
1

Improving GPU Memory Performance with
Artificial Barrier Synchronization

Shih-Hsiang Lo, Che-Rung Lee, Member, IEEE, Quey-Liang Kao,
I-Hsin Chung, Senior Member, IEEE, and Yeh-Ching Chung, Senior Member, IEEE

Abstract—Barrier synchronization, an essential mechanism for a block of threads to guard data consistency, is regarded as a
threat to performance. This study, however, provides a different viewpoint for barrier synchronization on GPUs: adding barrier
synchronization, even when functionally unnecessary, can improve the performance of some memory-intensive applications. We
explain this phenomenon using a memory contention model in which artificial barrier synchronization helps reduce memory contention
and preserve data access locality. To yield practical applications, we identify a program pattern: artificial barrier synchronization can be
used to synchronize the memory accesses when the data locality among threads is violated. Empirical results from three real-world
applications demonstrate that artificial barrier synchronization can increase performance by 10% to 20%.

Index Terms—Graphics Processors, Synchronization, Parallel Languages, Resource Contention.

�

1 INTRODUCTION

BARRIER synchronization for a group of processing units
(PUs) is a mechanism to stop the execution of PUs

at certain points in the program, called synchronization
points, until all of the PUs in the group reach those points.
When the computational loads among PUs are highly
unbalanced, barrier synchronization can dramatically re-
duce processor utilization. Many performance optimization
strategies have been proposed to minimize the number of
synchronization points or to enhance the load-balancing
among processing units for performance [1], [2], [3], [4],
[5].

This study, however, presents a counter-intuitive phe-
nomenon that, for GPUs (Graphics Processing Units),
adding unnecessary barriers can enhance application per-
formance. The barrier synchronization operation discussed
is the __syncthreads() command in CUDA [6], which
is effective for all of the threads in a thread block. The
phenomenon is first demonstrated in a memory-testing
program in which each thread tests different memory cells
in a loop. Inserting an unnecessary __syncthreads()
command at the end of the loop body makes the execution
faster.

We investigate and explain this phenomenon using a
memory contention model, which shows that artificial bar-
rier synchronization can relieve memory contention and
preserve data access locality by synchronizing the memory

• S.H. Lo is with the Department of Computer Science, National Tsing Hua
University, Hsinchu, Taiwan. E-mail: awatch@gmail.com

• C.R. Lee is with the Department of Computer Science, National Tsing Hua
University, Hsinchu, Taiwan. E-mail: cherung@cs.nthu.edu.tw

• Q.L. Kao is with the Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan. E-mail: u9662316@oz.nthu.edu.tw

• I.H. Chung is with the IBM T.J. Watson Research Center, New York 10598.
E-mail: ihchung@us.ibm.com

• Y.C. Chung is with the Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan. E-mail: ychung@cs.nthu.edu.tw

kernel(...)
{

. . .
for (. . . )
{

1. Memory accesses that have data locality
and contend for the shared-memory system

2. Simple arithmetic/logic computations
3. *** Insert an artifical barrier here

}
. . .

}
Fig. 1: Program pattern for the use of artificial barrier
synchronization.

requests of a thread block. Without barriers, the threads of
different progresses may compete for the same cache line,
which increases cache misses.

For the use of artificial barrier synchronization in applica-
tions, this study identifies a program pattern, which is pre-
sented in Fig. 1. In the program pattern, the threads access
the GPU device memory frequently and perform simple
computations in a loop. The accessed data should have a
certain level of locality (e.g., data in a consecutive memory
space); however, multiple simultaneous-independent mem-
ory requests cause the memory contention and pollute the
data locality. Under these conditions, adding an artificial
barrier at the end of the loop can improve the GPU memory
performance.

Our survey indicates that this program pattern appears
in real-world applications. As examples, we present two
CUDA SDK programs: one for vector addition and one for
scalar product, and one bio-informatics application, MUM-
merGPU [7], to demonstrate the usefulness of artificial
barrier insertion. MUMmerGPU is a GPU program that
aligns queried strings with a single reference string.

We conducted experiments on three GPU devices: a

Digital Object Indentifier 10.1109/TPDS.2013.133 1045-9219/13/$31.00 ©  2013 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



2

GeForce GTX 295, a GeForce GTX 480, and a GeForce GTX
690 (see Section 1 of the supplement). The experimental
results showed that artificial barrier synchronization can
yield performance improvements as high as 22%, 15% and
12% for the vector addition, scalar product and MUM-
merGPU, respectively. Performance analyses indicated that
the vector addition program receives an improvement when
the DRAM is accessed, whereas the scalar product and se-
quence alignment programs receive an improvement when
either the cache or DRAM is accessed.

The remainder of this paper is organized as follows.
Section 2 briefly reviews two related topics: barrier syn-
chronization and memory contention. Section 3 describes
the observed phenomenon using a memory-testing kernel
and presents a memory model to explain this phenomenon.
Section 4 presents the program pattern with the necessary
conditions for the use of artificial barrier synchronization.
Section 5 introduces the three example applications and
compares their experimental results with and without ar-
tifical barrier synchronization. The last section concludes
this study with a list of proposals for future work.

2 RELATED WORK

This study explores the relationship between artificial bar-
rier synchronization and memory performance on modern
GPUs. A literature search indicates that no studies have pre-
viously investigated this issue. This section briefly provides
a survey of two related subjects: barrier synchronization
and memory contention.

2.1 Barrier Synchronization

A wide variety of barrier synchronization mechanisms
have been reported in the literature. Barrier synchro-
nization mechanisms are specifically tailored for dedi-
cated environments, such as shared-memory multiproces-
sors [8], [9], multi-clusters [10], [11] and super-computers
[12]. Hardware-based implementations provide low latency,
whereas software-based or hybrid implementations feature
adaptability and scalability.

