the information about when a job is submitted to
its home site.

• Runtime. It indicates the required execution time for a job using the specified
number of processors on its home site. This information of runtime is required for
driving the simulation to proceed. However, in our job scheduling methods, the
job scheduler does not know the job runtime prior to a job’s finish of execution.
Therefore, they do not use this information to guide the determination process of
job scheduling and allocation.

In the SDSC’s SP2 system, the jobs in this log are put into five different queues and
all these queues share the same 128 processors on the system. In the following simu-
lations, this workload log will be used to model the workload on a computational grid
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Table 6 Configuration of the computational grid

total site 1 site 2 site 3 site 4 site 5

Number of processors 442 8 128 128 128 50

consisting of five different sites whose workloads correspond to the jobs submitted
to the five queues respectively. Table 6 shows the configuration of the computational
grid under study. The number of processors on each site is determined according to
the maximum number of required processors of the jobs belonged to the correspond-
ing queue for that site.

To simulate the speed difference among participating sites, we define a speed vec-
tor, speed = (sp1, sp2, sp3, sp4, sp5), to describe the relative computing speeds of all
the five sites in the grid, in which the value 1 represents the computing speed resulting
in the job execution time in the original workload log. We also define a load vector,
load = (ld1, ld2, ld3, ld4, ld5), which is used to derive different loading levels from
the original workload data by multiplying the load value ldj to the execution times
of all jobs at site j .

In order to evaluate the performance of the proposed methods on various work-
load conditions, we conducted a series of experiments by varying three adjustable
parameters listed in Table 7. Speed heterogeneity (SH), represented by the variance
of computing speeds of all sites, ranges from 0 to 0.24 with a step of 0.06. For better
understanding of the influence of SH, setting SH = 0.06, 0.12, 0.18, and 0.24 will
make the speed of the fastest site 1.9, 2.7, 4.3, and 5.6 times faster than the slowest
site, respectively. SH = 0 reduces to the homogeneous case. We use a normal distrib-
ution generator with mean set to 1 and variance equal to the SH setting. To generate
the computing speed for each site, sp1, sp2, and sp3 are generated by the generator
while sp4 and sp5 are calculated to satisfy (18) and (19).

5∑

j=1

spj × NPj = C, (18)

∑5
j=1(spj − 1)2

5
= SH (19)

In (18), C is a constant to represent the total computing capacity of the entire grid.
Here, C is set to 442, the total number of processors in all sites, to represent the
computing capacity when all sites have the same computing speed index of one.

System loading (SL), ranging from 1 to 4 with a step of 0.5, is simulated by setting
the load of each site to the SL value (e.g., the load vector is set to (2, 2, 2, 2, 2) when
SL = 2). The following uses the average length of waiting queue in a homogeneous
case (SH = 0) with the best-fit method as an example to show the effect of SL. The
length of waiting queue will be 0.9, 3.4, 7.8, 19.8, 98, 1126, and 2618 when SL is set
to 1, 1.5, 2, 2.5, 3, 3.5, and 4, respectively.
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Table 7 Parameters for
experiments with workload log Speed heterogeneity (SH) {0, 0.06, 0.12, 0.18, 0.24}

System loading (SL) {1, 1.5, 2, 2.5, 3, 3.5, 4}

Resource configuration (RC) {100%, 75%, 50%, 25%}

Table 8 Characteristic of
SDSC’s SP2 workload with
respect to various RC settings

RC setting Number of jobs Maximum NRPi Average NRPi

RC = 100% 54041 128 12.29

RC = 75% 54305 96 12.23

RC = 50% 54534 64 12.18

RC = 25% 58890 32 11.28

Resource configuration (RC), defined in (20), ranges from 100% to 25% with a
step of 25% in the simulations.

