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Abstract—Linux servers are being used in almost all clouds, datacenters and supercomputers today. Linux Kernel functions are facing a

kind of malware attacks, known as rootkits with root-access capability. The rootkits appear as loadable kernel modules (LKM) in today’s

Linux servers. Thesemodules hide from other kernel objects, and can redirect the kernel control flow by tampering with themetadata

needed in kernel service functions. The kernel rootkits are invisible to users after loading, whichmay bypassmost security shields. Both

spatial and temporal appearance of rootkits are randomly distributed, whichmakes it difficult to detect or removal. To deal with rootkit

threats, we propose a novelVirtual Wall (VTW) approach to filtering out the rootkit-embedded LKMs by tracing the incurred kernel

activities. This VTW is essentially a lightweight hypervisor built with rootkit detection and event tracing capabilities. Normally, the Linux

runs in a guest mode.When a LKMexecution violates the security policy set by the VTW, theOS control will switch to a host mode. The

VTWat host mode enables the detection and tracing of rootkit events timely. In other words, potential rootkit attacks are detected, traced

and classified to makemeaningful filtering decisions. Thewhole detection and tracing process is based onmemory access control and

event injectionmechanisms. Experimental results show that the VTWdefense system is effective to detect and defend against kernel

rootkits timely. The CPU overhead for executing VTW is less than 2 percent. Compared with other defense schemes (such as DIKernel,

etc.), our vs is easier to implement with low performance degradation on Linux servers. Wewill demonstrate the advantages of VTW

through its simplicity in implementation and potential performance gains.Wewill also compare our systemwith seven other rootkit

defense systems.

Index Terms—Access controls, data integrity, OS security, kernel protection and system architectures

Ç

1 INTRODUCTION

KERNEL rootkits [1], [2], [3] are widely used in kernel
attacks in the Linux servers due to their high privilege

and hidden features. Currently, the known kernel rootkits
appear mostly in the form of Loadable Kernel Modules (LKM)
[4]. These modules can redefine kernel component func-
tions, hide themselves, and hide target objects [5].

The hidden feature allows kernel rootkits to bypass the
security tools with “host-based” architecture [6], [7]. Since
the lower privilege of these tools limits their detection
scope. Worse, their dependence on the target operating sys-
tem (TOS) environment leads to the fact that the authenticity
of detection results must be based on TOS’s absolute secu-
rity. Unfortunately, kernel rootkits can sneak tampering
with TOS environment to destroy its security.

To achieve their functionality, kernel rootkits need to
tamper with kernel objects. The operating objects of kernel

rootkits cover various data such as control data, non-control
data, static data, and dynamic data [8]. Theoretically, the
kernel security can be guaranteed by limiting all the tamper-
ing operations to certain kernel data.

However, different data are usually stored decentralized
in kernel space, and data with different attributes may be
stored in a same memory page. Therefore, the page-based
memory protection mechanism cannot protect the target
data without affecting other kernel data.

During attack, the kernel data that kernel rootkits need to
tamper with is often only a few bytes. Meanwhile, the mini-
mum granularity of memory privilege management is one
page, which typically occupies 4 kb. That is, in order to pro-
tect a few bytes, we need to limit all executable entities’
writing operations to the page where the target data locates.

The mismatch between the data size and the protection
granularity destroys the original attributes of other kernel
data, which affects the functionality and performance of the
associated execution entity. For example, the VFS function
pointer entry in kernel data structure typically is the target
data to be tampered with by kernel rootkits [9]. Although
this entry is not dynamically updated, the status description
entry co-located with it may be updated as the execution
entity running. If the write access to the status description is
restricted, the functionality of the associated execution
entity will be affected.

Kernel rootkits have all the LKM features. They can call
the custom functions or the loaded rootkits’ exported func-
tions to tamper with kernel data. They can launch an attack
during loading time or at any time within their lifecycle.
Therefore, the kernel rootkit may be any LKM being loaded
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or already loaded, and the kernel rootkit(s) that participate
in an attack may be one or multiple LKMs.

From the time perspective, the attack time of kernel root-
kits is random. From the space perspective, the participants
in an attack are scattered. The two characteristics makes the
attack time of the kernel rootkits difficult to predict, and the
attack participants difficult to trace, which affects the sys-
tem security seriously.

The randomness of the attack initiation time makes the
method based on single or periodic detection can only achieve
the effect of post hoc detection. When these methods are exe-
cuted, kernel rootkits’ attackmay have been completed, even all
the rootkits may have been removed. As a result, their detection
and defense effects will be seriously affected. The dependency
between kernel rootkitsmakes the attack formmore diversified.

Through the dependencies, kernel rootkits can concatenate
multiple LKMs for kernel attack. The existing security meth-
ods can only detect the direct initiator of the current attack,
but cannot identify other participants in the entire attack pro-
cess. Undetected attackers will always be lurking in the OS,
waiting for launching attacks againwhen conditions are ripe.

We propose a kernel rootkit filtering method VTW to
protect the kernel functions such as the system call table,
read only data of kernel, state descriptors of LKM, “proc”
file function pointers, and network function pointers, etc.
This method uses Intel VMX technology to divide the OS
into two modes: “host” and “guest”.

Across the two execution modes, we create detection,
prevention, and tracing strategies for compacting kernel
rootkits. The main contributions of this paper are summa-
rized into four technical aspects:

1) Build a lightweight hypervisor. It uses Intel VMX to
reconstruct the OS’s execution mode, making the
resource access of kernel more detectable.

2) Establish a resource access control mechanism. It can
realize the perception, limitation and manipulation to
the targetmemory access, and support us inmonitoring
and controlling the execution paths of “guest” mode.

3) Establish a control flow tracing mechanism. This
mechanism support tracing the control flow’s jump
and return among different LKMs.

4) Create a secure framework to detect, defense and
trace kernel rootkits. Through the above security
architecture and mechanisms, the kernel rootkits
attack can be detected and defensed. For the first
time, a tracing method is developed to trace all the
participating kernel rootkits in an attack.

2 RELATED PREVIOUS WORK

The kernel protection methods based on virtualization have
received extensive attention due to their good anti-interference
[10], [11]. Especially for kernel rootkits, these methods have
shown outstanding advantages. They can be divided into two
types: the intrusive methods and the non-intrusive methods.
The former needs to inject additional components into the tar-
get virtual machine (TVM) to get the required information. The
latter does not need to do so.

Intrusive Methods. X-TIER [12] proposed by Sebastian
injects a kernel module into a target virtual machine first. It

then reads the data structures of TVM through the module
to obtain its status information. After that X-TIER passes the
acquired information to hypervisor through hypercall.

SYRINGE [13] uses function-call injection technology to
enable calls to TVM’s functions outside of TVM. At the
same time, localized shepherding technology is used to
monitor the integrity of the control flow.