Apart from the implementations for CPU systems, the
CUDA programming model provides a lightweight bar-
rier command, __syncthreads(), to coordinate warps
(i.e., groups of threads) in the same thread block for
GPGPU (General-Purpose computing on Graphics Process-
ing Units). The __syncthreads() command incurs low
overhead, as indicated in the CUDA programming guide [6]
and as reported by Wong et al. [13], to achieve its purpose.

Imposing barrier synchronization on thread execution
could lower the utilization of multiprocessors. Research on
performance optimization has investigated how to coordi-
nate the thread execution and how to reduce the use of
barrier synchronization. GPU-based algorithms [4], [5], for
example, replaced block-level synchronization with warp-
level synchronization. (A description of warp-level synchro-
nization can be found in Section 1.1 of the supplement.)
Another method for eliminating barrier synchronization

is to place the variables that originally resided in shared
memory to register file [14].

In addition to block-level synchronization, Volkov and
Demmel [15] first implemented a global barrier synchro-
nization that enables synchronization across GPU thread
blocks. The proposed implementation has less cost than the
CPU-based global synchronization (i.e., global synchroniza-
tion is achieved when the GPU kernel execution finishes).
Xiao et al. [16] also presented two global barrier syn-
chronization mechanisms based on the __syncthreads()
command. Feng et al. [17] investigated the performance and
correctness of GPU-based global synchronization.

Burtscher et al. [5] and Alcantara [18] utilized
__syncthreads() commands to avoid performing
too much unwanted memory access. The additional barrier
synchronization used in this study can increase memory
performance by delaying the necessary memory operations.

2.2 Memory Contention

There has been a significant amount of research regard-
ing resource contention issues. The purpose of reducing
contention is not only to improve performance but also to
guarantee quality of service (QoS) in the system. For cache
contention, Qureshi et al. [19] proposed cache partitioning
to minimize the cache misses caused by the co-running
applications, whereas Fedorova et al. [20] and Zhuravlev et
al. [21] presented cache-aware schedulers that try to fairly
execute threads by isolating the cache-sensitive applications
to different processors or by varying the scheduling prior-
ities of threads.

In addition to on-chip memory, the DRAM system is a
congestion area where multiple threads experience varied
execution times. Multi-thread applications can cause inter-
and intra-application contention for the DRAM system [22].
Contention for shared resources also occurs in NUMA
systems [23], which feature non-uniform memory access
latencies and multiple memory controllers. Even for a single
thread, read and write requests cause interference in the
DRAM memory system if both contend for the memory
data bus. A specially designed DRAM-aware controller [24]
tries to service the write requests that are likely to hit
in the DRAM row buffer. This approach can avoid the
performance penalty caused by switching between read and
write requests.

To treat contention for the DRAM system, Mutlu et al.
[25] presented a fair memory scheduler to equalize the
quality of thread interference (which avoids prioritizing
one particular thread), whereas Nesbit et al. [26] applied a
fair queuing technique to the memory scheduling system.
Among the many mechanisms proposed to reduce memory
resource contention, Ebrahimi et al. [27] proposed a source
throttling approach to directly limit the number of requests
that applications can make to the CPU memory system.

GPU programmers experience a common contention sit-
uation that is specific to GPUs, the bank conflict of shared
memory. The padding technique [28] can address this con-
tention situation. Additionally, Bakhoda et al. [29] observed

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



3

the contention for the GPU interconnect network and mem-
ory controllers using a GPGPU simulator [30].

Reducing the thread block size for a kernel is one method
to relieve memory contention for performance. Barrier syn-
chronization, however, provides another method to enhance
performance when varied thread block sizes are involved.
Adding artificial barrier synchronization not only decreases
the number of memory accesses at a given time but also
keeps (synchronizes) the memory accesses of threads in
phase for data access locality.

3 PERFORMANCE IMPROVEMENT FROM ARTI-
FICIAL BARRIER SYNCHRONIZATION

3.1 An Example

A memory-testing kernel, MemTest, demonstrates the per-
formance difference before and after applying artificial
barrier synchronization. MemTest examines the defects of
memory cells in a parallel fashion, similar to the Zero-
One algorithm [31]. Specifically, we test a 480-MB global
memory array using 30 512-thread blocks. Each thread
checks 8192 (4-byte) integers and reports its result in its
designated memory space. The output space required for
all of the threads is 60 kB (i.e., 30× 512× 4).

Algorithm 1: MemTest kernel
input : An array mem to be checked
output: An array result to report the number of

nonzero memory cells
1 int tid = blockIdx.x ∗ blockDim.x + threadIdx.x;
2 int *ptr = mem + tid;
3 int dist = gridDim.x ∗ blockDim.x;
4 int cnt = 0;
5 for (i=0; i<8; i++) do
6 // perform 1024 integer checks
7 Repeat1024( if(*ptr != 0) cnt++ ; ptr+=dist; );
8 syncthreads(); // barrier synchronization
9 end

10 result[tid] = cnt; // report the number of nonzeros

Algorithm 1 presents the code of MemTest. Initially, each
thread computes three values, the unique thread index
in this kernel grid (tid), the memory address of its first
integer (ptr) and the distance to the next integer (dist).
Several built-in variables for the testing include the block
index within the grid (blockIdx.x), the thread index
within the block (threadIdx.x), the number of blocks
in a grid (gridDim.x) and the number of threads in a
block (blockDim.x). After setting the counter cnt to zero,
each thread performs 1024 checks per iteration. Each check
involves three operations: (1) the thread loads one 4-byte
integer, (2) the thread increases its counter by one if the
value of the memory cell is nonzero, and (3) the thread
computes the address of the next integer. Fig. 2 shows the
memory access pattern of the memory-testing kernel.

In Line 8 of Algorithm 1, a __syncthreads() command
is added. Because each thread handles its individual part

the first check 
for each thread

the second check
for each thread

Fig. 2: Memory access pattern of the MemTest kernel using
30 blocks and 512 threads per block.