RC = Max(NRPi ), ∀ job i

Max(NPj ),∀ site j
(20)

With RC = 100%, we use the maximum number of requested processors of all jobs
in each queue as the size of that site, which are 8, 128, 128, 128, 50 corresponding to
queue 1 to queue 5, respectively. This resource setting was used for all simulations.
For other RC settings, we simulated it by cutting a job that exceeds the specified
percentage into several small jobs. For example, when RC = 25%, a job requesting
100 processors was cut into four small jobs, where three of them each requested
32 processors (128 × 25%) and the last one asked for the remaining 4 processors.
Table 8 shows the characteristics of SDSC’s SP2 workload with respect to different
RC settings.

Note that only SL will change the amount of workload brought into the system
while the other two parameters neither change the total computing capability of all
resources nor change the average workload brought into the system.

For synthetic workload models, totally 10 models (including their source code) are
available on the parallel workload archive [28]. Since in this paper we only consider
rigid job type, two models named Feitelson96 [15] and Lublin99 [25] are chosen
according to the jobs field. In Feitelson96, 30000 jobs were generated with the max-
imum number of processors per job to be 128 and the maximum job execution time
to be 64800 seconds. In Lublin99, 30000 jobs were generated as well with the max-
imum number of processors per job to be 128 and the maximum job execution time
to be 162754 seconds. The detail characteristics of these two models can be found in
[15, 25].

In both models, two adjustable parameters are used to simulate various workload
conditions as shown in Table 9. The definition of SH is the same as in the work-
load log case. However, for SL, we use the mean of inter-arrival-time to represent
the system loading. Parameters ARR_FACTOR and AARR are used to adjust the
mean of inter-arrival-time in the source code of Feitelson96 and Lublin99 respec-
tively. The following uses the average length of waiting queue for the homogeneous
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case (SH = 0) with the best-fit method as an example to show the effect of SL. In Fei-
telson96, the length of waiting queue will be 0.9, 2.7, 13.5, 43.3, and 523.6 when SL
is set to 600, 500, 400, 350, and 300, respectively. In Lublin99, the length of waiting
queue will be 0.9, 3.2, 9.3, 24.2, and 377.3 when SL is set to 10.5, 10, 9.5, 9, and 8.5,
respectively.

5.2 Performance of various threshold settings for TI, TAI, and TAI2

To find a good threshold setting, we apply simulations on the workload log with
various threshold pairs (SHT, SLT). All the combinations of four SHT values (0.05,
0.1, 0.15, and 0.2) and five SLT values (1, 1.5, 2, 2.5, and 3) are simulated under all
the combinations of 5 SH values and 7 SL values (see Table 7). Figures 2, 3, and 4
show the result of each threshold pair with all SH settings and SL = 2.5 for TI, TAI,
and TAI2, respectively. It can be observed that smaller SHT lead to better performance
in average. Nevertheless, for SLT, no single threshold value can constantly surpass all
the other settings.

Here, a new performance metric is introduced to evaluate the performance of each
threshold settings, named total normalized performance improvement ratio (TNPIR).
TNPIR is the summation of normalized performance improvement ratio (NPIR) for
all parameter settings. Here, we have totally 35 sets of parameter settings (5 SH values

Table 9 Parameters for
experiments with synthetic
workload models

Speed heterogeneity (SH) {0, 0.06, 0.12, 0.18, 0.24}

System loading (SL) in Feitelson96 {600, 500, 400, 350, 300}

System loading (SL) in Lublin99 {10.5, 10, 9.5, 9, 8.5}

Fig. 2 AverageResponseTime(ART) of TI with respect to various SHT and SLT settings
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Fig. 3 AverageResponseTime(ART) of TAI with respect to various SHT and SLT settings

Fig. 4 AverageResponseTime(ART) of TAI2 with respect to various SHT and SLT settings

and 7 SL values). NPIR is normalized with respect to the average ART (AveART) of
all 20 sets of threshold settings defined in (21)

AveART =
∑

∀tp∈TP ARTtp

20
(21)
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Table 10 Total normalized performance improvement ratio (TNPIR) of each threshold pair for TI, TAI,
and TAI2

Threshold
pair (SHT,
SLT)

(0.05,1)(0.05,1.5)(0.05,2)(0.05,2.5)(0.05,3) (0.1,1)(0.1,1.5) (0.1,2)(0.1,2.5) (0.1,3)