Virtuoso [14] proceeds to obtain TVM status information
from a control logic perspective. It runs the program multi-
ple times in TVM, and extracts relevant instructions and
instruction execution paths. Then, the path required to gen-
erate the introspection code is translated. Finally, Virtuoso
translated all information into code which can perform
semantic refactoring outside of TVM.

X-TIER, SYRINGE, and Virtuoso get the semantic views
by analyzing physical memory and treat them as real views.
They can find the hidden objects such as processes and files
by comparing the real semantic views with TVM’s internal
view. If there is a hidden object, they judge the TVM has
been compromised and a kernel rootkit may exist in TVM.
VMST [15] takes the same method for rootkit detection.

Non-Intrusive Methods. The first step of VMwatcher [16] is
to obtain the memory of TVM. It then uses the kernel data
structure of TVM as templates to interpret the operational
status represented by the memory.

Unlike VMwatcher, RTKDSM [17] is a real-time system.
It can be divided into two parts: the introspective agent and
the monitoring agent. The former is placed in a secure vir-
tual machine and the latter is placed in the hypervisor [18].
RTKDSM can realize real-time monitoring to the data struc-
ture by cross comparison.

The above methods can be used to detect the objects hid-
den by kernel rootkits. However, these approaches rely on
large virtualization platforms such as Xen and they need to
overcome the semantic gap through virtual machine intro-
spection [19], [20], [21], [22], [23]. As a result, they introduce
a significant performance overhead to the OS.

For example, RTKDSM slows down the execution speed
of some applications by 110 percent. SYRINGE delays up to
51 ms on system calls, which is a significant performance
overhead for system calls. Except for RTKDSM, none of the
above methods can monitor and detect the OS in real time.

3 VIRTUAL WALL ARCHITECTURE

VTW is a lightweight hypervisor with the defense function
of kernel rootkits. In this section we introduce its overall
architecture.

3.1 Assumptions and Notational Definition

We assume that the attacker can inject an LKM into the TOS. In
practice, the attacker can elevate its privilege through applica-
tion vulnerabilities and control TOSwith a backdoor [24]. Then
an LKM can be injected into the kernel. We also assume that
the TOS and non-malicious execution entities do not illegally
tamper with kernel data and kernel control flows. Moreover,
the definition of symbols used in this paper is shown in Table 1.

3.2 Design Objectives

The VTW is designed with three technical requirements as
specified below:
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1) Real-time Detection. Kernel rootkits may launch an
attack at the module loading stage, or at any time
during the module’s reside time in memory. If the
detection is performed after the LKM has been
loaded or when the LKM has been removed, the
detection result may become inaccurate, which will
affect the subsequent defense and traceability. There-
fore, VTW needs to detect rootkits’ malicious opera-
tions before module loading completion or during
their lifetime to protect kernel data integrity [25].

2) Effective Defense. The kernel objects manipulated by
rootkits include static and dynamic kernel data. For
static kernel data, VTW needs to ensure they have
never been tampered with. For dynamic kernel data,
VTW needs to ensure they can be restored after
being tampered with.

3) Comprehensive Traceability. The attack code may be in
the memory space to which the rootkit belongs, or it
may be in other module code space that the rootkit
depends on. VTW needs to locate all LKMs related
to the current malicious operation.

3.3 System Architecture of Virtual Wall

The process of VTW defense is shown in Fig. 1. The initiali-
zation is needed to set up the defense pattern. Then the
access control scheme is applied. Finally the detection and
tracing are performed jointly and cooperatively to make fast
decisions on rootkit filtering.

The architecture of VTW is shown as Fig. 2. VTW consists
of ModeHandler, MemHandler, ControlHandler, and SPE

(Security Policy Engine). The task of ModeHandle is to
ensure the normal mode switching between the “guest” and
“host” modes.

The task of MemHandle is to isolate security components
from the “guest” by establishing a set of separate address-
ing pagetables. In addition, it leverages EPT to implement
VTW’s self-protection and transparent deployment. Con-
trolHandle performs rootkit detection, prevention, and
analysis.

SPE provides security policies for each component, such
as permission settings for static kernel data, legality con-
straints for dynamic kernel data, and tracing paths for con-
trol flow. All violations to SPE will cause the OS to fall into
“host” from “guest”.

3.3.1 Resetting of OS’s Privilege Mode

ModeHandler uses Intel VMX Non-Root and VMX Root to
divide the native OS into “guest” and “host” modes. These
two modes divide ring0 into two privilege levels, which are
called the full ring0 and the restricted ring0. In “host”
mode, VTW is at full ring0 level, and it completely takes
over the kernel control flow. In “guest” mode, the kernel is
at the restricted ring0 level, and any operation that violates
SPE will cause the OS to fall into “host” mode.

In Fig. 3, the ProtectionWall is an abstraction of the func-
tional proper-ties for ModeHandler and MemHandler. Ker-
nelProtector is an abstraction of the ControlHandler’s
functional property.

If an instruction In guest mode with violation of the secu-
rity policy, it will cause OS to switch to the host mode. The
ProtectionWall will reject all operations in guest mode and
wake up the KernelProtector to handle the attack. using
the SPE.

3.3.2 Creating Private Page Tables

MemHandler creates a set of private pagetables for the host
to separate the address space between the two modes. The
conditions for the construction of the private pagetable are
given in Table 2.

The kernel data swapper_pg_dir stored in kernel data seg-
ment points to the page directory of the kernel address

TABLE 1
Notation and Definition Used in Article

Notation Definition

A:: ¼ (a,b,c) Meta data A with 3 components
A:a Metadata a in the tuple A.
Aþþd Metadata d is added to tuple A.
a.x Take the x in the metadata a.
m!n Replace data n with data m.
E<R Result R by executing expression E.
I‘C Conclusion C derived from I.
S 7! i Take the entry i in the data structure S.
" Lead to subsequent execution.
afflL Metadata associated with L.
a/V Metadata located in the area V.
V1 V2 Data in set V2 written into set V1.

Fig. 1. The process of virtual wall operations.

Fig. 2. VTW defense system architecture.
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space. The kernel address space of all execution entities is
constructed based on swapper_pg_dir. In Table 2, all private
pagetables form a tupler, and all pagetables pointed to by
swapper_pg_dir form a tuplee (�1��2 ).

When MemHandler is initialized, it creates the page
directories (h_pml4e), page upper directories (h_pdpte), page
intermediate directories (h_pde), and pagetables (h_pe)
according toe.

We first create an equal amount of memory V1 based on
the memory V22 of the page table set r (�3 ). Then we fill
h_pml4e’s entry with the physical address of each h_pdpte,
fill h_pdpte’s entry with the physical address of each h_pde,
and fill h_pde’s entry with the physical address of each h_pe
(�4��6 ).

Finally, MemHandler copies all the page entries in the
last pagetables of e to h_pe (�7 ). When a pagetable error
occurs in “host”, VTW updates the error pagetable accord-
ing toe.

