
1516 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Randomize the Running Function
When It Is Disclosed

YongGang Li , Yu Bao, and Yeh-Ching Chung , Senior Member, IEEE

Abstract—Address space layout randomization (ASLR) can
hide code addresses, which has been widely adopted by security
solutions. However, code probes can bypass it. In real attack
scenarios, a single code probe can only obtain very limited code
information instead of the information of the entire code segment.
So, randomizing the entire code segment is unnecessary. How to
minimize the size of the randomized object is a key to reducing
the complexity and overhead for ASLR methods. Moreover,
ASLR needs to be completed between the time after code probe
occurs and before the probed code is used by attackers, otherwise
it is meaningless. How to select an appropriate randomization
time point is a basic condition for achieving effective address
hiding. In this paper, we propose a runtime partial randomization
method RandFun. It only randomizes the probed function with
parallel threads. And the randomization is performed when
and only when potential code probes are detected. In addition,
RandFun can protect the probed code from being used as gadgets,
whether during or after randomization. Experiments and analysis
show RandFun has a good defense effect on code probes and only
introduces 1.6% overhead to CPU.

Index Terms—Code probes, code reuse attacks, control flow,
access control, operating system.

I. INTRODUCTION

THE deployment of CRAs (code reuse attacks) needs to
obtain specific code snippets and their addresses. ASLR

can hide code addresses, so that the specific code snippets
cannot be located. However, code probes can bypass ASLR [2].
The existing code probes include allocation oracle [1], process
clone [7], arbitrary read [3], data leakage [4], arbitrary jump
[5], and side-channel leakage [6], etc.

To defend against code probes, re-randomization [8] is pro-
posed. In fact, it only makes sense to randomize the probed code
during the period after code probes occur and before CRAs are
deployed. Randomizing the non-probed code is meaningless.
The ideal re-randomization should answer how to choose the
right time to randomize the disclosed target, which directly
affects its effectiveness and efficiency.

Manuscript received 3 July 2023; revised 28 January 2024; accepted
21 February 2024. Date of publication 4 March 2024; date of current version
10 May 2024. This work was supported by the Fundamental Research Funds
for the Central Universities under Grant 2023QN1078. Recommended for
acceptance by M. Correia. (Corresponding author: YongGang Li.)

YongGang Li and Yu Bao are with the China University of Min-
ing and Technology, Wudaokou, Haidian 100083 China (e-mail: lygzr@
mail.ustc.edu.cn).

Yeh-Ching Chung is with the Chinese University of Hong Kong in
Shenzhen, Shenzhen, 518172 China.

Digital Object Identifier 10.1109/TC.2024.3371776

The first challenge faced by re-randomization is how to
choose the disclosed target to randomize. In the presence of
fine-grained ASLR, a single probe or leakage can only expose
a small amount of code information. Therefore, it is unnec-
essary to re-randomize the entire code segment. The granu-
larity of randomization and the size of the target determine
ASLR’s complexity. Performing fine-grained re-randomization
for the entire code segment can increase the suspend time of
the process. For example, Shuffler introduces over 50% over-
head to xalancbmk [9]. The reason is such a method requires
a lot of extra effort to ensure the control flow can jump to
the right location after randomization. To profile the complex
call graph of the randomized objects, existing methods have
to rely on source code, which is the basic reason why most
methods only choose the objects with source code as their
protection targets.

The second challenge faced by re-randomization is how to
select the time point of randomization. Traditional ASLR ran-
domizes targets via the modified compiler, loader or linker.
While, the code layout remains unchanged until the process
ends. An attacker can bypass such methods by probing the
binary code. In contrast, re-randomization randomizes the code
at a specific point during the process running. For the peri-
odic ASLR methods, a large randomization interval can leave
sufficient attack windows for attackers, while a small inter-
val can incur significant overhead. For the runtime methods,
they randomize the target when the code with specific char-
acteristics is executed, such as the system call write. How-
ever, overly loose randomization conditions can also introduce
significant overhead.

Faced with the two challenges, this paper proposes a novel
method RandFun, whose protection target is the running binary
code. It needs to address four issues. (1) How to select the object
that should be randomized? (2) When the selected object needs
to be randomized? (3) How to reduce the process suspending
time caused by randomization? (4) How to ensure the security
of control flows during and after randomization.