TABLE 1: Execution time for the MemTest kernel.

barrier synchronization GTX 295 GTX 480 GTX 690
no 5.624 3.248 3.527
yes 5.208 3.208 3.409

Unit: millisecond

and reports the result in its designated memory space, the
__syncthreads() command is unnecessary for correct-
ness. This artificial barrier, however, improves the perfor-
mance. Table 1 shows the execution times for the kernel
with and without the __syncthreads() command on
three GPU devices, GTX 295, GTX 480 and GTX 690. The
additional barrier command reduces the kernel execution
time by 7%, 1% and 3% on the three GPU devices, respec-
tively, with standard deviation less than 0.3%.

Additional memory-testing kernels that feature different
access patterns are given in Section 2 of the supplement.

3.2 Analysis of the Assembly Code

We perform dis-assembly of the binary code of the MemTest
kernel using the cuobjdump tool from the CUDA Toolkit
[32] so as to understand the __syncthreads() command.
Fig. 3 shows two differences between the sync version
(i.e., the program with the additional barrier synchroniza-
tion) and the non-sync version. First, the sync version
contains a __syncthreads() command, which is one
BAR.RED.POPC instruction along with one IMAD instruc-
tion for initialization in assembly language, as expected.
Second, the non-sync version reorders the instructions of
the original C program, i.e., the arithmetic instructions are
moved forward for instruction parallelism.

In addition to those two differences in the assembly
code, the __syncthreads() command serves two func-
tionalities according to the CUDA technical guide [6]. First,
the __syncthreads() command stalls the early warps
that reach the barrier. Second, it guarantees memory access
order (similarly to the __threadfence() command [6]).

To determine which one functionality causes the
performance changes, we further examine the perfor-
mance and assembly code of the programs using the
__threadfence() command and the BAR.ARV instruc-
tion, in which a thread reports its arrival and continues
without waiting for other threads. In brief, we found that
the stalling (delay) effect of the barrier command con-
tributes to the performance of the memory-testing kernel.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



4

Description
//  initialization is omitted 
// i++
// omit the assembly code of Line 7 in MemTest kernel;
// i < 8 and update predicate register
// cnt++ if predicate register is true
// jump to next iteration if predicate  register is true 
// …

…
IADD R4, R4, 0x1;
…
ISETP.NE.U32.AND P1, pt, R4, 0x8, pt;  
@P0 IADD R12, R12, 0x1;  
@P1 BRA 0x80;  
…

Assembly Code (non-sync version)

Description
//  initialization is omitted 
// RZ = R1xRZ + RZ, initialization for the BAR.RED.POPC instruction
// omit the assembly code of Line 7 in MemTest kernel;
// cnt++  if predicate register is true
// barrier instruction
// i++
// i < 8 and update predicate register
// jump to next iteration  if predicate register is true
// …

…
IMAD.U32.U32 RZ ,R1, RZ, RZ;
…  
@P0 IADD R12, R12, 0x1;
BAR.RED.POPC RZ, RZ;  
IADD R4, R4, 0x1;
ISETP.NE.U32.AND P0, pt, R4, 0x8, pt;
@P0 BRA 0x80;
…

Assembly Code (sync version)

Added Moved

Fig. 3: Comparison of the assembly code for the MemTest kernel without and with barrier synchronization. Two
instructions are added for the syncthreads() command, and two instructions are moved for instruction parallelism.

3.3 Memory Contention

Because the GPU warps independently execute in the above
example, simultaneous memory requests from multiple
warps could cause memory contention for the cache and
DRAM system. For the GPUs with caches, two warps that
simultaneously request different data with the same cache
line increase the cache misses. For the GPUs without caches,
many warps could issue distant memory requests (in terms
of memory addressing). A wide range of memory accesses,
which are typically distributed across several DRAM mem-
ory rows, interfere (pollute) the locality of the DRAM row
buffer, as discussed by Oh et al. [33] and by Alcantara
et al. [34]. Although many memory scheduling strategies,
e.g., FR-FCFS [35], have been introduced to increase the
row buffer hits, this memory access pattern, which natu-
rally exhibits a low access locality, constrains the overall
improvement.

Using barrier synchronization, however, enables all of the
warps in a block to synchronously stall and issue requests
for data access locality, therefore reducing the aforemen-
tioned contention. Fig. 4 shows an example of reducing the
memory contention using artificial barrier synchronization.
Suppose that a GPU has a direct-mapped cache that consists
of 6 128-byte cache lines. The memory segment requested
by a warp fits into a cache line. Specifically, a memory
request x is mapped to the cache line y, where y = x mod
6.

In Fig. 4(a), for the cache, memory requests 14 and 20
cause the contention for cache line 2 (i.e., 2 = 14 mod 6;
2 = 20 mod 6). Considering the DRAM, memory requests
14 and 15 are close to each other but distant from memory
requests 20 and 21 in terms of memory addressing, which
interferes with the access locality of the row buffer. In
contrast, the artificial barrier synchronization reduces the
contention for cache lines 2, 3 and 5 and mitigates the
interference in the DRAM system, as shown in Fig. 4 (b).

[x]

[x]

Fig. 4: Illustration of reducing memory contention using
artificial barrier synchronization. The MemTest kernel uses
two thread blocks, each of which consists of four warps. The
dashed-line rectangle in Fig. 4(a) indicates a contention pe-
riod; the solid-line rectangle in Fig. 4(b) indicates the corre-
sponding contention period after applying artificial barrier
synchronization to the kernel. The synchronization case has
a shorter execution time than the non-synchronization case
because of a reduction in the memory access time, as is the
case for memory requests 14 and 20.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



5

TABLE 2: Notation for the execution time analysis.

symbols Meaning
t Warp execution time without synchronization
ts Warp execution time with synchronization
m Memory access time without synchronization
ms Memory access time with synchronization
c Computation time
d Delay time
s Barrier execution time
n Number of iterations
H Memory hit ratio
τ Time between two consecutive memory access

The data access locality is therefore preserved because of
artificial barrier synchronization.