To ensure VTW’s transparency, MemHandler establishes
an EPT redirection method. This method makes VTW’s
components are invisible to “guest”. It redirects the EPT
page entries corresponding to each component’s physical
memory of VTW to a blank page that is set to be readable,
writable, and executable (�8��10 ). When the entity in “guest”
intends to access VTW’s physical memory, the accessed
memory is a “pseudo page”.

Since the entire kernel shares a same address space, each
execution entity can map all kernel content, including VTW.
Therefore, without any processing, VTW can be detected
and analyzed. If we just delete the EPT entries addressing
VTW, the OS will repeatedly fall into “host” when an entity
probes the kernel address space.

On the one hand, frequent trapping will affect the execu-
tion efficiency; on the other hand, the abnormal time and
space of memory access will cause the attacker to infer
VTW’s existence. Redirecting all address spaces of VTW to
pseudo-physical pages can eliminate time and space anom-
alies caused by memory probing, which enhances the trans-
parency of VTW.

4 RESOURCE ACCESS CONTROL

VTW controls memory access through MemHandler. Mem-
Handler uses EPT to control memory access in “guest”
mode. Through the memory permission management pro-
vided by EPT, we can perceive, trace and control “guest”
access to all memory pages. MemHandler is easy to deploy
by setting the permission bits in last level of EPT.

To achieve more granular access control to kernel, Con-
trolHandler establishes an event injection mechanism that
includes setting breakpoints, injecting general protection
exceptions, and opening single-step debugging. We will
describe them in this section, which is shown as the Table 3
and “Resource Access Control Procedure”.

4.1 Conditioning for Resource Access Control

The Table 3 is the conditions for setting resource access con-
trol. �1��9 are used for setting breakpoints. The types of
breakpoints can be divided into instruction and data break-
points in terms of the target objects. ControlHandler uses
Dr0�Dr3 (breakpoint address registers in set DeReg) and
Dr6�Dr7 (breakpoint management registers, in the set
DeCon) to set different types of breakpoints (�1��2 ).

When setting an instruction breakpoint, the instruction
address (Iaddr) is first written into the breakpoint address
register (�3 ) through the function SetDeReg. Then the Dr7’s
Read/Write bit is set to 00, and the corresponding LEN bit
is set to 00 (byte length is 1), which is shown as�4��5 .

When setting a data breakpoint, the address of the target
data is first written to the breakpoint address register (�6 )
through the function SetDeCon. Then, the corresponding R/
W bit of Dr7 is set to 01 (data write interrupt), and the corre-
sponding LEN bit is set to 10 (the data size is 8 bytes), which
is shown as �7��8 . After completing the breakpoint setting,
ControlHandler also needs to clear the B0�B2 (bits 2:0) of
Dr6 (�9 ).

To control the execution of “guest”, ControlHandler sets
the single-step debugging for OS. ControlHandler first
reads the contents of EFLAGS of the guest state field in

Fig. 3. Conditional switching between guest and host modes in Linux kernel operations.

TABLE 2
Required Conditions for Page Table Insulation

Operation Condition setting

Private and public tables �1 r:: ¼ (h_pml4e, h_pdpte, h_pde, h_pe)
�2 e:: ¼ (g_pml4e, g_pdpte, g_pde, g_pe)
�3 r/V1 e/V2 V1 V2

Fill private tables �4 r:h_pml4e.pdpte_item!V1[r:h_pdpte]
�5 r:h_pdpte. pde_item!V1[r: h_pde]
�6 r:h_pde. pe_item!V1[r: h_pe]
�7 r:h_pe. page_item!V2[e: g_pe.item]

Redirection �8 r:h_pe. host_item!pseudo_page
permission setting �9 pseudo_page.rw ¼ true

�10 pseudo_page.x ¼ true
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VMCS, records the target information (�13 ). Then it sets
EFLAGS.TF (the trap flag) to 1 (�14 ), which puts the proces-
sor into single-step mode. Finally, ControlHandler writes
the modified content to EFLAGS again. The BS (bit 14) bit of
Dr6 is set to 0 at the end.

4.2 Resource Access Control Procedure

This procedure is used for controlling the instruction execu-
tion and data access. Steps 1�4 are used to get the break-
points; steps 5�6 are used to block the target instruction in
“guest”; steps 7�8 are used to get the OS status after execut-
ing a target instruction.

1. Read/Write(d�) < SysMod[guest!host]
2. < DeCon: dr6.(b0�b2) ¼ ¼m
3. GuestExecute(i�) < SysMod[guest!host]
4. < DeCon: dr6.(b0�b2) ¼ ¼ n
5. GuestExecute(any_instruction)< SysMod[guest!host]
6. < Current operation is blocked
7. GuestExecute (any_instruction)<SysMod[guest!host]
8. <get_status()
When an execution entity writes data into a breakpoint

location (steps 1�2) or executes a breakpoint instruction
(steps 3�4) in “guest” mode, it triggers the mode switching
(SysMod) into “host” mode. The B0�B2 in Dr6 are used to
distinguish the position of the breakpoint. By setting break-
points, VTW implement byte-level resource access.

When a general protection is set, OS will generate a #GP
exception when running in “guest” mode, so that the cur-
rent operation is blocked (steps 5�6). When the single-step
debugging opens, OS will trigger a debug exception and fall
into “host” after executing any instruction in “guest” (steps
7�8). By setting the single-step debugging, we can imple-
ment resource access control for OS with instruction granu-
larity, and obtain the change of OS’s state caused by each
instruction through get_status.

5 ROOTKIT DEFENSE STRATEGIES

According to the attack time, we classify the attack of kernel
rootkits into three categories. For the first type, rootkits
attack kernel during their loading. They call custom func-
tions via module_init() to realize their attack.

The malicious behavior of kernel rootkits may occur in
one or several of the above three types of attack. At the same
time, the rootkit(s) associated with the current attack may be
the LKMbeing loaded, either the loaded LKM, or both.

The VTW determines whether a LKM is a kernel rootkit.
For kernel rootkits, VTW defends against them by blocking
their corrupted actions and restoring the corrupted data.
The rootkit detection method is shown as ”Detection of
Rootkit Attacks”, whose condition setting is shown in
Table 4. The method can be used to predetect the static and
dynamic kernel objects.

Detection of Rootkit Attacks. It is used to detect kernel root-
kits and protect the kernel from being destroyed. Steps 1-5
are used for static kernel object protection; steps 6�8 are
used for hiding detection; steps 9�11 are used for dynamic
kernel object protection.

1. WriteTo(�) <SysMod[guest!host]
2. <InjectGP()
3. WriteTo(Cm�) <SysMod[guest!host]
4. <SingleStep()
5. <OpenWrite(TargetPage)
6. Mp ¼ ¼M n ¼ ¼ null ‘Mc is hidden
7. Mp 7! next 6¼Mc ‘Mc is hidden
8. Mn 7! prev6¼Mc ‘Mc is hidden
9. 8 ai has X: s�ci’ �X: e ‘kernel is not destroyed
10. $ ai has ci’> X: ekci’<X: s ‘kernel is destroyed
11. "Restore[Di. ci!ci’]

5.1 Static Kernel Object Protection

The static kernel objects (m and j) remain unchanged in OS.
The specific execution path of kernel control flow and some
important data are stored in static kernel objects. Kernel
rootkits can achieve their malicious purpose by breaking
the integrity of static kernel objects [26].