To address the issues (1) and (2), RandFun builds a mecha-
nism to perceive code probes in real time. Next, it migrates the
probed function to a new space to ensure it can be called legally.
Meanwhile, a parallel thread is started to randomize the probed
function, which can address the issue (3). During and after the
randomization, the control flow jumping to the probed function
will be tracked and detected, which can address the issue (4).

The motivation of this paper is to propose a runtime random-
ization method for the running process without source code.

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3289-0330
https://orcid.org/0000-0002-8704-9821
mailto:lygzr@mail.ustc.edu.cn
mailto:lygzr@mail.ustc.edu.cn

LI et al.: RANDOMIZE THE RUNNING FUNCTION WHEN IT IS DISCLOSED 1517

Unlike existing methods, we only randomize the functions
(rather than entire code segments) that may be disclosed in the
potential attack scenarios (rather than all execution scenarios).
Such designs can reduce unnecessary randomization and avoid
profiling complex control flow graphs for the entire code seg-
ment. In summary, the contributions of this paper are as follows:

1) Propose a mechanism to perceive code probes, which are
the events triggering randomization.

2) Propose a real runtime randomization method. It only
randomizes the code blocks within the probed function,
not the entire code segment. The randomization activity
and the protected process are parallel, which can reduce
the running delay of the protected process.

3) Propose a control flow protection mechanism. It can pre-
vent the probed functions and code blocks from being
used as gadgets during and after randomization.

4) Implement RandFun in Linux. To the best of our knowl-
edge, RandFun is the first runtime ASLR for the probed
targets and it only introduce 1.6% overhead to CPU.

II. BACKGROUND AND RELATED WORKS

CRAs are a series of control flow hijacking methods. They do
not require injecting code into the attacked object, but instead
leverage existing code to deploy attacks. CRAs use memory
vulnerabilities (such as stack overflow vulnerabilities) to tamper
with control flows, and redirect them to the selected malicious
payloads (gadgets) instead of the original code. Gadgets are
the code snippets located in the code segment of a process or
library. They contain control flow transfer instructions including
call *pointer/*register, jmp *pointer/*register, and ret, which
can transfer control flows to the next gadget. Currently, the
most commonly used method for defending CRAs is the control
flow integrity (CFI) method. It sets checkpoints at the locations
where the control flow transfers occur. However, for the closed-
source software, existing methods cannot set effective check-
points through source code analysis or compilation, resulting
in an inability to deploy.

For the closed-source software, illegal control flows can
be detected by monitoring and analyzing their behaviors.
Hardware-assisted virtualization technologies EPT (Extended
Page Tables) and VMX (Virtual Machine Extension) can be
used to efficiently track and detect the behavior of running
processes. EPT is a memory virtualization technology that can
control page permissions and mapped areas. VMX is a control
technology that can capture and manage specific events in the
OS (such as process switching and interrupts). Both have been
widely used in the field of control flow protection and have
achieved good results.

Deploying CRAs requires obtaining the code snippets that
conforms to the gadget format in advance. ASLR can change
the code layout, thereby hiding code addresses from attackers.
To defeat ASLR, code probes are proposed. The essence of code
probes is that attackers obtain code addresses and code forms
through memory access. In general, code-reading-based probes
can directly obtain the code forms. Moreover, existing code
probes can also obtain mapped code areas, specific code ad-
dresses, and even indirectly obtain code snippets that conform

to the gadget format. Taking the vulnerability CVE-2015-7547
as an example, it can be used to deploy arbitrary-jump probes.
In this probe, attackers can use the vulnerability to tamper with
the original return address, causing it to jump to an arbitrary
location. Afterwards, attackers continue to fill the stack with
multiple return addresses, which point to a notification module
(such as a net function). Therefore, if the hijacked control flow
jumps to a code snippet containing the instruction ret, attackers
can know that the executed code containing ret.

In fact, under the protection of randomization (especially
fine-grained randomization), code probes have become the first
step in deploying CRAs. Defending code probes can effectively
mitigate the threat posed by CRAs. The methods defending
against code probes include memory isolation and runtime
ASLR. In this section, we introduce them separately.

