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Abstract Recently, analyzing big data on the move is booming. It requires that the hardware resource should be

low volume, low power, light in weight, high-performance, and highly scalable whereas the management software should

be flexible and consume little hardware resource. To meet these requirements, we present a system named SOCA-DOM

that encompasses a mobile system-on-chip array architecture and a two-tier “software-defined” resource manager named

Chameleon. First, we design an Ethernet communication board to support an array of mobile system-on-chips. Second, we

propose a two-tier software architecture for Chameleon to make it flexible. Third, we devise data, configuration, and control

planes for Chameleon to make it “software-defined” and in turn consume hardware resources on demand. Fourth, we design

an accurate synthetic metric that represents the computational power of a computing node. We employ 12 Apache Spark

benchmarks to evaluate SOCA-DOM. Surprisingly, SOCA-DOM consumes up to 9.4x less CPU resources and 13.5x less

memory than Mesos which is an existing resource manager. In addition, we show that a 16-node SOCA-DOM consumes

up to 4x less energy than two standard Xeon servers. Based on the results, we conclude that an array architecture with

fine-grained hardware resources and a software-defined resource manager works well for analyzing big data on the move.

Keywords edge computing, mobile architecture, resource management, big data analytics, software-defined system

1 Introduction

Recently, a wide range of the requirements from

spaceflight and aviation to terrestrial vehicle applica-

tions for analyzing big data on the move are boom-

ing. We name this computing paradigm as ADOM. For

spaceflight applications, orbital edge computing was

proposed in 2020 to improve the computational power

of nano-satellite constellations [1]. For aviation applica-

tions, evaluating the health and diagnosing the faults

of aircraft systems are getting increasingly popular [2–4].

Even for low-altitude applications, real-time video ana-
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lysis on drones is proliferating rapidly [5]. For terrestrial

applications, big data is also gradually employed to eva-

luate the vehicle health, trying to avoid crash [6–8]. In

addition, ADOM is projected to rapidly get even more

pervasive in the near future.

This wide adoption “hope” of ADOM poses six new

requirements for computing systems including hard-

ware and system software. First, the hardware volume

of such a computing system should be low enough to be

deployed inside a moving object such as a nano-satellite

(e.g., 10 cm×10 cm×10 cm) (R1). Second, the comput-

ing system should consume as little energy as possible

(R2) because the energy capacity on moving objects

is always limited. For example, nano-satellites usually

employ solar energy to power their computing systems

while the size of their solar panels is small, generating

very limited energy. Third, the weight of such a com-

puting system should be as light as possible for easy

moving (R3). Heavier weight results in more cost to

move the computing systems. Fourth, the hardware re-

source consumption of the resource manager of ADOM

needs to be as little as possible (R4) because the hard-

ware resource is very limited. Fifth, ADOM systems are

expected to be high performance (R5) since sharply in-

creasing amount of data needs to be analyzed on mov-

ing objects to provide more and new functional ser-

vices. Last, systems used for ADOM should be highly

scalable (R6) because in some spaceflight cases (e.g.,

nano-satellite applications), the form factor of the sys-

tem can only be very small (e.g., 5 cm×5 cm×1 cm)

while in terrestrial application cases (e.g., car, bus, and

truck applications), the form factor can be relatively

large (e.g., 30 cm×20 cm×1 cm).

However, these conflicting requirements (e.g., R5

conflicts with R1, R2, R3, and R4) are posing unprece-

dented challenges to existing computing systems such as

cloud computing and edge computing platforms. Cloud

computing platforms are obviously overqualified for R5

but fail to satisfy R1, R2, R3, and R4 for ADOM.

It seems that edge computing platforms including fog

computing [9–12], mobile cloud computing [13–15], and

mobile edge computing [16, 17] systems are good candi-

dates for ADOM. However, edge computing typically

deploys one or several standard servers such as 1U (a

unit specifies that the width of a server is 48.26 cm and

the height is 4.445 cm) or 2U (the width is the same as

that of 1U but the height doubles) servers closed to the

network edge as computing platforms. Although these

platforms are called “micro data centers” [18, 19], “data

center in a box” [20], or “cloudlet” [15], they are large in

size and heavy in weight and fail to meet R1 and R3

of ADOM. The size of a base station which is equipped

with digital signal processors may be smaller than a

standard 1U server, and so does the weight, but digital

signal processors are not suitable for big data analysis.

To address these challenges, we propose a novel sys-

tem named SOCA-DOM to support big data analysis

on the move. It contributes four innovations from both

hardware and software aspects.

First, it innovates a mobile system-on-chip array ar-

chitecture by designing different sizes of Ethernet net-

work communication boards. A number of homoge-

neous or heterogeneous mobile system-on-chips seat on

a board and communicate with one another via the

board. Two such boards can be connected by the Eth-

ernet network and therefore many boards can commu-

nicate directly or indirectly. As such, this hardware

architecture is highly scalable (for R6), energy-efficient

(for R2), space-efficient (for R1), and light-weight (for

R3), and can achieve high performance (for R5).

Second, we design data plane, configuration plane,

and control plane for the resource manager to make

it consume as little hardware resource as possible (for

R4).

Third, SOCA-DOM contributes a two-tier software

architecture for the resource manager. It employs the

master-slave mode to manage the mobile system-on-

chip nodes, but several master nodes can be configured

to act as the slave nodes of a super-master if needed.