To protect the static kernel objects (such as the OS code
segment, data segment, system call table, etc.), VTW get
their linear addresses by analyzing the file “System.map” or
extracting from kernel data segment. All of them will be
translated into physical addresses.

After that, VTW sets the write permission of the EPT
entries (z) that index these physical addresses to “unwritable”
(�4��5 in Table 4). In “guest”, the write operation to (WriteTo)
static kernel data will trigger “EPT violation” causing OS to
fall into “host” (step 1 in “Detection of Rootkit Attacks”).

TABLE 3
Conditioning of Resource Access Control

Operations Condition setting

Debug registers �1 DeReg:: ¼ (dr0, dr1, dr2, dr3)
�2 DeCon:: ¼ (dr6, dr7)

Instruction point setting �3 SetDeReg[DeReg:drm!Iaddr]
�4 SetDeCon[DeCon:dr7:rw_0!bit:00]
�5 SetDeCon [DeCon:dr7.len_0!bit:00]

Data point setting �6 SetDeReg[DeReg:drn!Daddr]
�7 SetDeCon[DeCon:dr7.rw_1!bit:01]
�8 SetDeCon[DeCon:dr7.len_1!bit:10]

dr6 setting �9 SetDeCon [DeCon:dr6.(b0�b2)!0]
#GP setting �10 VM_interupt[bit(31)!bit:1]

�11 VM_interupt[bit(8�10)!bit:011]
�12 VM_interupt[bit(0�7)!bit: 00001011]

Single step setting �13 pre_status:: ¼ (cpu_context, memory)
�14 EFLAGS.tf ¼ Enabled
�15 dr6.bit(14) ¼ Disabled

TABLE 4
Conditioning of Rootkit Attack Detection

Operation Condition setting

Static kernel objects setting �1 m:: ¼ (all_protected_static_pages)
�2 �:: ¼ (kernel_code, syscall_table, . . .)
�3 �� m
�4 z:: ¼ (ept_tabes: protected_area_item)
�5 z.bit(1) ¼ Disabled

LKM information �6 M:: ¼ (module_list)
�7 Mp ¼Mc 7! prev
�8 Mn ¼Mc 7! next

Dynamic kernel data setting �9K:: ¼ (D1, D2 . . .. . . Di. . .. . .)
�10 Di:: ¼ (ai, ci)�K
�11 X:: ¼ (s, e)
�12 ci’ ¼ ReadDataFromAddr(Di: ai)
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Then, VTW injects a #GP exception (InjectGP) into “guest” to
prevent LKMdestroying kernel data (step 2).

It should be noted that the minimum granularity of the
memory protection is one “page”. However, not all static
kernel objects occupy several complete pages. Therefore,
when an “EPT Violation” exception is thrown, VTW first
determines whether the exception address belongs to the
address range of the protected objects.

If yes, the current operation will be blocked. If not, VTW
will set “guest” to single-step mode (SingleStep in step 4).
Then it sets the page as “writable” (step 5). Finally, VTW
switches OS back to “guest” mode to complete subsequent
writes. After that, OS re-traps “host”, and VTW restores the
page to “unwritable” through the function OpenWrite.

5.2 Dynamic Kernel Object Protection

Kernel rootkits can achieve malicious purposes such as
hijacking the control flow by tampering with dynamic ker-
nel data. The tampered kernel data includes both control
data and non-control data. The former refers to reference
pointers pointing to kernel control flow.

These pointers are usually used to construct semantic
views, such as function pointers stored in “proc” file system.
The latter refers to some entries in certain status descriptors,
such as entry “prev” and “next” in “struct module”.

The kernel data updated in real time and the target data
tampered by rootkits may be stored in a same page. So we
cannot prevent kernel rootkits from tampering with kernel
data by limiting writing permission to the memory page.

In addition, the randomness of attack time makes it diffi-
cult to detect the tampering operation in real time. Faced
with these problems, VTW traces the execution of LKMs,
and detects the dynamic kernel data during LKM tracing.

5.2.1 Hidden LKM Detection

Self-hiding is the basic feature of a kernel rootkit. The hid-
den behavior can be treated as a criteria for judging whether
the LKM is a rootkit. Typically, kernel rootkits implement
self-hiding during their initialization.

Therefore, VTW needs to detect whether it has been hid-
den before initialization is completed. To trace module ini-
tializationwe set an instruction breakpoint at sys_init_module
() and monitor LKM’s state change. When the state is
switched to MODULE_STATE_LIVE, VTW checks whether
the module is hidden. Kernel rootkits break the logical con-
nection with others by removing their status descriptor from
a linked list for hiding purpose. The logical connection
between LKMs can be used to determine whether the mod-
ule is hidden.

Mc is the LKM being loaded. Mp is the module pointed
by the entry prev in Mc, and Mn is the module pointed by
the entry next in Mc (�7��8 in Table 4). If the module Mc
does not have a linked list connection relationship with its
neighboring nodes (step 6 in “Detection of Rootkit Attacks”),
or the connection relationship is incomplete (steps 7�8), it is
judged that themoduleMc is hidden.

5.2.2 Dynamic Kernel Data Detection

In addition to status descriptors, kernel rootkits also tamper
with the kernel data with control properties for kernel

control flow redirection. This type of kernel data consists of
pointers that point to the kernel code segment before redi-
rection. Kernel rootkits rewrite the pointers to redirect them
to their custom code.

The redirected objects mainly include various operation
functions for building OS semantic views. Function pointers
(such as lookup) in “proc” file system are the objects most
vulnerable to kernel rootkits. So it is necessary to protect
these function pointers from being tampered with.

To hide network information (such as network ports),
kernel rootkits also attack the data in “/proc/net/tcp”, “/proc/
net/tcp6”, “/proc/net/udp”, and “/proc/net/udp6”. So the func-
tion pointers in these file descriptors are also need to be
protected.

In addition to the above kernel objects, VTW also treats
the function pointers of key files such as “root” and “log”
files as protection objects. All the function pointers and their
storage addresses can be extracted from memory according
specific data structure (such as f_dentry->d_inode->i_op-
>lookup) during VTW initiation.

All the extracted data forms a set k. All the dynamic kernel
data in k points to fixed kernel functions and they need not to
be updated. Only when we find that a new kernel rootkit
modifies a certain kernel data that is not included in k, we
expand k with the certain data. Moreover, VTW will set k as
read-write protection through EPT, and prohibit the execu-
tion entity in “guest”mode from accessing k to protect it.

Now, k occupies about 64KB of memory and contains
4000 pieces of kernel data, and it will grow with the emer-
gence of new rootkits. In practice, the existing kernel root-
kits often tamper with no more than 500 pieces of kernel
data. We expanded the scope for better protection.