A. Memory Isolation

Memory isolation divides the memory into normal area and
safe area. The protected objects are placed in the safe area,
and only the specific code can access them. TDI [10] isolates
memory objects of different colors in separate memory arenas.
MemSentry [11] is a domain-based method that uses Intel MPK
to protect the sensitive data, and it only allows the data access
when execution has switched to the right domain. Datashield
[12] separates the memory into a precisely protected region for
sensitive data and a coarsely protected region for non-sensitive
data. ConfLLVM [13] is a compiler-based method, which al-
lows classifying data into public and private. MemCat [14]
tries to identify the data that can be controlled by adversaries
using compile-time policy, and it allocates those objects on a
separate heap/stack. SeCage [15] protects the target data via
EPT switching. Type-After-Type splits available memory into
separate pools for each type of heap data [16].

In fact, the most serious challenge is not how to isolate the
target objects, but how to determine which objects need to be
isolated. It is an important premise for current methods that the
defender knows which data or code are vulnerable in advance.
However, the execution logic of the protected object, especially
for the closed-source projects, is not always known. Therefore,
the existing isolation methods still have obvious weaknesses in
terms of protection effect and deployment scope.

B. ASLR

The existing ASLR can be divided into data ASLR and code
ASLR. Data ASLR randomizes the representation of data in
memory to prevent deterministic corruption of data or plain-
text information leakage [10]. CoDaRR [17] continuously re-
randomizes the masks used in loads and stores, and re-masks
all memory objects to remain transparent w.r.t program execu-
tion. PT-Rand [18] randomizes the location of page tables to
ensure the location of page tables is not leaked. The main idea
behind ASLR-Guard [24] is to provide a secure storage for code
pointers and encode the code pointers when they are treated
as data.

Compared with data ASLR, more code ASLR methods have
been proposed. The randomization granularities include code
pages, functions, basic blocks, and instructions. SafeHidden

1518 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

[19] continuously re-randomizes the locations of safe areas.
Shuffler [9] defend against blind ROP and JIT-ROP in user
space. CodeArmor [20] is another user-space re-randomization
method, and its efficiency is better because of page remap-
ping. Remix [21] randomly shuffles basic blocks within their
respective functions. TASR [22] re-randomizes the memory
layout during runtime before the adversary can take advantage
of any stolen knowledge. Adelie enables efficient continuous
KASLR for modules by using the PIC [23]. RUNTIMEASLR
[7] prevents clone-probe attacks by re-randomizing the address
space of every child after fork(). CCR [25] relies on compiler–
rewriter cooperation to enable fast and robust fine-grained code
randomization on end-user systems. Mixr [26] works on soft-
ware/libraries without access to their source code. Reranz [31]
uses parallel processes to randomize the entire code segment,
which can reduce the running delay.

Almost all ASLR methods randomize the entire segment,
even most of the object are unknown to the adversary. This
means a large number of addressing operations need to be mod-
ified to ensure the code can be correctly called after randomiza-
tion. This is a huge challenge for existing methods, especially
for the runtime randomization, which incurs significant over-
head. In addition, complex randomization steps can suspend
the process for a long time, thus causing a delay that cannot
be ignored.

III. ASSUMPTIONS AND THREAT MODELS

First, we assume the address space of the target process have
been randomized with the function granularity during compil-
ing or loading, and adversaries must probe code to find gadgets,
which is similar with Buddy [27]. Therefore, adversaries can
only obtain the memory layout of a single function at most via
a single leaked pointer (such as the return address). Second,
we assume adversaries can probe the applications in user space
with the existing probe technologies [1], [2], [3], [4], [5], [6].
Third, we assume adversaries can exploit the memory corrup-
tion (such as the overflow vulnerabilities) to hijack control
flows. The threat model in this paper focuses on the following
5 memory probes:
Vector 1: Allocation Oracle [1]. It uses memory allocation
functions, such as malloc, to allocate an area, and the returned
result will reveal whether the area has been mapped.
Vector 2: Clone Probe [2]. It uses the cloned process to probe
the memory layout of the parent process, which can avoid the
parent process’s crash caused by illegal access.
Vector 3: Arbitrary Read [3]. It can arbitrarily read code and
data. Moreover, Data Leakage [4] can read the relative offset in
PLT (Procedure Linkage Table) to get the randomized address
of GOT (Global Offset Table), which stores all the library
function addresses needed by the current process.
Vector 4: Arbitrary Jump [5]. It can redirect control flows to
any position through arbitrary write. Then the available gadgets
can be located by analyzing the crash information.
Vector 5: Side-channel Leakage [6]. It uses the cache hit and
cache miss in the page tables at all levels to crack the 12th to
47th bits of the virtual address step by step.