TI 102% 85% 110% 92% 96% 98% 58% 80% 39% 66%

TAI 7% 85% 41% 27% 51% −7% 24% 9% −8% 39%

TAI2 125% 91% 82% 115% 120% 83% 56% 74% 70% 64%

Threshold
pair (SHT,
SLT)

(0.15,1)(0.15,1.5)(0.15,2)(0.15,2.5)(0.15,3) (0.2,1)(0.2,1.5) (0.2,2)(0.2,2.5) (0.2,3)

TI 39% −15% 34% −57% 22% −80% −159% −112% −200% −102%

TAI −54% 16% −1% −35% 24% −83% −17% −26% −53% −6%

TAI2 44% −32% −25% −18% 1% −106% −147% −185% −156% −160%

where ARTtp is the ART of the threshold pair tp and TP is a set containing all the
threshold pairs. The NPIR of each threshold pair tp is defined in (22).

NPIR(tp) = AveART − ARTtp

AveART
(22)

Table 10 shows the TNPIR for TI, TAI, and TAI2, respectively. According to the
best result of this table, the threshold pairs (0.05, 2), (0.05, 1.5), and (0.05, 1) are
chosen for TI, TAI, and TAI2, respectively.

5.3 Experimental results and discussions

Here, the six intelligent methods, named static intelligent (SI), threshold intelligent
(TI), adaptive intelligent (AI) [21], adaptive intelligent 2 (AI2), threshold-base adap-
tive intelligent (TAI) and threshold-based adaptive intelligent 2 (TAI2), are compared
with the best-fit (BF) [20], and fastest-first (FF) [21] methods. Both the workload log
and synthetic workload models are used for performance evaluation. To avoid bias
of particular speed setting, 10-speed vectors for each SH value are randomly gener-
ated for simulation. All presented results in this section are the average value of 10
experiments with those10 speed vectors.

Figures 5, 6, 7, and 8 shows the performance result of each allocation method
under the workload log with RC = 100%, 75%, 50%, and 25%, respectively. Each
subfigure shows the simulation result performed by varying the SH form 0 to 0.24
with respect to a specific SL setting. From all the figures, we can observe that in the
(low, high) case (see Figs. 5–8 (e), (f), and (g) with SH = 0) best-fit surpasses fastest-
first. This observation is consistent with our analysis in Table 1. The experimental
results in Figs. 5–8 (a), (b), (c), and (d) also confirm another analysis in Table 1,
which indicates that fastest-first outperforms best-fit for case (high, low).

Figures 9 and 10 shows the results for Feitelson96 and Lublin99 workload models,
respectively. The result for workload models is generally consistent with our finding
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Fig. 5 Result of workload log for RC = 100% with respect to various SH and SL settings

for the workload log. Moreover, all the above observations show that neither BF nor
FF can always perform the best under all possible workload conditions.

In order to clearly present the performance of the proposed intelligent methods, we
use the metric TNPIR, which is first introduced in Sect. 5.2, with some modification
to evaluate the performance of each allocation method. The modification is that here
the NPIR is normalized with respect to the best result of BF and FF and is defined
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Fig. 6 Result of workload log for RC = 75% with respect to various SH and SL settings

in (23),

NPIR(am) = Min(ARTBF,ARTFF) − ARTam

Min(ARTBF,ARTFF)
(23)

where am is a variable to represent a specific allocation method and ARTam is the
average response time of the allocation method am. The TNPIR is the summation of
the NPIR values for the set of all parameter settings. For the experiments with the
workload log, there are totally 140 parameter settings covering all combinations of
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Fig. 7 Result of workload log for RC = 50% with respect to various SH and SL settings

5 SH values, 7 SL values, and 4 RC values. For workload models, each model consists
of 25 parameter settings.

The performance evaluations using metric TNPIR for the workload log and work-
load models are shown in Tables 11 and 12, respectively. The result in Table 11 shows
that all the proposed intelligent methods (SI, TI, AI2, and TAI2) result in performance
improvement compared to BF and FF, especially for TI, AI2, and TAI2. This obser-
vation also holds for Lublin99 and Feitelson96 models showed in Table 12. These
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Fig. 8 Result of workload log for RC = 25% with respect to various SH and SL settings

results show that the proposed intelligent allocation methods can yield better perfor-
mance in terms of ART than BF and FF.