Each element D in set k corresponds to a unique piece of
kernel data (�9 in Table 4). The element Di exists as a binary
data pair (ai, ci). ai represents the storage address of the pro-
tected data, and ci represents the data content (�10 ). The X is
the range of kernel code range s� e (�11 ).

During LKM execution, VTW detects if the kernel data ci’
at the address ai points to kernel code segment (�12 ). If there
is a ci’ that does not point to the kernel code segment, it can
be determined that the kernel control flow has been redir-
ected (10 in “Detection of Rootkit Attacks”). After detecting
the tampered kernel data ci’, VTW reads the ci stored in Di
and writes it into Di.ai (step 11). Then the tampered kernel
data is restored to its initial value.

Different with kernel rootkits, the legal LKMs will neither
modify the state descriptors for self hiding, nor modify the
control data with system function pointing features for the
purpose of control flow redirection.

Moreover, the way we protect the dynamic kernel data is
to check the integrity of the protected data at specific stages
of LKM execution (such as scheduling and jumps), rather
than restricting all executing entities’ access to the data
structure to which the kernel data belongs. As a result,
VTW can identify rootkits from all LKMs and will not affect
the execution of other LKMs.

5.3 Bypassing Resistance of VTW Effects

Taking VTW’s loading time as the demarcation point, LKMs
can be divided into the loaded LKMs and the unloaded
LKMs. Once VTW is successfully loaded, it can monitor and
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control the loading and execution of all unloaded LKMs
timely, making it impossible to bypass detection.

For the LKMs that have been loaded before VTW load-
ing, VTW cannot routinely detect and trace them in “host”
mode, which increases the risk of bypassing VTW.

There are two ways to solve this problem. One is to set
VTW to start at boot, so that most LKMs will be included in
the monitoring scope. However, this method is still ineffec-
tive for those LKMs that also start as boot.

The second is the use of kernel integrity check method to
locate the malicious LKM. The redirected control flow
belongs to the rootkit. It can be determined whether the
rootkit has been hidden by matching the control flow
address (mal_addr) with every code segment (module->core,
module->coreþmodule->core_size) in the LKM list. If yes,
mal_addr will be used as the starting point for locating the
hidden LKM. The process is shown in Fig. 4.

The code segment and data segment of LKM are continu-
ous in the virtual space, and their last page table entries are
adjacent. Therefore, by using the executable difference
between them (NX bit of the last page table entry), the end
address (code_end) of the code segment and the first address
(data_start) of the data segment can be identified.

After that, we use the read and write permissions of the
data segment (the RW bit of the last page table entry) to
obtain the first address (writable_data_start) of the writable
data segment. The status descriptor (struct module) of the
LKM is stored in the writable data segment.

According to the page alignment characteristics of the
LKM code segment, the first address of the code segment is
data_start-N � page_size, whose value is module->module_core.
Starting from writable_data_start, we assume the starting
address of each byte is the first address of LKM code.

Then we calculate the address of module->core_text_size
based on the relative offset between module->module_core
and module->core_text_size. The correct representation of
module->module_core and module->core_text_size is that the
last 12 bits are all 0, and the sum of the two is data_start.

Next, we check all the memory after writable_data_start
with a single byte as the step value, until we get the eligible
module->module_core and module->core_text_size. Finally, the
first address of the struct module is calculated using the off-
set of module->module_core relative to the starting address of
the struct module. Compared with the first method, this
method has a wider scope, but the implementation process
is relatively more complicated. VTW uses both methods to
achieve the best defense effect.

6 ROOTKIT TRACING PROCESS

The kernel rootkit initiating attack may be the LKM that is
being loaded or has been loaded. The participant(s) of one
attack may be a single module or multiple modules.

We refer to the direct initiator of tampering with kernel
data as behavior carrier. The original initiator of the attack
is called action carrier. The LKM whose code replaces the
original kernel function is called function carrier.

To trace all kernel rootkits participating in an attack, VTW
introduces 2 new methods: “Tracing of Forward and Back-
ward of Rootkit Attacks” and “Attack Playback Procedure”.
The conditions required by the methods are shown in
Table 5.

Other LKMs participating in the attack are called process
carrier. There may exist an overlap among these carriers.
For example, the LKM being loaded can redirect the kernel
control flow to the exported function. In this attack scenario,
the LKM belongs to both action carrier and behavior carrier,
the loaded LKM belongs to the function carrier, and there is
no process carrier.

All the monitored LKMs form the tuple T , and all LKMs
participating in a same event form the tupleR (�1 in Table 5).
When an LKM is running, we enable its execution permis-
sion. At the same time, except for the LKMs that are running
in other CPU cores, the execution permissions of all other
LKMs are closed (�2 ). All the LKMs running in different cores
form a tupleF (�3 in Table 5). The LKM to be scheduled (Lj)
for execution is associated with the k-th CPU core (�4 ). The
memory towhich the LKMbelongs is recorded as a (�5 ).

6.1 Trace LKM Execution Events

There are three ways to execute a rootkit. The first one is the
LKM calls its initialization function during module loading.
In this type, the attack has been launched before the load is
complete.

The second one is the LKM’s exported function is called
by other modules after it has been loaded. The loaded LKM
can be called to modify the kernel data, or it can be used as
a function carrier to replace the kernel’s original function.

The third one is the LKM is executed by creating a kernel
thread. The attack can be triggered at any time in the thread’s
life time.

An entire attack may cover one or several execution
types of the above. To monitor the execution of LKM, VTW
sets the target loaded LKMs to be unexecutable.

However, this method is less efficient due to a large num-
ber of memory setting operations. Taking an LKM with
code segment size of 4MB as an example, VTW must oper-
ate EPT pagetables more than 2000 times to complete one

Fig. 4. Locate the hidden “struct module”.

TABLE 5
Required Conditions for Tracing Rootkit Effects

Operations Condition setting

Permission setting �1T :: ¼ (L1,L2 . . .Li . . .Lc)R:: ¼ (Lc)
�2TurnOnExe (Lc) TurnOffExe(CTLc)

LKMs running on cores �3F:: ¼ (L1. . .Li j i�cpu_counts)
�4Ljfflcpu_core[k]
�5L1/a1 Li/ai Lj/aj
�6 $Lj &F6¼;
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time of execution permission opening and closing. To
reduce the number of pagetable setting operations, VTW
establishes a mechanism to manage LKM’s executing per-
missions, as shown in Fig. 5.

VTW first obtains the address range of LKM code seg-
ment through “struct module”. It then calculates the last-
level pagetable (last_page_table) that can look up the entire
address range of LKM code. The pagetable entry (orig_item)
storing last_page_table address in its upper level pagetable
will be recorded.

After that, VTW creates a new pagetable (new_last_page_
table) and sets it to be “unwritable” via EPT. It overwrites ori-
g_item with the address of new_last_page_table. Next, VTW
copies all the contents of last_page_table into new_last_page_
table. At the same time, it creates a memory page for each tar-
get LKM and sets them to be “unexecutable” via EPT. The
memory page is called fake_code, and its address is fake_mem.