4 A PROGRAM PATTERN FOR ARTIFICIAL
BARRIER INSERTION
The example we presented does not imply that adding ar-
bitrary barriers can accelerate the application performance.
In most cases, adding barrier synchronization likely hurts
the overall performance. The program pattern presented in
Fig. 1 provides a simpler way to guide the use of artificial
barrier insertion.

This section presents the analysis of the program pattern
and the necessary conditions for inserting barriers into pro-
grams for better performance. To clarify the descriptions,
Table 2 lists the notation used in this section.

4.1 Analysis of the Program Pattern

The execution time of the program pattern without barrier
synchronization can be modeled as

t = (m+ c)× n. (1)

In contrast, the execution time of the program pattern with
barrier synchronization is

ts = (ms + c+ d+ s)× n. (2)

The additional barrier synchronization introduces two com-
putational overheads: the delay time (d) to wait for all the
warps to reach the synchronization point and the compu-
tational cost of the additional barrier instructions (s).

For memory-intensive applications, c and s are relatively
small compared with m and ms. In addition, the delay
caused by the barrier synchronization is connected to the
execution of instructions, specifically the instructions for
memory access. Although GPU devices can hide the mem-
ory access time in the computation time, the memory access
time dominates the total execution time. Because warps
perform memory operations with few and simple arith-
metic operations in the program pattern, m or ms cannot
be completely hidden in the computation. The performance
difference between the non-sync and sync versions is there-
fore attributed to the memory access time, which is affected
by artificial barrier synchronization.

The memory access time, m or ms, is modeled as a
function of the memory hit ratio H (e.g., the cache hit ratio),

{m,ms} = α+ (1−H)× β, (3)

Fig. 5: Relationship between τ and H for the memory-
testing kernel on the GTX 480. The results exhibit an effect
of locality preservation.

where α is the hit time and β is the miss penalty. The higher
the memory hit ratio, the shorter the memory access time.

The memory hit ratio can be further linked with the
locality of the consecutive data accesses. Let τ denote the
time between two consecutive memory accesses, in which
the second memory access hits the pre-fetched data brought
by the first access. Assume that the probability of emerging
k memory accesses that cause memory misses between
those two accesses follows a Poisson distribution with mean
λ,

P (N(τ) = k) =
e−λτ (λτ)k

k!
, (4)

where N(τ) is the number of emerging memory accesses
that pollute the locality of the two memory accesses during
the time τ . The memory hit ratio H should be proportional
to the probability P (N(τ) = 0) = e−λτ . As two warps with
data access locality execute diversely (i.e., as τ increases),
other memory accesses likely pollute the locality of their
memory accesses, thereby decreasing the memory hit ratio
and increasing the memory access time.

Fig. 5 shows the relationship between τ and H , as de-
termined via an experiment in which the MemTest kernel
with 30 520-thread blocks was executed on the GTX 480.
The experiment used 520-thread blocks as an example
because two consecutive warps could obtain data from the
same 128-byte cache line. We have tried other numbers of
threads, and their results are similar. We obtained different
values of τ by adjusting the number of iterations in Line
5 and number of repeats in Line 7 in Algorithm 1 to keep
8192 memory accesses per thread but different number of
barriers. As illustrated in Fig. 5, the experimental results
demonstrate an effect of locality preservation: the smaller
the τ , the higher the cache hit ratio.

4.2 Conditions to Apply Artificial Barrier Synchroniza-
tion

This subsection lists the necessary conditions of the pro-
gram pattern in Fig. 1 for the insertion of an artificial barrier
based on the analysis presented in Section 4.1. As shown in
Fig. 1, the program pattern contains three parts in a loop:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



6

1) Threads perform a sequence of device memory ac-
cesses. The accessed data originally expose a certain
level of locality among threads. As threads issue mem-
ory requests independently, their memory requests
pollute the data access locality, i.e., H is a decreasing
function of τ .

2) Threads perform simple arithmetic or logic computa-
tions on the data. The memory access time dominates
the total execution time.

3) An additional barrier regulates the warp execution
and therefore reduces the interference among threads.
Overall, the performance enhancement relies on the
condition that the expense of barrier synchronization
(i.e., d + s) is smaller than the benefit derived from
reducing the memory access time (i.e., m−ms).

5 EXAMPLE APPLICATIONS
This study uses two CUDA SDK programs and one DNA
sequence alignment tool, called MUMmerGPU 2.0 [7], to
demonstrate that adding artificial barrier synchronization
indeed improves the performance of real-world applica-
tions. Our experimental platform contains three GPU de-
vices, the GTX 295, the GTX 480 and the GTX 690. Section
1 of the supplement lists the technical specifications of the
two devices. The metric of performance improvement (ρ) is
defined as follows:

ρ =
(t− ts)

t
(5)

where ts is the execution time of an application with
artificial barrier synchronization and t is the execution time
of an application without artificial barrier synchronization.
The execution time recorded for each test was the average
obtained over 10 runs.

5.1 CUDA SDK Applications: Vector Addition and
Scalar Product

Vector addition and scalar (inner) product computations are
basic numerical functions that are widely used in many
applications. The vector addition kernel, called VecAdd,
loads data, performs additions and then stores the results
in the device memory. Similar to the vector addition kernel,
the scalar product kernel, called ScalarProd, loads data,
performs multiply-and-add instructions and then stores the
results in the shared memory. Algorithms 2 and 3 list their
pseudo codes.

Because the vector addition kernel in the CUDA SDK
supports a small vector size (due to the size limit of a kernel
grid), we modified the kernel to allow each thread to per-
form addition for more than one element. After performing
one addition, all of the threads in a block performs barrier
synchronization.

For the ScalarProd kernel, the kernel performs the com-
putation for N pairs of vectors concurrently. Each thread
block computes the scalar product for one or several pairs of
vectors. The memory layout of N pairs of vectors is in two
large arrays, each of which comprises consecutive elements
of N vectors.