The benefit is that a mobile system-on-chip cluster can

be easily configured to a number of zones where diffe-

rent zones serve different types of applications (for R6).

Finally, we design a synthetic metric to more accu-

rately represent the computational power of a system-

on-chip node compared with the traditional metrics

such as the memory size and the number of cores. The

synthetic metric considers the fine-grained information

about CPU cores such as the clock speed, CPU model,

cache, and so on. Then we propose to schedule tasks

by using this metric (for R5). Our experimental results

show that this can improve the average performance of

Spark programs and Flink programs by factors of 4x

and 3x, respectively.

Putting it all together, we implement a prototype

of SOCA-DOM. It can run all the Spark programs and

Flink programs from the Hibench benchmark suite and

meet all the requirements of ADOM.

The rest of the paper is organized as follows. Sec-

tion 2 presents the background of ADOM and the mo-

tivation of this work. Section 3 describes the hardware
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and the software design of SOCA-DOM whereas Sec-

tion 4 depicts its implementation. Section 5 presents

the experimental methodology. Section 6 provides the

experimental results and analysis. Section 7 discusses

the limitations of SOCA-DOM. Section 8 describes the

related work. Section 9 concludes the paper.

2 Background and Motivation

2.1 Big Data Analysis on the Move

ADOM is tightly related to edge computing, and

we therefore introduce edge computing first. Currently,

edge computing paradigm has been proposed to address

the issues such as non-real-time operations occurred in

cloud computing. The key idea is to move the comput-

ing platform from a cloud center to the edge of networks

where the data is generated. Edge computing has been

used in a wide range of applications including orbital

edge computing [1], smart home [21], self-driving cars [22],

real-time video analysis [23], online gaming [24, 25], and

so on. Depending on various applications, the require-

ments such as computational power and hardware form

factor for edge computing platforms are significantly

different. For example, the real-time video analytics

may need powerful GPUs [23] while wimpy mobile pro-

cessor cores are acceptable [26] for other applications

such as MapReduce style big data processing.

ADOM is a special kind of edge computing since it

employs the same idea that the data is processed on

the edge but with a unique feature: “analyzing data

on the move”. This feature makes that the six require-

ments, including low volume, low energy consumption,

low hardware resource consumption, light in weight,

high performance, and high scalability of the ADOM

computing platform, must be satisfied at the same time.

Other edge computing applications such as the smart

home do not necessarily need to meet all the require-

ments at the same time because the computing plat-

forms are quiescent and in turn the platform weight is

not concerned much.

There is a wide range of booming requirements for

ADOM from spaceflight and aviation to terrestrial ap-

plications. For example, there is an exponential growth

in nano-satellite launches over the past two decades

and commercial satellite constellations today typically

consist of hundreds of Earth-observing and camera-

equipped nano-satellites, generating a huge amount of

data [27]. However, due to the weak computational

power on the satellites, all the data needs to be sent

back to Earth to process, which causes a 5.5 h delay

on average before the data reaches customers [1]. As

such, it is hard to employ current computing platforms

of satellites to implement the concept of space-as-a-

service [27]. For terrestrial applications, monitoring the

big data of the key components of a car is proposed to

be analyzed online to avoid crash in advance [8].

2.2 Motivation

2.2.1 Limitations of Existing Hardware Platforms

Existing cloud computing platforms typically con-

sist of hundreds of thousands of servers, which are ex-

tremely energy hungry and occupy huge space. Even a

single standard server (e.g., 1U or 2U server) is bulky

and cannot be moved easily. This indicates that even a

single standard server is ill-suited for building ADOM

platforms because it cannot meet the requirements of

low volume (R1), low energy consumption (R2), light

in weight (R4), and high scalability (R6) for ADOM.

Moreover, it also implies that existing edge computing

platforms are not suitable for ADOM because they em-

ploy one or several standard servers.

On the other hand, the computational power of

a modern mobile system-on-chip is increasing sharply,

which provides a great opportunity for building ADOM

platforms. For example, a product of Samsung’s mo-

bile system-on-chip named Exynos 2100 could have up

to 3.0 GHz CPU frequency based on ARM Cortex-

A78. However, the performance of a mobile system-

on-chip is still not enough to run big data applications

such as Apache Spark programs because of the lim-

ited memory capacity and CPU cores of a single mo-

bile system-on-chip. We need to organize a number of

mobile system-on-chips in a space-efficient and scalable

manner to meet the demand of high performance (R5)

for ADOM. This motivates us to design a new hardware

architecture for ADOM.

2.2.2 Resource Management for ADOM Platforms

Since the hardware resource of a system-on-chip

cluster is still limited, the resource manager should

consume as few resources as possible to meet the re-

quirement of low hardware resource consumption (R3).

Moreover, the resource manager should be flexible

enough to adapt to different uses cases. For exam-

ple, the mobile system-on-chip nodes of ADOM may

need to be dynamically organized into different zones

for different types of applications. Hence, a number of

zones with no applications can be turned off to save

energy to achieve the low energy consumption (R2) for
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ADOM. However, these requirements cannot be satis-

fied by existing resource managers such as Mesos [28]

and YARN [29] for big data analysis clusters, because

these managers themselves consume a lot of resources

such as CPU and memory which are limited on ADOM

platforms. This motivates us to develop a “software-

defined” resource manager for ADOM platforms with

several important energy-efficient designs for big data

workloads.