IV. SYSTEM DESIGN

Existing ASLR methods randomize the entire code segment
during code compilation, process loading, or process running.
To ensure the control flow can still jump to the right location
after code randomization, a precise control flow graph is neces-
sary. However, the larger the size of the randomized code, the
more complex the control flow graph. Therefore, existing meth-
ods can only construct precise control flow graphs by analyzing
the source code. In addition, randomization operations must
be completed after the occurrence of code probes and before
the probed code is executed, otherwise the randomization is
invalid or meaningless. RandFun aims to randomize the probed
functions when code probes occur and protect the control flow
jumping into them. But, why don’t we directly block the activ-
ities with probe risks? The reasons are as follows:

First, directly blocking the risk activity may lead to conflicts.
In fact, the current risk activity is not necessarily a code probe.
For example, code reading can be triggered either by a code
probe or by a debugger. Second, directly blocking the risk
activity cannot prevent the specific payloads from probing code
or hijacking control flows in the next round of attacks, even if it
is a real code probe. Some malicious payloads may have been
known by an attacker before the current probe was detected. For
example, for a known stack overflow vulnerability, an attacker
only needs to design inputs to hijack the return control flow
without any code probe. Third, some gadgets may have been
known before the risk activity is detected. For example, the
illegal jumps may have performed multiple times, and a target
code snippet containing ret has been located before the current
activity triggers an exception signal. In practise, the undetected
code snippets that have been selected by attackers are more
dangerous. Fortunately, the number of such payloads is not
large enough to build a complete gadget chain. Attackers need
code probes to obtain more payloads and chain them with
the undetected one. From the perspective of attack principles,
starting with the probed code and retroactively checking the
executed code blocks can help to discover more payloads that
can be maliciously exploited by attackers but unknown for us.

Considering the above issues, RandFun does not directly
prevent the code probes, but rather randomizes the probed
functions at runtime and checks the control flow jumping to
them. To achieve these goals, RandFun needs to complete the
following tasks.

1) RandFun builds a mechanism to detect code probes and
filter out the function with exposure risk. In the presence of fine-
grained ASLR, adversaries need to perform code probes to get
code forms or addresses [27]. However, code probes are mixed
with normal code accesses, which makes them difficult to be
identified. Fortunately, there are subtle or obvious differences
between legal code accesses and illegal code probes, which will
be reflected in execution context and behavior characteristics.
First, the running processes generally do not read their own code
and library code, while some code probes require reading code
to filter out enough gadgets. Second, legal code does not access
unmapped areas, while some code probes inevitably access
unmapped areas. Third, legal code execution rarely triggers

LI et al.: RANDOMIZE THE RUNNING FUNCTION WHEN IT IS DISCLOSED 1519

Fig. 1. The overall design of RandFun.

the exception signal SIGILL, while some code probes (such as
arbitrary jumps) have a high probability of triggering SIGILL.
Fourth, some code probes (such as side channel-based probes)
regularly access specific spaces, which is rare for the legal code.
Although there is no strict boundary between code probes and
legal code access, we can still use the differences between them
to screen out the potential code probes.

2) RandFun randomizes the probed code during the process
running. Directly manipulating the running code may cause
a process crash. To avoid this problem, RandFun copies the
probed code into kernel space for randomization. After that, the
randomized code will be backfilled into the original space.