Finally, all entries in new_last_page_table corresponding to
the LKM’s code segment are filled with fake_mem. If we
attempt to open the LKM’s execution, orig_itemwill be filled
into its original address. If we attempt to close the LKM’s
execution, orig_item will be rewritten with fake_item. There-
fore, the control flow will be redirected to fake_code. The
EPT exception address (fake_item) will tell which LKM is
about to execute.

In LKM execution, the first LKM being executed is called
the first module. The LKM that issues inter-module call
request is referred to as the active module, and the LKM to
be called is referred to as the called module.

Before the first LKM is executed, VTW reads the calling
function’s return address stored in kernel stack and sets an
execution breakpoint there. Then, VTW enables the LKM’s
execution permission. When the control flow is switched
among LKMs, we trace all LKMs through which the control
flow flows. The tracing scheme is specified below.

6.2 Forward Versus Backward of Rootkit Attacks

The rootkit attacks are carried out in forward and backward
phases as specified blow in 11 steps. This method is used to
monitor the jump and return of the LKM control flow. Steps
1�6monitor the jump; steps 7�11monitor the return process.

1. ConFlowTrans[Lc!Li]<SysMod[guest!host]
2. <R ¼RþþLi

3. <IF CheckKernel() ¼ ¼ 0
4. " TurnOffExe (Lc) TurnOnExe (Li)
5. <ELSE HandleException(R0)

6. " RecoverData() InjectGP()
7. ConFlowRet[Li!Lc] <SysMod[guest!host]
8. <IF CheckKernel() ¼ ¼ 0
9. " TurnOffExe (Li) TurnOnExe (Lc)
10. <ELSE HandleException(R)
11. " RecoverData() InjectGP()
In the procedure, any jump of control flow between

LKMs (ConFlowTrans) will trigger the OS to fall into “host”
(step 1) because of the permission setting of LKM. VTW
records each LKM through which the control flow flows
(step 2), and checks the validity of the kernel data at each
jump. If the data is legal (step 3),

VTW will open the execution permission of the called
module (TurnOffExe) and close the execution permission
(TurnOnExe) of the active LKM (step 4). Otherwise, VTW
handles the illegal LKM (steps 5�6) through the function
HandleException, and the handling operations include data
recovery (RecoverData) and #GP injection (InjectGP).

When the control flow of the LKM returns (ConFlowRet),
VTW traces the return action (steps 7�11). When returning
to the breakpoint set at the return address of the first LKM,
it means the current execution ends.

When the active LKM issues a call request between LKMs
or the control flow returns to the previous LKM, VTW will
detect whether the current kernel data has been tampered
with by the active LKM. For dynamic kernel data, VTW uses
themethod “Detection of Rootkit Attacks” for detection.

For the static kernel data with write protection, any tam-
pering will cause the OS to fall into “host”. Then, VTW sets
the OS to single-step debugging and enables the write per-
mission of the kernel data. Therefore, after LKM completes
tampering with the static kernel data, it will fall into “host”
again. Finally, VTW reads the tampered data and restore it
to initial value with the backed up data.

Through the above operations, VTW can get the tam-
pered data. Comparing the tampered data with the code
segment range of all LKMs, we can get the LKM to which
the redirected control flow belongs.

If it is detected that the kernel data has been tampered
with, the current running module will be regarded as the
behavior carrier of the attack. The first module will become
the action carrier, and the module to which the redirected
control flow belongs will become the function carrier.

Other LKMs will become the process carriers. To prevent
further damage, VTW injects a general protection exception
into the current control flow. In the end, the tampered ker-
nel data will be recovered and the current malicious opera-
tions will be terminated.

6.3 Task Switching in Multicore Execution

When a task switch occurs during LKM execution, the
LKM’s CPU resources will be reclaimed. If the LKM is no
longer scheduled, it will never generate inter-module call
requests. The execution breakpoint we set at the return
address will never be executed. Due to the lack of trigger
conditions, VTW will ignore the LKM’s impact on kernel
after the last detection.

Different LKMs may be executed concurrently among
multiple cores, which will affect the identification to the
behavior carrier. For example, two LKMs may run simulta-
neously in different CPU cores.

Fig. 5. The pagetable redirection mechanism.
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If the dynamic kernel data is detected to be tampered
with during their running, we cannot figure out which of
the two LKMs has committed the malicious operation.

To ensure the accurate traceability, VTW introduces an
action playback method, which is shown as “Attack Play-
back Procedure”. When an LKM is scheduled to execute
and there is one or more LKMs being executed in other
cores, this method will be started.

6.4 Attack Playback Procedure

In the case where multiple LKMs are running in multiple
cores at the same time, this method is used to identify which
LKM is the kernel rootkit. The attack playback procedure is
specified below. Steps 1�5 backup the required contents.

Steps 6�9 perform the playback. When the LKM Lj is
loaded to run on a core (LoadOnCore), the execution must
trigger the OS to fall into the host mode (step 1 in “Attack
Playback Procedure”). After that, Lj will be recorded into
the tupleF (step 2).

The VTW first checks whether the current kernel data
integrity is corrupted through the function CheckKernel. If
not (step3), it will copy the current CPU’s context informa-
tion, the kernel stack, and the LKM data segment (all these
are called playback contexts).

1. LoadOnCore(Lj)<SysMod[guest!host]
2. FþþLj

3. IF CheckKernel() 6¼0
4. "Case[i ¼ ¼ 1] < Backup(Li) Backup(Lj)
5. "Case[i>1] < Backup(Lj)
6. ELSE"Case[i ¼ ¼ 1] ‘Li is a rootkit
7. "Case[i>1] ‘Lr2F
8. "ForEach[Lm2F] ExeBack(Lm)
9. "IF CheckKernel() ¼ ¼ 0 ‘Lr isLm

If there is more than one LKM is running on different
CPU cores, all the running LKMs have been backed up. So
we only need to back up the LKM to be executed (step 4). If
there is only one running LKM, both the LKM being exe-
cuted and to be executed need to be backed up (step 5).
After completing the backup, VTW switches OS to “guest”
mode again to continue running.

To figure out which LKM is a kernel rootkit, the actions
will be played back one by one for all LKMs running in
other cores through the functions ForEach and ExeBack (step
8). The playback steps are shown in Fig. 6. The playback
process is specified below in 5 steps.

1) Rewrite the current kernel stack and LKM’s data
with the previously backed up content.

2) Fill the “guest state” field of VMCS with the backed
up CPU context and restore the corrupted kernel
data.

3) Switch OS to “guest” mode to start LKM execution.
4) Stop execution at the instruction position where the

kernel data is destroyed.
5) Detect whether a corrupted data will trigger a sec-

ondary destruction. The current LKM is identified as
the behavior carrier. If this kernel data remains
intact, then switch to resume playback from step (1).