3 SOCA-DOM Architecture

3.1 Overview

SOCA-DOM consists of two parts: a mobile system-

on-chip cluster (hardware) and a resource manager

named Chameleon (software). The cluster employs a

mobile system-on-chips array architecture where the

mobile system-on-chips seat on a communication board.

Chameleon is designed to manage the resources of an

ADOM system. The node management of Chameleon

innovates a two-tier architecture which is highly scal-

able. We design data plane, configuration plane, and

control plane for Chameleon to make it “software-

defined”.

3.2 Hardware Design

The hardware design of SOCA-DOM should be

highly scalable, energy-efficient, space-efficient, and

light in weight at the same time. To achieve this goal,

we employ “disaggregated architecture” but with diffe-

rent levels. The key idea of the disaggregated architec-

ture is to break monolithic servers into disaggregated,

network-attached hardware components such as CPU,

DRAM, and disks. Since each hardware component

can operate or fail on its own and its resource alloca-

tion is independent from other components, hardware

resource disaggregation brings many benefits such as

greatly-improved scalability, resource utilization, elas-

ticity, heterogeneity, and failover.

The disaggregated architecture is not a single uni-

fied architecture. Instead, it has a number of vari-

ants with different levels. For example, the Open

Computer Project (OCP) 1○, Intel Rack Scale Architec-

ture (RSA) 2○, HP “the machine” 3○, and the Berkeley

Firebox [30] build or propose the system-level disaggre-

gated architecture. Other levels include disaggregated

memory [31–33] and disaggregated flash [34, 35].

The key enabler of the disaggregated architecture

is the network technology. Different levels of hard-

ware disaggregation have different requirements for the

performance of networks. For example, the latency

between CPU and remote flash memory via networks

can be approximately equal to the access latency of

CPU to local flash memory by sophisticated software

optimization [35]. However, the access latency between

CPU and local DRAM is much shorter than that be-

tween CPU and remote DRAM via networks. Despite

the recent advances in the network technology 4○, it

is still difficult to make the access latency of remote

DRAM as short as that of local DRAM.

For this reason, we do not employ memory dis-

aggregation in our hardware design. Instead, we in-

novate an architecture where an array of system-on-

chips are installed on a compact network communica-

tion board. Fig.1 illustrates the layout of the communi-

cation board. As can be seen, the network components

such as network switch and scheduler are integrated

in the board, performing the communication function

between the on-board system-on-chips. We design a

number of bayonet-type slots on each board which can

install mobile system-on-chips. The bayonet-type slot

design makes it easier to replace a system-on-chip if it

is damaged. Each mobile system-on-chip integrates an

ARM mobile CPU, a mobile GPU, memory, and rich

interfaces such as HDMI, USB, and SDIO. The DS (De-

bug Console) beside each CPU in Fig.1 is an interface

for debugging. For each system-on-chip, we also design

a USB3.0 interface, a secure digital (SD) memory in-

terface (TF-TransFlash), and an NVME SSD interface

for convenient data storage.

We provide three circuit diagrams of the communi-

cation board to illustrate its structure further. Due to

the limited space, we only introduce the main compo-

nents of the board. In Fig.2, the main chip labeled with

“217” is responsible for the exchanges of network data

among the nodes on the board. Meanwhile, we have

another chip labeled with “129” showed in Fig.3 which

accounts for exchanging data to external connected de-

vices. Finally, Fig.4 demonstrates the power manager

system labeled in “73” to provide multiple stable volt-

ages such as 0.9 V, 1.2 V, 1.5 V, and 3.3 V.

1○https://www.opencompute.org, Aug. 2019.
2○https://www.intel.com/content/www/us/en/architecture-and-technology/intel-rack-scale-architecture.html, Aug. 2019.
3○https://www.hpl.hp.com/research/systems-research/themachine, Aug. 2019.
4○https://www.intel.com/content/www/us/en/high-performance-computing-fabrics, Aug. 2019.
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USB TF

...

...

 RJ45 

Power in

12 V ATX

USB TF USB TF USB TF USB TF
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CPU

USB TF

CPU

HDMI

DS

PWS

CPU CPU CPU

CPU CPU CPU

RJ45 RJ45

Network

Switch

DS DS DS

DS DS DS DS

Fig.1. Layout of the network communication board for an array of mobile system-on-chips.

Fig.2. Main chip labeled with “217” for network data exchange
of the communication board.

Fig. 3. Main chip labeled with “129” for exchanging data to
external connected devices of the communication board.

Fig.4. Power manager system labeled with “73” of the commu-
nication board.

We also design interfaces that are shared by the on-

board system-on-chips. HDMI is used to connect one

of the system-on-chips on a board to a screen. The

12 V ATX is used to supply power for the board and

its components such as processors. Note that there are

three RJ45 interfaces for the Ethernet network. The

two RJ45 interfaces on the edge of a board are used

to connect a board to another board or other compu-

tational nodes such as a traditional X86 CPU-based
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server by an Ethernet network cable. The other RJ45

interface is built in the form of RJ45 pins, connecting

two boards directly in a compact way.

Our mobile system-on-chip array architecture en-

sures the scalability and flexibility of ADOM sys-

tems. For example, we can use the RJ45 pins on the

board to directly connect a number of such boards

to form a homogeneous ADOM cluster, as shown in

Fig. 5. This is significantly more space-efficient than

the Glasgow Raspberry Pi cloud which uses commercial

routers on the shelf for communications and a Rasp-

berry Pi mother board for periphery device IO for each

processor [36]. Moreover, one or more boards can be

connected to traditional x86-CPU based servers or oth-

ers such as RISC-V CPU based servers, as shown in

Fig.6.