3) RandFun protects the probed code snippets from being
used as gadgets. In the period during code randomization, the
risk that the probed code is used as a gadget is much higher
than that of the un-probed code. Because the process is not
suspended during randomization. At this point, the probed code
may have been known by the attacker, and it can be called
as a gadget. To chain the gadget, the attacker must break the
original code logic or data logic. This feature can be used to
identify illegal control flows. Moreover, RandFun also prevents
the probed function from being used as a function-granularity
gadget, such as COOP [28].

RandFun consists of ProbeSen, Randor, CFer, and CFbridge,
as shown in Fig. 1. First, ProbeSen perceives code probes
and finds out probed functions (①). Next, Randor migrates the
probed functions to a new space and copy them into kernel
for randomization (②). Meanwhile, it fills int3 to the original
function location to capture the control flow transferred to the
probed function. CFer handles the control flow transferred to
the probed function during randomization. It has two tasks: one
is to check the legitimacy of control flow transfers (③), and
the other is to transfer the legal control flow to its destination
(④). Finally, CFbridge backfills the randomized function into
the original space (⑤) and check the legitimacy of the calls to
the randomized function (⑥). It should be noted that there may
exist return addresses on the stack that point to the migrated
function in the new space after the randomized function has
been backfilled into the original space. Scanning the entire stack
to find them is both time-consuming and inaccurate. To address
this issue, CFbridge continues to capture the control flow that

Fig. 2. The mechanism perceiving code probes.

jumps to the migrated function in the new space. It redirects the
return control flow to the randomized function in the original
space ((1)-(4)) after detection.

The above designs require the capabilities of tracking and
controlling process behaviors. To achieve this purpose, we com-
bine VMX root and VMX non-root to divide the running OS
(operating system) into host and guest. In normal scenarios, the
OS runs in the guest. When a specific event occurs, the running
mode will switch to the host, which is called a system trap.
Combined with EPT and VMX, various system trap events can
be configured, which include process switching, breakpoints,
execution of specific instructions (such as int3), interruption,
single-step debug, and protection exception, etc. We can even
rewrite the CPU context by modifying the fields in VMCS
(virtual machine control structure).

V. SYSTEM IMPLEMENTATION

A. Perceive Code Probes

Since the code segment is unwritable, adversaries probe code
by reading it. XOM [38] disables the reading permissions of
code pages, thus preventing code leakage. However, code pages
are not completely loaded into memory at one time, which
makes it impossible to set all code pages as unreadable. Existing
methods have to track page allocation and adjust the permission
page by page, which introduce obvious overhead. The compo-
nent ProbeSen (shown in the Fig. 1) is designed to perceive
code probes.

1) Manage Code Permissions: We rebuild the memory al-
location system buddy system of Linux, as shown in Fig. 2. In
UMA architecture, zone_list points to the zones that contain all
pages. In the new buddy system, the original zones are divided
into two categories, code zones and system zones. The two
zones are abstracted into two pools, user pool and system pool,
which are pointed by user_list and sys_list respectively. All user
code pages are allocated from the user pool. Other code and
data, such as user data and kernel code, are allocated from the
system pool. All pages in user pool are unreadable, which can
be achieved by setting EPT entries. In summary, the new buddy
system can set all code pages in user space to be unreadable at
one time, which avoids page tracking during process running.

Note that we cannot use EPT to set a page to be unreadable
and writable at the same time. Otherwise, an EPT exception will
be triggered. However, the code page must be writable when it

1520 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

is being loaded, while the pages in user pool are unreadable.
To solve this conflict, we enable an EPT_switch, in which all
pages are readable, writable, and executable. If and only if a
code page fault occurs in user space, the added VMX instruction
vmfunc at the head of the function filemap_ fault (a function
that loads code from an ELF file into memory) switch the
current EPT to EPT_switch. Then, the code page is readable and
writable. When filemap_ fault returns, vmfunc is executed again
to switch back to the original EPT. At this point, the code page
has been loaded into memory, and the code page is unreadable
and unwritable.

The new buddy system can preset all code pages to be un-
readable, which can perceive the code reading (Vector 3). When
the code probe based on code reading occurs, an EPT exception
will be triggered. Next, the reading permission of the current
page is enabled. Then, the EFLAGS.TF in VMCS will be set to
1, which can put the processor into the single-step debug mode.
Then, every code reading can be captured. The function that has
been read will be marked as a probed function. This design can
perceive the Vector 3.