Algorithm 2: VecAdd kernel
input : Two vectors A and B

output: One vector C = A+B

1 Let i be the thread index within a kernel grid
2 Let nIter be the number of iterations (elements)

calculated by each thread
3 Let dist be the distance of the next element to be added
4 repeat
5 C[i] = A[i] + B[i];
6 //*** add syncthreads() here
7 i = i + dist;
8 nIter--;
9 until nIter=0;

Algorithm 3: ScalarProd kernel
input : N pairs of vectors
output: N scalar product results

1 Let shmem be a shared memory space of size 1024
elements;

2 foreach pair of vectors for the current thread block do
3 foreach set s of elements for the current thread do
4 Perform the scalar product for s

5 //*** add syncthreads() here
6 Write the result of s to shmem

7 end
8 Reduce the partial results in shmem by a tree

reduction
9 Output the final result for this pair of vectors by

the first thread within a thread block
10 end

5.2 Performance Evaluation of Two CUDA SDK Kernels

5.2.1 Vector Addition
We evaluated the effect of artificial barrier synchronization
on vector addition by varying the vector length from 216 to
226, where each thread performs N/216 additions for vector
length N . Fig. 6 shows the performance improvements
of the vector addition computation yielded by artificial
barrier synchronization. As the vector length increases, the
performance improvement ρ increases to 22%.

According to the profiling results for the vector addition
kernel, the L1 and L2 cache hit ratios are zero because each
warp fetches different 128-byte memory segments. Given
a vector length, the sync and non-sync versions have the
same numbers of DRAM reads and writes, and the same
SM (streaming multiprocessor) occupancy. However, the
sync version, on average, has a shorter memory access time
relative to the non-sync version.

For example, Table 3 lists the memory access time, the
time for addition (Line 5 in the VecAdd kernel) and the
barrier synchronization (Line 6 in the VecAdd kernel) for
a vector length of 226. (The measured results in Tables 3
and 4 were obtained using a clock() command [6], which
provides the number of clock cycles required by the device
to completely execute a thread.) In this case, the addition

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



7

Fig. 6: Performance results for the VecAdd kernel using the
barrier synchronization.

TABLE 3: Profile of the VecAdd kernel for vector length 226.
Operations GTX 295 GTX 480 GTX 690

no-sync sync no-sync sync no-sync sync
Memory & Addition (Line 5) 5433 3452 2440 1716 1513 828
Barrier (Line 6) n/a 555 n/a 527 n/a 503

Reduction ratio (Lines 5–6) 26.3% 8.9% 17.1%
Improvement ρ 22.0% 8.8% 13.8%

Unit: GPU clock cycles

and barrier instructions require only 30–50 and 80–150
clock cycles, respectively, whereas the memory access and
delay time dominate the total execution time of the VecAdd
kernel. Additionally, Table 3 shows the clock reduction
ratios, which correspond to the performance improvements
on the GTX 295, the GTX 480 and the GTX 690.

5.2.2 Scalar Product
We evaluated the effectiveness of adding artificial barriers
to the scalar product computation using two cases: regular
and irregular. In the regular case, all of the vectors have
the same length, whereas in the irregular case, the lengths
of the vectors can vary. One irregular application is a
sparse-matrix vector multiplication [36], in which nonzero
elements of a sparse matrix are transformed into irregular
vectors. The experimental parameters include the number
of vectors and the length of the vectors. In the irregular
case, the vectors have a length variance of 20%. Because
of the size limitation of the device memory, the maximum
length of a vector evaluated on the GTX 480 and the GTX
690 is 215; the maximum length of a vector on the GTX 295
is 214. Fig. 7 and 8 show the performance results for the
regular and irregular cases.

For the regular case, the additional barrier synchroniza-
tion yields a small performance increase, but it harms the
performance for the cases with shorter vectors, such as
for the GTX 295. This study profiled the execution of the
ScalarProd kernel for analyzing the above results as follows.

Two primary computational parts in the ScalarProd ker-
nel are the accumulation (i.e., Lines 3–7 in the ScalarProd
kernel) and the tree reduction (i.e., Line 8 in the ScalarProd
kernel); these components consume most of the total ex-
ecution time. Table 4 lists the average numbers of clock
cycles per thread for the two parts. Barrier synchronization
does reduce the time to perform the memory access and the

Fig. 7: Performance results for the ScalarProd kernel for
regular vectors using barrier synchronization.

Fig. 8: Performance results for the ScalarProd kernel for
irregular vectors using barrier synchronization.

multiple-and-add calculation (denoted as Memory & MAD
in Table 4), but the overhead of the barrier diminishes the
performance advantage.

It should be noted that barrier synchronization also
benefits the tree reduction, which primarily performs tree
reduction on shared memory and barrier synchronization
to guarantee the data consistency. Table 4 indicates that the
performance of the tree reduction part is significantly im-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



8

TABLE 4: Profile of the ScalarProd kernel for 212 vectors of length 215 (GTX 480) and length 214 (GTX 295).
Operations Regular Case Irregular Case

GTX 295 GTX 480 GTX 690 GTX 295 GTX 480 GTX 690

non-sync sync non-sync sync non-sync sync non-sync sync non-sync sync non-sync sync

Accumulation (Lines 3–7) 1302092 1295664 2046871 2151725 768774 843731 2526039 2643813 2889167 2730773 1164633 1103736

Memory & MAD (Line 4) 1121866 1063475 1961989 1901816 730065 678805 2331303 2156357 2384287 2237484 1026306 920165

Tree reduction (Line 8) 136478 118574 275709 98779 129124 50668 350016 102731 408093 111333 211422 80701

Reduction ratio (Lines 3–8) 1.7% 3.2% 0.6% 4.7% 16.0% 14.3%
Improvement ρ 2.2% 1.2% 0.1% 4.1% 15.8% 10.2%

Unit: GPU clock cycles

proved. This result occurs because the delay overhead, i.e.,
the time to wait for performing tree reduction, decreases.
When the accumulation part uses barrier synchronization,
the barrier synchronizes the warps in the accumulation part.
All of the warps in the same thread block reach the barrier
synchronization of the tree reduction part with slight time
differences, resulting in a smaller delay in performing the
tree reduction.