Fig.5. Illustration of an ADOM cluster.

3.3 Software Design

We now describe the design of our resource manager

Chameleon with two primary design concerns: flexibil-

ity and lightweight.

Fig.6. Heterogeneous clusters.

3.3.1 Two-Tier Architecture

We design a two-tier architecture for Chameleon as

shown in Fig.7. As can be seen, Chameleon employs

a master-slave mode but with two tiers. Moreover, the

one- or two-tier architecture can be switched to each

other smoothly. In tier 1, a computing node is selected

as the master of a cluster to manage a number of other

nodes which are called slaves. There is a daemon-called

scheduler to passively collect the resources of the slaves

and register the big data frameworks such as Apache

Spark and Flink running on the cluster. There is an-

other daemon on each slave node to manage the re-

sources of the node and execute the assigned tasks. The

daemon on the slave reports its resources to the mas-

ter via heartbeats. In summary, the function in tier 1

is similar to that of other resource managers such as

Mesos [28] and YARN [29].

In tier 2, another mobile system-on-chip node is

added and acts as masters in tier 1. We call the master

in tier 2 super-master. The masters in tier 1 report their

resources to the super-master via heartbeats. More-

Slave 2

ExecutorExecutor ... Executor
Slave 1

ExecutorExecutor ... Executor

Super-Master

Chameleon Master

Allocator Scheduler

Chameleon Master

Allocator Scheduler

. . .. . .

Slave 1

ExecutorExecutor ... Executor

Slave N

ExecutorExecutor ... Executor. . .

Slave 2

ExecutorExecutor ... Executor

Slave N

ExecutorExecutor ... Executor

. . .

Tier 2

Tier 1

Fig.7. Two-tier architecture of Chameleon.
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over, the big data analytical frameworks are registered

in the super-master when Chameleon is configured as

the two-tier architecture. Fig.8 shows the detailed steps

about how a big data analysis program is registered

and scheduled to execute. In step 1○, the masters reg-

ister their information on the super-master. In step

2○, the drivers of big data analysis frameworks such as

Apache Spark and Flink register their information on

the super-master. In step 3○, the super-master decides

which zone for a big data analysis program to run and

passes this information to the corresponding driver. Fi-

nally, the driver registers on the master of the assigned

zone and the master schedules the corresponding tasks

to run on the slaves of the zone, as shown in step 4○.

3.3.2 “Software-Defined” Design

On how to make Chameleon adaptive to the ex-

tremely diverse situations of ADOM applications, we

are inspired by software-defined network (SDN) [37], but

with our innovations. One of the SDN’s pillars is the

decoupling of the control plane and the data plane. We

also decouple the control plane and the data plane in

Chameleon, but we propose a configuration plane and

decouple it from the other two planes, as shown in Fig.9.

The reason is that big data analytical frameworks such

as Apache Hadoop and Apache Spark have a large num-

ber (e.g., 40) of configuration parameters. Some of

these parameters are critical to performance but diffe-

rent frameworks need different configuration optimiza-

tion approaches for optimized performance. For exam-

ple, the optimization approach used for optimizing the

configurations of Hadoop programs [38] cannot achieve

the optimized performance for Spark programs [39]. We

therefore propose a configuration library containing a

number of configuration optimization algorithms in the

configuration plane and provide north and south inter-

faces for the other parts of Chameleon to program, as

shown in Fig.9. Note that when a framework registers

on Chameleon, its configuration parameters are set by

Chameleon.

As shown in Fig.9, our control plane is in charge

of task scheduling. Similar to the configuration opti-

mization, different types of programs may need diffe-

rent scheduling algorithms or polices to achieve opti-

mal performance. We propose to build a scheduling

algorithm library in the control plane. Moreover, we

integrate a piece of interesting work, a time-space shar-

ing scheduling abstraction [40], in Chameleon to further

optimize the performance of big data analytical pro-

grams. Note that both configuration and control planes

can allocate resources for tasks. However, the configu-

ration plane performs a passive resource allocation be-

cause it allocates the resources for tasks before a pro-

gram starts to run and cannot re-allocate the resources

when the program is running. In contrast, the control

plane can change the resource allocation even when a

program is running and we therefore call it active re-

source allocation. The data plane is a central place in

Chameleon to maintain the status and information of

hardware resources. Similar to the control and config-

uration planes, north and south interfaces are provided

for the data plane. As shown in Fig.9, the three planes

can call each other’s interfaces and all the interfaces can

also be called by programs outside Chameleon.

Master

Slave Slave Slave Slave

Master

Super-Master

Framework Driver

Flink Zone
Spark Zone

Framework Driver Framework Driver

11

2 2
23 3 3

4 4

...

...

...

...

Fig.8. Workflow of big data analysis program registration, scheduling, and execution when Chameleon is configured as a two-tier
architecture.
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Control Plane

Configuration Plane

Scheduling Library

Data Plane

Time-Space Sharing

Scheduling

Configuration Library

North Interface

South Interface

North Interface

South Interface

Hardware Status

North Interface

South Interface

Data Analytics

Task

Data Analytics

Task

Data Analytics

Task

Data Analytics

Task

Data Analytics

Task

Fig.9. Three planes of Chameleon.

The reason for the “software-defined” resource man-

ager is two-fold. First, we emphasize that the functions

of the resource manager is programmable. Second, the

data, control, and configuration planes are decoupled.