Through the method, each LKM will be executed from
the location where the kernel data has not been corrupted,
and terminate at the execution location where the kernel
data is corrupted. If the LKM being played back corrupts
the integrity of the kernel data, it will be identified as a root-
kit (step 9).

After the tracing is completed, VTW will resume the nor-
mal execution of the remaining LKMs, and let them con-
tinue execution from the position where the kernel data
integrity is corrupted.

During action replay, the restored kernel data includes
the tampered kernel data and the playback contexts. The
recovery of the former will maintain the integrity of the ker-
nel, and the latter is only related to the LKM to be replayed.
Therefore, the recovered kernel data does not affect the exe-
cution of other LKMs.

We have analyzed 23 kernel rootkits and found that
except for playback contexts, they will not modify other ker-
nel data. During the monitoring process of the 72 normal
LKMs (such as nf_nat, ib_cm, and snd_seg, etc.) that are fre-
quently used in Linux, we found that normal LKMs will not
modify the protected kernel data, nor will they modify any-
thing outside the playback contexts.

Therefore, we do not need to restore other kernel data
except for the tampered kernel data and the playback con-
texts when performing action playback, which does not
affect the correctness of other LKMs.

7 EXPERIMENTS AND PERFORMANCE ANALYSIS

We apply several kernel rootkits and benchmarks to test the
defense effects and running efficiency of the VTW.

7.1 Experimental Environment

The physical host in the experiment is an HP desktop com-
puter configured with an Intel i3-9100 @ 3.6 GHZ 4-core
processor, 8G memory, and 256 GB hard disk. The installa-
tion environment of different rootkits is very different. To

Fig. 6. Tracing task switch between two execution cores of a Linux server.
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install the rootkit f00lkit, we use Ubuntu12.04 with kernel
3.2.16 as the tested OS.

7.2 Rootkit Detection, Defense, and Traceability

The f00lkit hides the target objects by modifying the syscall
table. It redirects the control flow to its code segment. The
detection effect of VTW on f00lkit is shown in Fig. 7.

The upper, middle and lower three windows are the intru-
sion performance to the OS before VTW loading, the intrusion
performance to the OS after VTW loading, and the defense
result of VTW respectively. In the upper window, we find
that f00lkit can hide files prefixedwith “f00l_”, which is shown
as line 2.

The middle window shows f00lkit no longer has a hidden
effect on files prefixed with “f00l_” after VTW is loaded.
When f00lkit attempts to tamper with the system call table,
VTW detects its intention and generates an “EPT violation”.
Then VTW issues #GP to “guest” to prevent it.

To test the traceability of VTW, we rewrite the rootkits
f00lkit and xingyiquan, and introduce two auxiliary LKMs
jmp_lkm and action_lkm. In the attack scenario we set, f00lkit
does not destroy kernel data. It has an exported function
func_1 that is used to replace system functions to hide files
with the “f00l_” prefix.

There is also an exported function func_2 in the auxiliary
LKM action_lkm. When func_2 is executed, it will tamper
with the kernel data and redirect the system control flow to
func_1. The exported function in auxiliary LKM jmp_lkm is
func_3. The function func_3 will call func_2 during its
execution.

The above three exported functions will not be executed
until they are called by other LKMs. When xingyiquan exe-
cutes, func_3 is called by xingyiquan. At last the kernel func-
tion is redirected to f00lkit via func_2.

The LKM action_lkm tampers with system call table
directly, and it is a behavior carrier. The original system call
function is replaced by a function in f00lkit. Therefore, VTW
determines f00lkit is a function carrier. The first initiator of
this attack was xingyiquan, which makes control flow jump

to other modules through lkm_jmp. So xingyiquan is deter-
mined as the action carrier, and jmp_lkm is determined as
the process carrier.

VTW detects, defends, and traces kernel rootkits includ-
ing adore-ng, kbeast, wnps, brootus, diamorphine, z-rootkit, and
suterusu, etc. VTW sets write protection to kernel objects
such as system call table through EPT pagetables. Therefore,
any write operation will cause the OS to fall into the “host”
mode from the “guest” mode.

Then VTW uses the #GP exception to prevent the illegal
operation. The entire execution of the kernel rootkits is moni-
tored byVTW. Bymanipulating the execution permissions of
LKMs, VTW can capture the execution of each LKM. There-
fore, the calls, jumps and returns of LKMs are recorded
synchronously.

7.3 Performance Evaluation

In this section, the execution overhead of VTW on CPU is
measured with nbench [27], the impact on system latency
and bandwidth is measured by Lmbench [28], and the
impact on I/O is measured by IOMeter [29]. All the results
are normalized with the tests in the native OS.

Nbench Test. The test result is shown in Fig. 8. The VTW
introduces a performance overhead of less than 2 percent
on CPU. VTW is essentially a lightweight hypervisor and
does not provide complex virtualization functions like other
virtualization platforms (such as Xen). Therefore, it introdu-
ces very little performance overhead to the CPU.

Lmbench Test. Lmbench is used to measure the system
latency and bandwidth. The testing results are shown in
Figs. 9a, 9b, 9c. VTW increased memory and network
latency by an average of 8.8 percent and file operation
latency by an average of 5.9 percent. The communication
bandwidth is reduced by 2.2 percent.

During the Lmbench test, we found that the OS switch-
ing frequency between “host” and “guest” increased signifi-
cantly. Most of the switching is caused by the instruction
cpuid. Because the cache operation speed is very fast, it is
extremely sensitive to any delay. Therefore, the effect of

Fig. 7. Visualization of the process of a typical detected rootkit attack (f00lkit).
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mode switching on the cache is particularly obvious, result-
ing in a delay cost close to 20 percent.

IOMeter Test. IOMeter is a test tool developed by Intel to
test the maximum disk I/O performance and maximum
data throughput. The test results are shown as Figs. 10a,
10b. The figure shows that VTW causes an average I/O
bandwidth reduction of 8.9 percent, and an average running
time increase of 3.9 percent.

VTW’s impact on I/O is mainly caused by running time
of I/O operations, which reduces I/O throughput and
increases I/O response time. The overhead introduced by
VTW includes storage and computation overhead.

The storage overhead mainly refers to memory overhead,
including memory space overhead and addressing time
overhead. VTW occupies less than 200KB of memory space
to store its core code and data, and 64 KB to restore the ker-
nel data to be protected.

The calculation overhead comes from the event injection,
kernel protection and exception handling introduced by
VTW. These operations will cause the OS to fall into “host”
from guest mode.

In host mode, VTW will take over control flow and per-
form exception handling. After the exception processing is
completed, VTWswitches theOS back to “guest”mode again,
and returns control flow to the OS for continued execution.

The execution of “guest” mode is blocked throughout the
process. Therefore, performance indicators such as execu-
tion speed, latency, network latency, and I/O throughput
will be affected. In addition, mode switching cause the
refresh of TLB and Cache [30], [31], which further increases
the performance impact on the OS.