For the irregular case, barrier synchronization can create
up to 15.8% and 10.2% performance improvements on the
GTX 480 and GTX 690, respectively. Two key factors con-
tribute to these improvements. First, because of the variance
in the vector length, the barrier stalls threads, which allows
them more opportunities to access data that reside in the
cache before the data are evicted by other threads. For
instance, in the case of 4096 vectors of approximate size
32768, the L1 and L2 cache ratios are enhanced from 13.9%
and 14.6% to 24.0% and 19.2%, respectively, according to
the hardware profiling results for the GTX 480. Second,
as mentioned above, barrier synchronization reduces the
delay overhead created in the tree reduction part. For the
GTX 295, the performance enhancement occurs primarily
because the barrier in the accumulation part reduces the
delay overhead in the tree reduction part, as shown in
Table 4.

5.3 MUMmerGPU 2.0: A Sequence Alignment Tool
MUMmerGPU, a GPU sequence alignment tool, aligns a
set of DNA query sequences to a reference sequence. The
alignment tool is used in many practical applications, such
as disease genotyping and personal genomics. Based on
previous work [37], MUMmerGPU can handle long refer-
ence sequences and numerous query sequences.

The alignment kernel in MUMmerGPU, called Align,
reports all of the suffixes of query sequences that match
the reference sequence for a minimum match length. The
reference sequence is preprocessed as a suffix tree and ac-
cessed via texture units. Each GPU thread processes a query
sequence by traversing the suffix tree until a mismatch is
encountered. To avoid redundant searches from the root
of the suffix tree, the Align kernel jumps to the node via
the suffix link for processing the next suffix string. Note
that the Align kernel examines all of the suffix strings of a
query from the longest one to the shortest one. Algorithm 4
presents the pseudo code of the Align kernel.

According to the program pattern (in Fig 1), the align-
ment kernel has two candidate positions to place barriers.
The first placement (at Line 8) is after the comparison of the

Algorithm 4: Align kernel
input : A block of queries Q, the root r of the suffix

tree, the minimal match length l

output: Alignment results
1 Let cur be a tree node
2 Get one query q from Q

3 foreach suffix string s of q and the length of s > l do
4 if cur is invalid then Set cur as r

5 while exist a child node c of cur that matches s do
6 Set parent as cur and cur as c

7 repeat match s with c.edge until a mismatch
8 //*** 1. add syncthreads() here
9 end

10 Set cur as the suffix node of parent

11 //*** 2. add syncthreads() here
12 Output the alignment result of s

13 end

TABLE 5: List of the benchmarks for the Align kernel.

Benchmarks
/Genome

Reference
Size
(Mbp)

Minimum
Match
Length
(bp)

Average
Query
Length
(bp)

Number
of
Queries

BANTH 5.1 50 100 107

CBRIGG 13 100 700 5× 105

HSILL 16 14 29 5× 105

LMONO 2.9 20 120 106

SSUIS 2 14 36 106

string on an edge and a query, which is performed inside
a while-loop execution. The second placement (at Line 11)
is before the end of matching one suffix string of a query.

5.4 Performance Evaluation of MUMmerGPU

We evaluated the effectiveness of artificial barrier synchro-
nization on the Align kernel using various benchmarks of
MUMmerGPU. Table 5 lists the real-world genome refer-
ences and their default settings [7]. A query generation
tool [38] extracts reads (queries) of various lengths from
the genome reference. The default number of threads per
block is used, and the number of blocks depends on the
number of queries. All of the alignment results are verified
for correctness. Fig. 9 shows the performance improvements
obtained by adding barriers in the first place, in the second
place, and in both places.

Overall, by inserting the artificial barriers into the Align
kernel, the performance improvement ranges from 0% to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



9

Fig. 9: Performance results for the Align kernel using barrier synchronization.

11%, depending on the benchmarks. Programs with an
artificial barrier at the second place typically outperform
those with synchronization at the first place. The reason
for this difference is that the number of barriers performed
is greater when the barrier synchronization is at the first
place than when it is at the second place. The first barrier
synchronization incurs a greater computational cost. When
using both barriers, the program obtains a result that is
intermediate between those of the first and second cases.

For the GTX 295, the performance is connected to the
efficiency of the DRAM system. In the same benchmark
(BANTH), the texture cache hit ratio, approximately 45%,
remains the same before and after the barrier is used. The
slight performance improvement is attributed to accelera-
tion in the memory access to the query sequences (which
are placed in the global memory space). The first placement
increases the global memory read throughput from 12.83
GB to 13.01 GB per second; the second placement increases
it from 12.85 GB to 13.08 GB per second.

For the GTX 480 and GTX 690, the reduction in execution
time corresponds to a reduction in L2 read misses. The
L2 read misses result from the global and texture memory
requests. We take the benchmark BANTH for the GTX 480
as an example. The cache profiling results demonstrate that
the first and second placements enable 10% and 17% reduc-
tions, respectively, in L2 read misses. The results indicate
that barrier synchronization can alleviate the contention for
cache and therefore increase the performance.

6 CONCLUSIONS AND FUTURE WORK

This study used artificial barrier synchronization, which is
functionally unnecessary, to enhance the performance of
GPU programs. In our model, artificial barrier synchroniza-
tion relieves contention for the caches and DRAM system
and preserves data access locality. The experimental results
for three real-world applications proved the effectiveness of
adding artificial barrier synchronization to improve mem-
ory performance. In addition, this study compared the
effects of this technique on different generations of GPU
devices and found that the three GPU architectures benefit

from the insertion of artificial barrier synchronization under
certain conditions.