These two aspects make the modules of Chameleon be

loaded into memory on demand, saving CPU and mem-

ory resources.

Actually, the idea of “software-defined” software has

attracted attention in recent years including software-

defined cloud computing [41, 42] and software-defined

operating systems [43]. However, these are early propos-

als while we implement a real software-defined resource

manager for ADOM platforms.

3.3.3 Fine-Grained Resource Metric

As aforementioned, a mobile system-on-chip con-

tains heterogeneous processors such as CPUs and

GPUs, and heterogeneity is therefore an essential fea-

ture of ADOM systems. The resource manager should

therefore consider fine-grained resource heterogeneity

as much as possible when it schedules tasks. However,

the popular resource managers mainly use the coarse-

grained resource metrics such as the number of CPU

cores and the size of memory to schedule tasks. For

example, Mesos [28] offers resources for programs as a

combination of CPU cores, free memory capacities, and

remaining disk capacities of a slave server. YARN [29]

allocates a resource container encapsulating a certain

number of CPU cores and a certain size of memory and

disks for each application.

With the presence of heterogeneous hardware re-

sources in an ADOM cluster, these coarse-grained met-

rics cannot accurately reflect the computational power

of the resources. For example, the family of Intel Core

i5 has several modes (e.g., Core i5-750, Core i5-760, and

Core i5-750S) with different frequencies (e.g., 2.67 GHz,

2.8 GHz, and 2.4 GHz). The computational power of

the CPU core of i5-760 is significantly different from

that of i5-750S. Scheduling tasks based on only the

number of CPU cores and the size of memory obviously

cannot optimize the performance.

We therefore propose a metric called CP (computa-

tional power) that can reflect the fine-grained hetero-

geneity of hardware resources, as follows:

CPi(x, y) = (ai + bi + ci)× x + di × y,
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where CPi represents the computational power of ma-

chine i, and ai, bi, ci, and di denote the weights of

CPU mode, CPU frequency, last level cache, and mem-

ory frequency, respectively. x is given by:

x =
xi∑N
i=1 xi

, (1)

where xi denotes the number of cores of the system-on-

chip i and N is the total number of system-on-chips in

the cluster. y is given by:

y =
yi∑N
i=1 yi

, (2)

where yi represents the size of memory of the system-

on-chip i. The value of ai is specified in Table 1. Note

that the value of ai can be changed if more different

CPU modes are involved. The values of bi, ci and di
are determined as shown in Tables 2, 3, and 4, respec-

tively.

Table 1. Determination of ai

Processor Mode ai

Xeon E3 1

Xeon E5 2

Xeon E7 3

Table 2. Determination of bi

k (GHz) bi

k < 2 1

2 6 k < 3 2

k > 3 3

Table 3. Determination of ci

k (MB) ci

0 < k < 10 1

10 6 k < 20 2

20 6 k < 30 3

Table 4. Determination of di

k (Mhz) di

k 6 2 000 1

2 000 6 k < 30 000 2

Note that it seems counter-intuitive that CP mixes

the CPU and memory capabilities together. However,

(1) and (2) indicate that x and y are relative metrics.

The definition of CP is therefore reasonable.

4 Implementation

4.1 Hardware Implementation

In this paper, we present an initial implementation

of the hardware. The communication board is im-

plemented by using RTL 8316E network switch chip,

SR8201G network PHY, and three power control chips:

TI TPS5430, G5626, and RT8288. The front side

and the back side of the board are shown in Fig. 10

and Fig. 11, respectively. We use the S500 system-

on-chip produced by Actions (Zhuhai) Technology Co.,

Ltd. The S500 system-on-chip integrates a Quad-Core

Cortex-A9R4 processor.

Fig.10. Front side of the communication board.

Fig.11. Back side of the communication board.

4.2 Software Implementation

We use C++11 to implement Chameleon with 7 000

lines in total. Moreover, to implement the concurrency

programming, we employ the actor model 5○ and use the

5○https://en.wikipedia.org/wiki/Actor model, Aug. 2019.
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libprocess library 6○. In addition, to make Chameleon

easy to extend, we employ several design patterns such

as singleton and strategy to implement Chameleon.

The source codes of Chameleon can be accessed 7○.

Fig.12 shows the important data structures of Cha-

meleon. The behaviors of the actor are similar to the

concept of the process in the operating system. One

actor could send data to other actors by transmit-

ting messages serialized by Google’s Protocol buffers 8○

like TasksMessage in Fig. 12. Each actor could have

a number of threads to invoke the user-defined func-

tions to handle the received messages. The three

planes of Chameleon mentioned in Subsection 3.3.2

are implemented inside the Actor Master. Control-

Plane maintains two main classes: Scheduler which

links to a scheduling algorithm library and Transfor-

mation responsible for switching the two-tier architec-

ture described in Subsection 3.3.1. Similarly, Con-

figurationPlane also has a configuration library which

contains a number of configuration optimization algo-

rithms designed for different workloads as mentioned in

Subsection 3.3.2. Finally, DataPlane contains a Slave-

tasks Mapping data structure which maintains the in-

formation of the tasks distribution among slaves and

the resources allocation of the cluster.

The workflow of job execution of Chameleon is simi-

lar to Mesos [28]. The Actor Master provides resources

to the upper registered framework by Resourceoffer-

Message. Then the framework packages the messages

of tasks to the Actor Master which schedules these mes-

sages to specified slaves after the processing of its three

planes. In the end, the Actor Slave initializes a number

of executors to control the runtime of each task.