When VTW is running, the factors that cause the OS
to switch modes include instruction trapping and event

trapping. The former is triggered by the execution of
specific instructions, while the latter is triggered by the
specific events. In]guest mode, the execution of the
instructions CPUID, GETTSEC, INVD, XSETBV, and all
VMX instructions except VMFUNC will causes the OS to
fall into “host” unconditionally.

The events that trigger OS mode switching include
module loading, module uninstall, state switching dur-
ing module loading, jump and return of control flow
between modules, schedule execution of the module,
update of the “host” private pagetable, tampering with
static kernel objects, single-step debugging mode, and
action playback.

Impact on the Execution Speed of LKM. In order to measure
the impact of VTW on the execution speed of LKM, we
introduced two test modules LKM_1 and LKM_2. They

Fig. 8. Execution overhead of the VTW scheme. The x-axis shows the
running speed loss factor, and the y-axis are the benchmark programs
executed.

Fig. 9. Memory /network access latency, file management overhead and Input/output bandwidth reduction are plotted as the system percentage
against the benchmark or network, memory, and file access operations.

Fig. 10. I/O performance overhead plotted as the I/O bandwidth loss fac-
tor and the increase of I/O time.
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belong to the CPU-intensive module and I/O-intensive
module respectively. The former is used to calculate the
value of p, and the latter is used to read and write files.

The test results are plotted in Fig. 11. The abscissa indi-
cates the number of digits after the p decimal point for the
solid line, and the number of file operations relative for the
dot line. The ordinate indicates the speed loss ratio.

On the contrary, when the module runs for a long time,
the performance loss ratio caused by VTW is smaller. For
normal LKMs, VTW only interferes with their execution
when they are loaded and their status is updated. The exe-
cution blocking time of “guest” caused by VTW is relatively
fixed. When the LKM’s execution time is short, VTW blocks
the “guest” mode for a larger proportion of time, so the per-
formance loss ratio becomes larger.

The number of traps and the number of jumps of control
flow between modules are the key factors affecting the exe-
cution speed of LKM. We take an LKM_3 with a running
time of about 7.6s as the test object, and measure the impact
of the number of traps on its execution speed.

We rewrite LKM_1 and LKM_2 so that control flow
jumps between them. They can be used to measure the
impact of jump times on LKM’s execution speed. The exper-
iment results are shown as Fig. 12.

The dot line shows that VTW has a small effect on the
execution speed of LKM when traps are just a few. When
the trap number exceeds 1,000,000, the execution of LKM
will be slowed down to 80 percent. The solid line shows
that, when the jump number exceeds 100, VTW slows down
to 8 percent. When the jump number exceeds 1000, the exe-
cution speed of LKMwill decrease sharply.

The impact of control flow jump on LKM execution is
greater than that of the traps. A complete jump and return
involves 2 mode switching and 4 code execution permis-
sions. Therefore, VTW will experience more overhead when
processing low jumps between modules.

7.4 Comparison With Other Defense Schemes

In Table 6, we compare the proposed VTW performance
with seven reported rootkit defense schemes. Most other
rootkit defense schemes apply the introspection tech-
niques of virtual machines, which are very different
from VTW approach which is mainly based on event
traceability.

We compare them qualitatively in 4 performance areas:
detection, defense, traceability and portability. The VTW has
obvious advantages in these 4 areas as agued in previous
sections. More benchmark experiments are needed in future
work to reveal some quantative results.

Our VTW is designed to support only Intel processors
and protect only Linux-based x-86 servers. The current
VTW edition does not protect servers running Windows or
other OS platform. However, the Virtuoso scheme have
reported with high portability across different severe plat-
forms [14].

According to the ability to deal with malware variants,
we divide the detection, defense and traceability capabilities
into 3 levels: good, average, and poor.

For rootkit detection, VTW, Xtier, Virtuoso, and RTKDSM
are all rated good. For defense and traceability, all methods
are rated average or poor, except DIKernel has shown some
defense capability. Like VTW, all reported schemes work on
x86 processors exceprt for DIKernel on arm-v7.

Our experiments have revealed some measured results
on CPU and storage overheads. The VTW shows distinct
advantages in the system overheads to carry out all the
detection and filtering operations, as compared with
remaining methods in Table 6. In particular, we want to
point out the excessive overheads in using VMST and
PTKDSM schemes [15], [17].

Fig. 11. Speed loss factor of the LKM plotted against the number decimal
digits of p for the solid line, and the number of I/O operations for the dot line.

Fig. 12. The impact of system trap and control flow jump on LKM execu-
tion speed.

TABLE 6
Comparison of VTW Scheme Against Other Defense Schemes

Defense Schemes Detection Defense Traceability CPU Overhead Storage Overhead Platform Protected

VTW(our model) Good Good Good <2% >264KB Linux
X-TIER [12] Good Poor Average <5% 14%�17% Linux, Windos
SYRINGE [13] Average Average Poor 8% (unknown) Windos
Virtuoso [14] Good Average Poor (unknown) (unknown) Linux, Windows, Haiku
VMST [15] Average Poor Poor 930% (unknown) Linux
VMwatcher [16] Average Poor Poor <11% (unknown) Linux, Windows
RTKDSM [17] Good Poor Poor >110% (unknown) Windows
DIKernel [26] Poor Good Poor <10% 1500 code lines Linux
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8 CONCLUDING REMARKS

This paper proposes a new virtual wall (VTM) method for
filtering kernel rootkit attacks on Linux servers. In sum-
mary, we have demonstrated that our VTW protection
scheme has good performance In rootkit detection, defense,
and traceability. VTW results in much lower memory and
storage overheads than any other rootkit defense systems.

All operations that violate security policies in guest mode
will cause the OS to trap into a host mode. The VTW lever-
ages a memory access control mechanism and an event
injection mechanism to perform the rootkit filtering process.

To trace the execution path of LKMs and all kernel attack
participants, we propose a tracing mechanism based on the
LKM execution paths. Our VTW protects the integrity of the
static kernel data in real time. For dynamic kernel objects,
VTW checks the validity of kernel data during the tracing
process. Thus every corrupted LKM data can be detected
and recovered.

Our VTW uses general protection exception to prevent
further damage. When the participants of a kernel attack
involve multiple kernel rootkits, we can obtain the execu-
tion entities related to the attack by checking the LKM exe-
cution paths. We trace all kernel rootkits participating in an
attack. The VTW introduces an added 2 percent to the total
CPU time experienced.

On the negative side, the VTM is limited to protecting
Linux servers only. Our VTW scheme only supports Intel
processors and Linux system. VTW does not run with AMD
and ARM processors, or any servers running Windows.
This is also true in the SYRINGE [13], VMST [15], and
DIKernel [26] protection schemes.

The VTW has limited defense effects on Bios or user-level
rootkit attacks. For the rootkits that may damage the integ-
rity of the kernel, they may use /dev/kmem or /dev/mem or
any other method, which could be extended from the VTW
in this paper. Due to page limit, we will resort those exten-
sions in the future work.
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