In addition to code reading, adversaries can also deduce the
code forms through the exception caused by code execution
(such as Vector 4). In the presence of fine-grained ASLR, the
adversary’s arbitrary jump probably jumps to unmapped areas
or illegal instructions. The former will trigger the signal SIGS-
GEV, and the latter will trigger the signal SIGILL.

2) Capture Signals: In our design, the system calls signal
and sigaction will be modified to capture the signals SIGSGEV
and SIGILL. Theoretically, the adversary may have performed
several illegal jumps before a signal is triggered, and its previ-
ous jumps did not trigger any exceptions. Therefore, we need to
detect whether these control flow transfers are caused by code
probes. After the SIGSGEV or SIGILL is captured, they use
the security strategies (described in Section V-C) to analyze
the code blocks recorded by LBR (Last Branch Record). This
design can perceive Vector 4.

3) Set Trap Spaces: To perceive Vector 1 and Vector 5, the
trap space mechanism is proposed. In Linux, users have up to
128TB address space. In practice, only a small part is in use.
Most of the space is unmapped. We allocate additional address
spaces for the target process when it is created. For example,
the original code size is 1MB, and it is just one of the 106

mapped spaces in the trap mechanism. If the adversary does
not have any prior knowledge of the code, the probability that
the control flow is transferred to the real code area at one time
is only 1/106. The additional areas mapped by us are called
trap spaces. They will be mapped to a same unreadable, non-
writable, and non-executable page called trap page, which is
achieved by modifying the EPT entries.

Allocation oracle [3] (Vector 1) probe the mapped spaces
through the results of memory allocation, which can locate the
hidden area. Under trap space mechanism, allocation oracle can
still get a lot of mapped areas, but it cannot filter out the real
code area from them, which leads to a probe failure.

In contrast, side channel leakage [4] (Vector 5) can accurately
predict the 12th ∼ 47th bits of the target address by the time
difference between TLB hit and TLB miss. To observe the status

of TLB, adversaries repeatedly evict or fill the content in TLB
via flush+reload, EVICT+TIME or PRIME+PROBE [40]. To
crack the 12th ∼ 14th, 21st ∼ 23rd, 30th ∼ 32nd, and 39th ∼ 41st

bits, the memory separated from the virtual address by n*4KB,
n*2MB, n*1GB, and n*512GB (n<8) will be accessed in steps.
RandFun sets these spaces as trap spaces. In practice, the size
of application code is almost no more than 512GB, or even less
than 1GB. When accessing the memory at the location n*1GB
or n*512GB from the code segment, the side channel leakage
will access the trap page. Then, we can find the probed function.

For Vector 2, the cloned process has the same address space
as its parent process. Therefore, the child process inherits all
trap spaces of the parent process. In addition, all code pages are
still unreadable. As a result, RandFun can still capture various
code probes in child processes. After that, the probed functions
in the child process and its parent process will be marked as
probed functions.

It should be noted that RandFun is only effective for code
probes, not data probes. We leave data probes, such as the stack
data disclosure based on printf(%), to data layout randomization
methods (such as stack ASLR). For code probes not mentioned
in this paper, as long as they require reading code, accessing
specific spaces or inevitably triggering specific signals, we can
capture them. The essence of code probes is direct or indirect
access to the memory where the code is located. We can dy-
namically manipulate the permissions and spaces of the code.
As long as the behavior pattern of code probes is known or
predictable, we can capture and filter out control flows with
specific behavior characteristics, and then discover (potential)
code probes.

B. Randomize the Probed Function

Existing ASLR methods suspend the target process during
randomization, which causes runtime delay. Our protection tar-
get is the probed function, and the randomization granularity is
the code blocks within the function. Directly manipulating the
process’s code while the process is running may cause a process
crash. The component Randor (shown in the Fig. 1) is deigned
to solve this problem. It copies the probed function into kernel
space for randomization. A kernel thread rand_thread will be
enabled to randomize the code copy. The thread and the process
containing the probed function are parallel.