5 Experimental Setup

We build an ADOM cluster by using six communi-

cation boards and correspondingly 60 mobile system-

on-chips, as shown in Fig.13. We use 16 nodes of this

cluster and one cluster consisting of two Xeon servers as

our hardware platform. We co-run several (e.g., 4–12)

Spark programs on the cluster and manage the cluster

by Chameleon and Mesos respectively.

ResourceofferMessage

Web UI

DataPlane

Framework A

t t

Scheduler

ConfigurationPlane

Scheduling

Algorithm Library

Actor Slave 1

Executor

t

Configuration

Library

Actor Slave 2

Executor

t

Actor Slave 3

Executor

Framework B

t

Scheduler

ControlPlane

Scheduler Transformation

t

Actor Master

TasksMessage

TasksMessage ResourcesMessage

Slave-Tasks

Mapping

Chameleon

Fig.12. Key data structures of Chameleon. ti: task i.

6○https://github.com/3rdparty/libprocess, Aug. 2019.
7○https://gitee.com/heterogeneous center/Chameleon, Aug. 2019.
8○https://github.com/protocolbuffers/protobuf, Aug. 2019.
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Fig.13. Overview of an ADOM cluster built by six boards.

Table 5 shows the Spark benchmarks used in this

study. They represent a sufficiently broad set of typical

Spark program behaviors. For example, KMeans has a

good instruction locality but a poor data locality while

Bayes is the opposite. While both performing selective

shuffling, the iteration selectivity of PageRank is much

higher compared with KMeans. NWeight is an ite-

rative graph-parallel algorithm implemented by Spark

GraphX which computes associations between two ver-

tices that are n-hop away. It consumes a lot of memory

in that it stores the whole graph in memory and iter-

ates over the vertices. Finally, WordCount, LogisticRe-

gression, GradientBoostingTree, PrincipalComponent-

Analysis, and SingularValueDecomposition are CPU-

intensive. TeraSort, Sort, and Join are both CPU-

intensive and memory-intensive.

Table 5. Experimental Applications

Application Abbreviation Input Data

PageRank PR Small/tiny

KMeans KM Tiny

Bayes BA Tiny

NWeight NW Tiny

WordCount WC Small/tiny

TeraSort TS Tiny

Sort ST Tiny

LogisticRegression LR Tiny

SingularValueDecomposition SD Tiny

GradientBoostingTree GT Tiny

Join JO Small/tiny

PrincipleComponentAnalysis PA Small/tiny

6 Results and Analysis

6.1 Evaluation for the ADOM Cluster

We compare our Chameleon against Mesos by us-

ing them to manage the 16-node edge cluster with

three cases: co-running four, eight, 12 workloads on

the cluster. Fig. 14 shows the average CPU utiliza-

tion comparison between Chameleon and Mesos when

we co-run four workloads (Join, WordCount, PageR-

ank, and PrincipleComponentAnalysis) with their cor-

responding small input datasets on the cluster. As

can be seen, the average CPU utilization of the 16

nodes is significantly lower when they are managed by

Chameleon than by Mesos. Since we co-run the same

four programs on the same ADOM cluster, this result

indicates that Chameleon consumes much less CPU re-

sources than Mesos. In detail, Mesos consumes 4.2x

more CPU resources than Chameleon on average and

up to 9.4x. The reason is that Chameleon employs the

“software-defined” principle, making it only run with

necessary functions and consume resources on demand.

In contrast, Mesos is not constructed by the “software-

defined” principle and it has to run with many unnec-

essary functions which consume CPU cycles.
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Fig.14. Average CPU utilization when four workloads co-run on
the 16-node ADOM cluster over the execution time period.

On the other hand, Fig.15 shows that the four pro-

grams consume significantly less memory by Chaneleon

than by Mesos. On average, the memory consump-

tion of the programs managed by Mesos is 13.5x of

that by Chameleon. This low memory consumption

of Chameleon also comes from the “software-defined”

design principle which makes Chameleon not load un-

necessary functions or libraries into the memory.
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Fig.15. Average memory utilization when four workloads co-run
on the 16-node ADOM cluster over the execution time period.

Fig.16 shows the execution time of the four programs

when they are managed by Chameleon and Mesos re-

spectively. As can be seen, all the four programs run

faster on Chameleon than on Mesos. This is because

Chameleon runs with only necessary functions and con-

sumes significantly less CPU and memory resources,

and Chameleon can make faster decisions such as task

scheduling than Mesos.
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Fig.16. Execution time of four workloads.

In summary, due to the “software-defined” princi-

ple employed in Chameleon, it consumes significantly

less CPU and memory resources than Mesos. This im-

plies that Chameleon is very suitable for ADOM be-

cause the CPU and memory resources are quite limited

on ADOM platforms. Moreover, the above results also

indicate that we can run more programs on the ADOM

cluster with a faster speed. We therefore try to co-

run eight workloads and 12 workloads on the 16-node

ADOM cluster to observe how Chameleon performs.

Fig.17 shows the average CPU consumption of eight

workloads with their corresponding tiny input datasets

co-running on the ADOM cluster. As can be seen, the

CPU consumption of the eight programs managed by

Mesos is on average 3.2x of that by Chameleon. Fig.18

shows that the memory consumption of the eight pro-

grams managed by Mesos is 11.2x of that by Chameleon

on average.
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Fig.17. Average CPU utilization when eight workloads co-run
on the 16-node ADOM cluster over the execution time period.
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Fig.18. Average memory utilization when eight workloads co-run
on the 16-node ADOM cluster over the execution time period.