For the performance of the proposed AI2 and our previous work AI. The results
in Tables 11 and 12 show the same trend that AI2 outperforms AI significantly. Even
in the mixed approach, we can observe that TAI2 outperforms TAI. Thus, we can
conclude that the new proposed queue-based allocation method AI2 does improve
the performance of our previous work AI in terms of ART.
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Fig. 9 Result of Feitelson96 workload model with respect to various SH and SL settings

Table 11 Total normalized performance improvement ratio (TNPIR) of each allocation method for work-
load log under all 140 parameter settings (each RC setting contains 35 set of results)

RC setting BF FF SI TI AI AI2 TAI TAI2

RC = 100% −473% −93% −69% −44% −86% −17% 4% 14%

RC = 75% −522% −60% −53% −21% −36% 17% −10% 7%

RC = 50% −600% −25% −75% −45% −41% 19% −13% 1%

RC = 25% −594% −29% −4% −7% −24% 2% −22% 7%

Total −2189% −208% −202% −117% −186% 22% −40% 29%

For the performance of the three proposed approaches (threshold-based, queue-
based, and mixed) we observe that the queue-based approach is better than the
threshold-based approach (AI2 surpasses TI and SI) and the mixed approach is better
than the queue-based approach (TAI2 surpasses AI2) in the result with the workload
log. However, for workload models, the above observation does not hold. The rela-
tive performance between the methods is TAI2 > TI > AI2 > SI in Feitelson96 model
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Fig. 10 Result of Lublin99 workload model with respect to various SH and SL settings

Table 12 Total normalized performance improvement ratio (TNPIR) of each allocation method for Feit-
elson96 and Lublin99 workload models under all 25 parameter settings

Workload model BF FF SI TI AI AI2 TAI TAI2

Feitelson96 −127% −469% −121% −56% −396% −67% −236% −43%

Lublin99 −274% −122% −97% −36% −79% 15% −77% −10%

while in Lublin99 model the relationship is AI2 > TAI2 > TI > SI. By examining
the results of AI2 and TAI2 in each parameter setting, we found that TAI2 is relatively
more stable than AI2. The standard deviation of AI2 and TAI2 calculated according to
NPIR is shown in Table 13. We infer that the queue-based approach has great poten-
tial to outperform threshold-based approach since it utilizes the information provided
by waiting queue. However, since the threshold-based approach is proposed accord-
ing to our analysis in Table 1, it is expected to deliver more stable performance than
the queue-based approach. In another word, the performance of the threshold-based
approach is assumed to be close to the best result of BF and FF but may not be better
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Table 13 The standard deviation of AI2 and TAI2 calculated according to NPIR

Method Workload log
RC = 100

Workload log
RC = 75

Workload log
RC = 50

Workload
log RC = 25

Feitelson96
model

Lublin99
model

AI2 0.024 0.031 0.019 0.010 0.079 0.022

TAI2 0.022 0.026 0.012 0.011 0.049 0.023

than the best of BF and FF. Thus, the mixed approach could deliver better perfor-
mance than the threshold-based approach and achieve more stable performance than
the queue-based approach in average. The results showed in Tables 11 and 12 are
consistent with the above inference that TAI2 successfully integrates the advantages
of the queue-based and threshold-based approaches, therefore, always better than TI
and more stable than AI2.

Furthermore, we find in some cases the TNPIR values of AI2 and TAI2 are positive.
Note that TNPIR is normalized according to the best result of BF and FF for each pa-
rameter setting. This positive result demonstrates that the new proposed queue-based
allocation method AI2 and the mixed allocation method TAI2 can dynamically adapt
to the better allocation decision between BF and FF in variant workload conditions,
and thus deliver better performance under most workload and resource conditions.