Although memory contention can be reduced by various
methods, barrier synchronization opens a door to mitigat-
ing the contention in shared-memory systems. In addition,
because GPU barrier synchronization is implemented in
hardware, it is a low-overhead solution for programmers
to improve the performance of memory-intensive applica-
tions.

Our future work includes a number of research direc-
tions. First, the exploration of additional program patterns
related to barrier synchronization insertion requires system-
atic approaches. Second, the design and implementation of
automatic and intelligent methods to insert barriers into
programs is essential to improve the usefulness of this tech-
nique. Third, as the number of computing cores that can be
packed onto one CPU is increasing, the resource contention
caused by massive threads becomes more serious. Similar
experiments on CPU memory architectures are worth fu-
ture research. Finally, other possibilities for relieving the
resource contention on GPUs, such as reconfigurable SIMD
width, which is a more lightweight approach to synchronize
memory accesses for performance, will be included in our
future studies.

ACKNOWLEDGMENT

The authors are grateful to NVIDIA’s hardware support
and would like to thank the National Science Council of
Taiwan for financially/partially supporting this research
under Contract NSC 101-2115-M-007- 004-MY2. Christopher
H. and Roseanna R. are appreciated for their editorial
assistance.

REFERENCES

[1] M. C. Rinard, “Using early phase termination to eliminate load
imbalances at barrier synchronization points,” in Proceedings of the
22nd annual ACM SIGPLAN conference on Object-oriented program-
ming systems and applications, 2007, pp. 369–386.

[2] R. Gupta, “The fuzzy barrier: a mechanism for high speed syn-
chronization of processors,” in Proceedings of the third international
conference on Architectural support for programming languages and
operating systems, 1989, pp. 54–63.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



10

[3] D. Cederman and P. Tsigas, “On dynamic load balancing
on graphics processors,” in Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, 2008,
pp. 57–64.

[4] S. Sengupta, M. Harris, and M. Garland, “Efficient parallel scan
algorithms for gpus,” NVIDIA, NVIDIA Technical Report NVR-
2008-003, 2008.

[5] M. Burtscher and K. Pingali, “An efficient cuda implementation of
the tree-based barnes hut n-body algorithm,” in GPU Computing
Gems Emerald Edition, W.-m. W. Hwu, Ed. Morgan Kaufmann,
2011, ch. 6, pp. 75–92.

[6] “Cuda programming guide, 4.2, nvidia.” 2011. [Online]. Available:
http://developer.nvidia.com/cuda-downloads

[7] C. Trapnell and M. C. Schatz, “Optimizing data intensive gpgpu
computations for dna sequence alignment,” Parallel Computing,
vol. 35, no. 8-9, pp. 429–440, 2009.

[8] J. Sartori and R. Kumar, Low-Overhead, High-Speed Multi-core
Barrier Synchronization, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2010, vol. 5952, pp. 18–34.

[9] J. L. Abellan, J. Fernandez, and M. E. Acacio, “Efficient and
scalable barrier synchronization for many-core cmps,” in the 7th
ACM international conference on Computing frontiers, 2010, pp. 73–
74.

[10] S. Shisheng and H. Kai, “Distributed hardwired barrier synchro-
nization for scalable multiprocessor clusters,” IEEE Transactions
on Parallel and Distributed Systems, vol. 6, no. 6, pp. 591–605, 1995.

[11] T. Vinod, “Fast collective operations using shared and remote
memory access protocols on clusters,” in the International Parallel
and Distributed Processing Symposium, N. Jarek and P. Dhabaleswar,
Eds., vol. 0, 2003, pp. 84a–84a.

[12] G. Almasi, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway,
J. E. Moreira, B. Steinmacher-Burow, and Y. Zheng, “Optimization
of mpi collective communication on bluegene/l systems,” in the
19th annual international conference on Supercomputing, 2005, pp.
253–262.

[13] H. Wong, M. M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through mi-
crobenchmarking,” in 2010 IEEE International Symposium on Per-
formance Analysis of Systems Software (ISPASS), 2010, pp. 235–246.

[14] A. Rahman, D. Houzet, D. Pellerin, and L. Agud, “Gpu im-
plementation of motion estimation for visual saliency,” in the
2010 Conference on Design and Architectures for Signal and Image
Processing, 2010, pp. 222–227.

[15] V. Volkov and J. W. Demmel, “Benchmarking gpus to tune
dense linear algebra,” in Proceedings of the 2008 IEEE/ACM Super
Computing, 2008, pp. 1–11.

[16] S. Xiao and W. C. Feng, “Inter-block gpu communication via fast
barrier synchronization,” in the 2010 IEEE International Symposium
on Parallel and Distributed Processing (IPDPS), 2010, pp. 1–12.

[17] W. C. Feng and S. Xiao, “To gpu synchronize or not gpu syn-
chronize?” in 2010 IEEE International Symposium on Circuits and
Systems (ISCAS), 2010, pp. 3801–3804.

[18] D. A. Alcantara, “Efficient hash tables on the gpu,” Ph.D. disser-
tation, University of California, Davis, 2011.

[19] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to par-
tition shared caches,” in the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, 2006, pp. 423–432.

[20] A. Fedorova, M. Seltzer, and M. D. Smith, “Improving perfor-
mance isolation on chip multiprocessors via an operating system
scheduler,” in the 16th International Conference on Parallel Architec-
ture and Compilation Techniques, 2007, pp. 25–38.

[21] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing
shared resource contention in multicore processors via schedul-
ing,” in the fifteenth edition of ASPLOS on Architectural support for
programming languages and operating systems, vol. 45, 1736036, 2010,
pp. 129–142.

[22] T. Dey, W. Wei, J. W. Davidson, and M. L. Soffa, “Characteriz-
ing multi-threaded applications based on shared-resource con-
tention,” in the 2011 IEEE International Symposium on Performance
Analysis of Systems and Software, 2011, pp. 76–86.