Fig.19 illustrates that almost all the eight programs

run faster on Chameleon than on Mesos. Figs.20 and 21

show that 12 workloads running on Mesos on average

consume 2.6x and 11.4x of CPU and memory consumed

by these programs running on Chameleon, respectively.

Fig.22 shows that the 12 programs still run faster on

Chameleon than on Mesos. These results confirm that

Chameleon consumes less resources than Mesos but still

slightly speeds up programs. This is a good property

that is suitable for ADOM.

Fig. 23 shows the throughput for five workloads

with their corresponding tiny input datasets when they

are managed by Chameleon and Mesos. The ave-

rage throughput of the five programs by Chameleon

is slightly bigger than that by Mesos. However, the

improvement of throughput is not distinct and the

throughputs of two workloads are even lower when they

co-run on Chameleon. This is because Chameleon as

a resource manager only does resources allocation and
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makes faster task scheduling decisions for workloads but

does not impact too much on the execution of tasks.
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Fig.19. Execution time of eight workloads.
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Fig.20. Average CPU utilization when the 12 workloads co-run
on the 16-node ADOM cluster over the execution time period.
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Fig.21. Average memory utilization when the 12 workloads co-
run on the 16-node ADOM cluster over the execution time period.
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Fig.22. Execution time of 12 workloads.

6.2 Power/Energy Consumption

We now report the power and energy consumption

of our SOCA-DOM system. Fig. 24 shows the total

power consumption of the 16-node ADOM cluster when

running four, eight, and 12 programs respectively. Note

that we measure the currency and voltage of the in-

put power lines of the 16-node ADOM cluster, which is

an accurate power measurement. As can be seen, the

power consumption varies significantly during the pro-

gram execution for all the three cases. The maximum

power consumption can be 56.3 Watt and the minimum

is 48 Watt. However, the average power consumptions

of the three cases are similar (around 50 Watt), and

significantly lower than standard servers.

Fig.25 shows the CPU power consumption when we

co-run four and eight programs on two Xeon servers.

As can be seen, the power consumption varies much

more significantly than that of the ADOM cluster and

the highest power consumption achieves 179 Watt. The

average power consumptions for the four and eight pro-

grams are 61.7 Watt and 66.2 Watt, respectively, which

are higher than those on the ADOM cluster.

However, the CPU power consumption is only a

small proportion of the total power consumption of

a standard server. We therefore compare the energy

consumption of the ADOM cluster and the two Xeon

servers. Fig.26 shows the results. As can be seen, for the
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Fig.23. Throughput comparison between Chameleon and Mesos when five workloads co-run on the 16-node ADOM cluster.
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same four big data programs, the energy consumption

of the Xeon servers is 4x of that of the ADOM cluster.

For the eight programs, the Xeon servers consume 2.2x

more energy than the ADOM cluster. This indicates

that SOCA-DOM is an energy-efficient system.
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Fig.24. Total power consumption of the 16-node ADOM cluster
when running four, eight, and 12 workloads respectively over the
execution time period.
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when running four and eight workloads respectively over the exe-
cution time period.
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cluster and 2-node Xeon cluster with four and eight workloads
respectively.

6.3 Heterogeneous Cluster Evaluation

As aforementioned, Chameleon can also manage

heterogeneous servers. To evaluate the performance of

Chameleon in this case, we first use a standard Xeon

server and 16 mobile system-on-chips to construct a

cluster. We then run the Spark master on the Xeon

server and the Spark slaves on the mobile system-on-

chips. We also co-run four, eight, 12 workloads on

this heterogeneous cluster respectively, but we only re-

port the results for the 12 workloads co-running case.

Fig.27 shows the average CPU utilization comparison of

the slave nodes which are the mobile system-on-chips.

As can be seen, Chameleon consumes significantly less

CPU than Mesos in this case. Moreover, the CPU

consumption of Chameleon is more stable than that

of Mesos. This is also good for the ADOM platform

design.
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Fig.27. Average CPU utilization comparison when a Xeon server
is the master and 16 mobile system-on-chips are slaves over the
execution time period of workloads.

However, Fig.28 shows that the master CPU con-

sumption of Chameleon is slightly higher than that of

Mesos. The average master CPU consumption of Mesos

is 3.8% while that of Chameleon is 4.1%. However,

the CPU consumption of Mesos is significantly unsta-

ble compared with Chameleon. Nevertheless, achieving

slightly higher CPU utilization on standard servers is

acceptable since the CPU computational capability of

a standard server is powerful.

Fig.29 illustrates the memory consumption compa-

rison between Chameleon and Mesos. As can be

seen, Mesos still consumes much more memory than

Chameleon in this case. In detail, the size of memory

consumed by programs managed by Mesos is 8.7x more

than that by Chameleon. Note that we compute the to-

tal memory consumption including the master node and

all the slave nodes. This indicates that more workloads
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can also run on this heterogeneous cluster managed by

Chameleon.
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Fig.28. Master CPU utilization comparison when a Xeon server
is the master and 16 mobile system-on-chips are slaves over the
execution time period of workloads.
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Fig.29. Total memory utilization comparison of the 16-node edge
cluster and 2-node Xeon cluster over the execution time period
of workloads.