Compared with the existing methods, the location of the
probed function itself will not be changed. The advantage of
such a design is that the function can still be called normally
by other callers. We don’t need to search for and correct the
callers calling the probed function. For complex closed source
software, existing methods are difficult to construct accurate
control flow graphs by analyzing binary code. Our design can
precisely avoid this issue.

All ASLR methods must ensure that the randomized di-
rect/indirect jump instructions can still reach the right locations.
Direct jump refers to the code directly providing an offset rela-
tive to rip in the form of an immediate value in the instruction,
and adding this offset to the rip pointing to the next instruction
can obtain the target address of the branch instruction, such as

LI et al.: RANDOMIZE THE RUNNING FUNCTION WHEN IT IS DISCLOSED 1521

Fig. 3. The randomization of the risk function.

call/jmp offset. Indirect jump refers to the instruction’s jump
target coming from a register or pointer, which is an absolute
address rather than an offset. The indirect jump instructions are
also called ICT (indirect control flow transfer) instructions, such
as call/jmp *pointer/*register.

1) Select the Code Blocks to be Randomized: For the
probed function, we randomize it with the code block granu-
larity. The code block selected by us containing at least one
entry and one exit, and it can transfer control flows. The exit is
a control flow transfer instruction. The next instruction adjacent
to the exit is the entry of the next code block.

The exits selected by RandFun include jmp offset, jmp *reg-
ister/*pointer (excluding PLT entries), ret and call offset, as
shown in Fig. 3. The instructions need to be fixed in this paper
are the direct jump instructions including call offset, jmp offset
and all jcc offset(jump if condition is met) instructions. We can
determine which instructions need to be fixed by analyzing the
executable file of the target process.

2) Randomize Code Blocks: For direct jump instructions in
the probed function, we recalculate their jump targets based on
the new code layout and the original relative addresses after
randomization. As a result, all such instructions can also reach
the right locations. For call offset, its return path will be changed
after randomization. Therefore, the return address on stack also
needs to be modified. To achieve this goal, we modify the offset
of call offset to redirect the control flow to a module, which
can replace the return address and transfer the current control
flow to a jump module after randomization. The jump module
is in an unreadable page and it can transfer the return control
flow to the real next instruction that have been randomized. This
design not only enables the return control flow to be transferred
to the right location, but also hides the return address on the
stack from attackers. Therefore, once the function itself has
been performed code probes, attackers cannot obtain the exact
gadget addresses. Even the stack data can be stolen, they cannot
obtain the real return addresses.

In addition, all addressing operations based on the current
code address (stored in rip) also need to be fixed. Compared
to direct jump instructions, rip-based addressing instructions
are easier to recognize. The reason is that rip appears in such
instructions, which can be obtained by analyzing the executable
file of the process to be protected. For such instructions, we only
need to correct the offset in the instruction.

The jump targets of jmp *register/*pointer are absolute ad-
dresses, which come from the parameters of the current function
(such as the pointer of the callback function), or from the heap,
stack, or data segment. The function parameter is determined
before the probed function is called, and it will not be affected
by the internal code block of the probed function. That is,
the jump target determined by the parameter still points to the
original address space and it doesn’t need to be fixed. For the
data in heap, stack, or data segment, it also does not need to be
fixed. If the jump target has been written into memory before the
probed function is called, it indicates that they are not controlled
by the internal code blocks. If they are written after the probed
function is migrated to the new space, it may be affected by the
assigning statement. According to our observation, such data
is accessed with the form of rip+offset, such as lea 0x73(rip),
rax. Since the instruction is based on rip, the offset will be fixed
as our design. We only need to modify the instructions writing
data without manipulating the jmp *register/*pointer.

For switch and try/catch statements, they use the jump table
(storing code block addresses) and __gcc_except_table (storing
LSDA, language specific data area) to locate the jump targets. If
the probed function uses jmp *offset(rip) to deference the con-
trol data in the jump table, or uses the function _unwind_resume
to parse LSDA, the corresponding entries in the jump table or
_gcc_except_table will be modified to point to the randomized
code blocks.