[23] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali, “A case
for numa-aware contention management on multicore systems,”
in the 19th international conference on Parallel architectures and
compilation techniques, 2010, pp. 557–558.

[24] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt,
“Dram-aware last-level cache writeback: Reducing write-caused

interference in memory systems,” HPS Research Group, The
University of Texas at Austin, HPS Technical Report, TR-HPS-
2010-002, April 2010.

[25] O. Mutlu and T. Moscibroda, “Stall-time fair memory ac-
cess scheduling for chip multiprocessors,” in the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, 2007, pp.
146–160.

[26] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queu-
ing memory systems,” in the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, 2006, pp. 208–222.

[27] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via
source throttling: a configurable and high-performance fairness
substrate for multi-core memory systems,” in Proceedings of the
fifteenth edition of ASPLOS on Architectural support for programming
languages and operating systems, 2010, pp. 335–346.

[28] H. Mark, S. Shubhabrata, and O. John D., “Parallel prefix sum
(scan) with cuda,” in GPU Gems 3. Boston MA, USA: Addison-
Wesley, 2007, ch. 39, pp. 851–876.

[29] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing cuda workloads using a detailed gpu simu-
lator,” in the IEEE International Symposium on Performance Analysis
of Systems and Software, 2009, pp. 163–174.

[30] Gpgpu-sim. [Online]. Available:
http://www.ece.ubc.ca/ aamodt/gpgpu-sim/

[31] M. Breuer and A. Friedman, Diagnosis and Reliable Design of Digital
Systems. Computer Science Press, 1976.

[32] NVIDIA, “Cuda toolkit 4.2,” 2012. [Online]. Available:
https://developer.nvidia.com/cuda-toolkit-42-archive

[33] T.-Y. Oh, Y.-S. Sohn, S.-J. Bae, M.-S. Park, J.-H. Lim, Y.-K. Cho, D.-
H. Kim, D.-M. Kim, H.-R. Kim, H.-J. Kim, J.-H. Kim, J.-K. Kim,
Y.-S. Kim, B.-C. Kim, S.-H. Kwak, J.-H. Lee, J.-Y. Lee, C.-H. Shin,
Y. Yang, B.-S. Cho, S.-Y. Bang, H.-J. Yang, Y.-R. Choi, G.-S. Moon,
C.-G. Park, S.-W. Hwang, J.-D. Lim, K.-I. Park, J. S. Choi, and Y.-
H. Jun, “A 7 gb/s/pin 1 gbit gddr5 sdram with 2.5 ns bank to
bank active time and no bank group restriction,” IEEE Journal of
Solid-State Circuits, vol. 46, no. 1, pp. 107–118, 2011.

[34] D. A. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J. D.
Owens, and N. Amenta, “Building an efficient hash table on the
gpu,” in GPU Computing Gems Jade Edition. Morgan Kaufmann,
2011, ch. 4.

[35] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in the 27th International Symposium
on Computer Architecture, 2000, pp. 128–138.

[36] B. He, N. K. Govindaraju, Q. Luo, and B. Smith, “Efficient gather
and scatter operations on graphics processors,” in Proceedings of
the 2007 ACM/IEEE conference on Supercomputing, 2007, pp. 46:1–
46:12.

[37] M. Schatz, C. Trapnell, A. Delcher, and A. Varshney, “High-
throughput sequence alignment using graphics processing units,”
BMC Bioinformatics, vol. 8, no. 1, p. 474, 2007.

[38] Mummergpu. [Online]. Available:
http://sourceforge.net/apps/mediawiki/mummergpu
/index.php?title=MUMmerGPU

Shih-Hsiang Lo received his B.S. degree from
the Department of Computer Science, National
Chengchi University, Taipei, Taiwan, in 2004,
and M.S. degree from the Institute of Informa-
tion Systems and Applications, National Tsing
Hua University, Hsinchu, Taiwan, in 2006. He is
currently a PhD candidate in the Department of
Computer Science at National Tsing Hua Uni-
versity. His research interests are in the areas of
GPU computing and high-performance comput-
ing, and parallel programming.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



11

Che-Rung Lee received a B.S. and M.S. de-
grees in Computer Science from National Tsing
Hua University Taiwan in 1996 and 2000 respec-
tively, and the Ph.D. degree in Computer Sci-
ence from University of Maryland, College Park
in 2007. He joined the Department of Computer
Science at National Tsing Hua University as
an assistant professor since 2008. His research
interests include numerical algorithms, scientific
computing, high-performance computation, and
cloud computing. He is a member of IEEE and

SIAM.

Quey-Liang Kao received a B.S. and M.S. de-
gree in Computer Science from National Tsing
Hua University Taiwan in 2011 and 2012 respec-
tively, and now he is a Ph.D. student in National
Tsing Hua University Taiwan. His research in-
terests include numerical algorithms, scientific
computing, high-performance computation, and
cloud computing.

I-Hsin Chung received the PhD degree in com-
puter science from the University of Maryland,
College Park, in 2004, prior to joining IBM Re-
search. He is a research staff member at the
IBM Thomas J. Watson Research Center. His
research interests include performance tuning,
performance analysis, and performance tools.
His experience includes designing and develop-
ing performance tools on IBM platforms such as
IBM Power Systems on AIX and Linux, and the
Blue Gene systems. He is a senior member of

IEEE.

Yeh-Ching Chung received a B.S. degree in In-
formation Engineering from Chung Yuan Chris-
tian University in 1983, and the M.S. and Ph.D.
degrees in Computer and Information Science
from Syracuse University in 1988 and 1992,
respectively. He joined the Department of Infor-
mation Engineering at Feng Chia University as
an associate professor in 1992 and became a
full professor in 1999. From 1998 to 2001, he
was the chairman of the department. In 2002,
he joined the Department of Computer Science

at National Tsing Hua University as a full professor. His research
interests include parallel and distributed processing, cluster systems,
cloud computing, multi-core tool chain design, and multi-core embedded
systems. He is a senior member of IEEE computer society.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