Fig.30 shows the performance of the 12 workloads

on the heterogeneous cluster. As can be seen, the

programs on Chameleon run significantly faster than

on Mesos. On average, programs run 33% faster on

Chameleon than on Mesos. For the program Word-

Count, it runs 4x faster on Chameleon than on Mesos.

The reason is that Chameleon designs fine-grained met-

rics which are used to schedule tasks to execute. The

fine-grained metrics can accurately reflect the com-

putational power of different servers. In this case,

Chameleon knows that the standard server is much

more powerful than the mobile system-on-chips. Con-

sequently, Chameleon can schedule the tasks to proper

nodes to improve the performance. In contrast, Mesos

employs its fair scheduling policy to allocate resources

and leverage the scheduler of Spark to schedule tasks to

run, which does not consider the computational power

differences between the nodes of a cluster. This is the

reason why Chameleon runs much faster than Mesos in

the heterogeneous clusters.
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Fig.30. Execution time comparison of the 16-node edge cluster
and 2-node Xeon cluster for the 12 workloads listed in Table 5.

7 Limitations

In this section, we discuss the hardware and soft-

ware limitations of SOCA-DOM.

7.1 Hardware Limitation

As illustrated in Subsection 3.2, each mobile system-

on-chip in our hardware design integrates an ARM

CPU and an amount of low power DRAM. However,

even with the state-of-the-art design techniques, the fre-

quency of our integrated CPU is only 1.8 GHz and the

capacity of DRAM is only 4 GB. Since the operating

system would take up almost 2 GB to maintain its nor-

mal operation, we only have 2 GB left to do big data

analytics for tasks per mobile system-on-chip. This re-

sults in that SOCA-DOM cannot deal with large-scale

datasets (e.g., more than 50 GB) because the data de-

serialization also requires tens of gigabytes of memory

for big data analytics workloads.

7.2 Software Limitation

Our software resource manager Chameleon only

provides a number of interfaces for upper application

frameworks to do resources allocations. However, the

detailed implementations of the interfaces also require

users to do a lot of development. In other words, the

learning and development cost might be huge for some

users who have less knowledge about how Chameleon

operates.

8 Related Work

ADOM is a special kind of edge computing which is

an emerging computing paradigm and is a hot topic re-
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cently. Since there is no study focusing on ADOM, we

introduce the related work about mobile edge comput-

ing which can be classified by three categories: hard-

ware platform, resource management, and big data

analytics of mobile edge computing.

8.1 Hardware Platform

Currently, many researchers proposed to augment

the function of the base station servers and made them

as the edge computing platform [12, 15,44]. This may

work in some cases but the servers are power hungry

and not easy to move, which makes this type of edge

computing platforms unsuitable for many more edge

computing cases such as IoT (Internet of Things). The

closest work to ours is to use Raspberry Pi boards to

construct the cloud platform [36]. Although [36] also

proposes to use mobile system-on-chips to build com-

puting platforms, it did not propose the resource mana-

gement approaches like ours and simply used the Ether-

net network to connect a number of ARM-based boards,

which might occupy a large space when there are many

nodes. Another work using wimpy cores is FAWN [45].

[45] proposes to use an array of wimpy cores to build

a server. Our work is different from it in the way that

we build a communication board to connect the mobile

system-on-chips.

8.2 Resource Management

Resource management is a critical topic for comput-

ing systems. There are a lot of studies that have been

done for resource management including Mesos [28],

Yarn [29], Omega [46], Borg [47], Quasar [48], and so on.

These are excellent studies aiming at different angles

of resource management. However, they were designed

only for cloud computing platforms where the resources

are rich. In contrast, our work targets for ADOM plat-

forms where we aim to reduce the resource consumption

of the hardware resource management software itself.

There are also a large body of studies focusing

on task scheduling such as Appollo [49], Tarcil [50],

and so on. Our Chameleon differs from them in

that Chameleon considers the fine-grained computation

differences of CPU cores.

8.3 Applications of Big Data Analysis for
Mobile Edge Computing

Because of the data deluge of IoTs, nowadays the

number of applications for big data analytics for mo-

bile edge computing is increasing dramatically [1, 10,13].

Overall, these applications can be classified into batch

data-intensive computing and real-time data analytics.

For example, the batch data computing framework

MapReduce is employed to perform data collection,

cleaning, and mining for mobile applications including

smart grid [12] and vessel monitoring [26]. Several arti-

ficial intelligence algorithms are leveraged to do real-

time data analytics on mobile edge platforms such as

real-time video analytics with DNNs [23], object detec-

tion in self-driving, and so on. Our resource manager

Chameleon could provide interfaces of resource alloca-

tions for both batch and real-time data analytics appli-

cations.

9 Conclusions

In this work, we designed a hardware architecture

for analyzing big data on the move by constructing

a communication board to integrate an array of mo-

bile system-on-chips. We also proposed a “software-

defined” resource manager and developed a prototype

named Chameleon. The combination of the hardware

and the software is called SOCA-DOM. The experimen-

tal results showed that SOCA-DOM consumes up to

9.4x less CPU resources and 13.5x less memory than

Mesos. In addition, we showed that a 16-node SOCA-

DOM consumes up to 4x less energy than two stan-

dard Xeon servers. We concluded that our SOCA-DOM

with fine-grained hardware resources and a “software-

defined” resource manager works well for analyzing big

data on the move.
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