5.4 Potential of dynamic threshold setting

In the above experiments, for the threshold-based approaches, a fixed (SHT, SLT) pair
is used throughout all different workload and resource conditions, i.e., different SH,
SL, and RC values. In practical environment, administrators can adjust the (SHT, SLT)
setting under different workload and resource conditions. In this section, we further
study the potential of the threshold-based method with dynamic threshold setting.
Here we concentrate on three allocation methods with adjustable threshold values,
which are TI, TAI, and TAI2. For these three methods, all the combinations of four
SHT values (0.05, 0.1, 0.15, and 0.2) and five SLT values (1, 1.5, 2, 2.5, and 3) are
put into simulation for each workload and resource condition and we choose the best
result in all these 20 threshold pairs to represent the performance of a method under
that workload and resource condition. In this experiment, we can observe the poten-
tial (the best performance that can be achieved) of the dynamic threshold approach.
All 8 allocation methods are simulated together with all 140 parameter settings (see
Table 7) for the workload log and 25 parameter settings (see Table 9) for each work-
load model. The performance metric TNPIR normalized with respect to the best result
of BF and FF is used to evaluate the performance of each allocation method. Note
that here we only generate one speed vector for each SH value for simulation.

Tables 14 and 15 show the results for the workload log and workload models
respectively. In order to avoid confusion, the symbol * is appended to the 3 allocation
methods to indicate that the result is represented by the best result in 20 threshold
settings. These results show that if we can find the best threshold setting for each
workload and resource condition, the performance can be improved substantially,
compared with the fixed threshold setting (the results of TI, TAI, and TAI2 in Tables 11
and 12).
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Table 14 The result for the potential of dynamic threshold setting for workload log in all 140 parameter
settings (each RC setting contains 35 results)

RC settings BF FF SI TI* AI AI2 TAI* TAI2*

RC = 100% −627% −127% −126% 58% −78% 1% 132% 123%

RC = 75% −605% −61% −135% 56% −64% 22% 76% 103%

RC = 50% −657% −25% −133% −6% −62% −20% 41% 46%

RC = 25% −615% −22% −37% 32% −19% 7% 37% 40%

Total −2504% −235% −431% 140% −223% 10% 286% 313%

Table 15 The result for the potential of dynamic threshold setting for both workload models in all 25
parameter settings

Workload model BF FF SI TI* AI AI2 TAI* TAI2*

Fei96 −439% −350% −73% 78% −233% 79% 25% 139%

Lub99 −371% −120% −146% 45% −75% −13% 27% 54%

For the potential of these 3 methods, TAI2 is shown to have the most performance
improvement compared to the other two methods in both the workload log and the
two workload models. This finding motivates us to further study how to find the best
threshold setting dynamically in the future.

6 Conclusions

This paper presents several intelligent processor allocation methods to improve sys-
tem performance in heterogeneous grid environments. We first analyze the relative
strength of existing allocation methods and present three different approaches to dy-
namically switch allocation decision based on current workload and resource condi-
tions. Based on these approaches, several intelligent processor allocation methods are
developed through considering both speed heterogeneity and resource fragmentation.
Extensive simulation studies have been conducted to evaluate the proposed methods.
The experimental results show that all the proposed intelligent methods result in bet-
ter performance than best-fit and fastest-first individually. Furthermore, the proposed
mixed allocation method threshold-based adaptive intelligent 2 is shown to dynami-
cally adapt to the better allocation decision between best-fit and fastest-first, and thus
deliver better performance under most workload and resource conditions.

It is difficult to develop a processor allocation method which can always perform
the best under all possible workload and resource conditions. In addition to the pro-
posed methods, the extensive simulation analysis of different allocation methods un-
der various workload and resource conditions in this paper can serve as a good basis
for better understanding of the root causes of the performance difference between
the methods. The understanding could in turn help develop more effective processor
allocation methods in the future. The results in Sect. 5.4 show that the method with
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threshold setting has great potential to be further improved by dynamic threshold set-
ting. It is thus a promising future research direction on how to find the best threshold
settings dynamically under different workload and resource conditions.
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