3) Backfill the Randomized Function: The component CF-
bridge (in Fig. 1) is responsible for backfilling randomized func-
tions into the original space. After randomization, the kernel
thread rand_thread waits for a system trap. Then, CFbridge fills
the randomized function back into the original space. Finally,
the probed function in the new space is remapped to an non-
executable page to capture the return control flows.

C. Protecting the Control Flow

1) Protect the Control Flow During Randomization: Due to
the fact that the probed code is still executable during random-
ization, once adversaries immediately launch an attack after
probing, the probed code snippets can be used as gadgets. To
address this issue, the component CFer (shown in Fig. 1) cap-
tures all control flows jumping to the probed code and checks
their legitimacy during the randomization.

To capture the control flows jumping to the probed function
and ensure the probed function can be called legally, we create
a new address space. The new space is the same size as the
original address space, as shown in Fig. 4. In the original ad-
dress space, the probed function will be mapped to new physical
page(s), and the code of the probed function on that page(s) is
0xcc (int3). As a result, calling the probed code in the original

1522 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 4. The mapping method of the probed function.

space will trigger a system trap due to int3, which can be
captured by RandFun. In the new space, the probed function
is mapped to the original page(s), where the original function
code is stored. To avoid legal control flows jumping back to
the probed function in the original space, we scan the stack and
modify the return addresses pointing to the probed function to
point to the code in the new space (if necessary). By analyzing
the Intel PT packet, we can determine whether there are return
addresses to be modified on the stack.

However, if the probed function is located in a shared li-
brary, the above design will cause some problems. First, directly
rewriting the shared code may cause conflicts. Second, the new
space is only mapped to the address space of the current process
instead of the address spaces of all processes. Therefore, the
control flow of other processes cannot be transferred to the new
space where stores the original code. To solve these problems,
all the probed code pages that are shared will be copied to
new physical pages. RandFun modifies the page tables of the
current process to map the virtual address of the shared func-
tions being probed to the new pages. So, the probed library
code in new pages are private to the current process. Finally,
RandFun can handle the private code pages without affecting
other processes.

To ensure the probed function can still be legally called and
its code blocks are not used as gadgets, all the control flows
triggering system traps need to be checked. We propose a set
of control flow detection strategies as follows:
1) If the instruction triggering a system trap is call/jmp offset,
the control flow is legal. The reason is the offset is in an un-
writable area and it cannot be tampered with. Moreover, the
offset will be modified to point to the probed function in the
new space. When it is called again, the system trap is no longer
triggered, which reduces overhead.
2) The call *xx triggering a system trap must jump to the probed
function’s head in the original space.
3) The jmp *xx that triggers the system trap can only jump to
the head of the opcode of an instruction.
4) If the instruction triggering the system trap is ret and it is in
the new space, the control flow is illegal. In the new space, the
return address paired with a call should point to the new space
instead of the original space. When the adversary modifies the
return address with the address of the probed code in the original
space where the code has been rewritten with int3, a system trap
will be triggered.

5) If the probed function and its caller are in different spaces
(that is, they are in different mapped libraries, or the probed
function is in a library and its caller is in an application), only
jmp *pointer in PLT and jmp *register in dl_runtime_solve are
allowed to transfer the control flow to the probed function, and
the control flow must be transferred to the head of the function.

The above security strategies can quickly identify most but
not all of the illegal call/jmp *xx. They need to be checked with
stronger security strategies. call/jmp *xx (caller) is context sen-
sitive. In context, the assignment and dereference to control data
determine the destination (callee) of the control flow. Before the
caller is executed, its control data is either explicitly assigned
or implicitly assigned. In fact, CRAs hijack control flows by
tampering with the assignments to control data or by changing
the dereference to control data. We can judge the legitimacy of
the control flow based on the changes in the caller context. The
context detection strategies are as follows:
6) Explicit assignments. The explicit assignment means the
original control data explicitly appears in code segment. For
example, in “lea 0x180 (rip), rax; ..., jmp *rax”, the control
data comes from lea 0x180(rip), rax. Such control data is
known and fixed. The basic reason that the control flow can
be hijacked is the control data will be temporarily stored in
the memory, such as stack, that can be tampered with. The
explicitly assigned control data can be obtained by backtracking
the historical paths recorded by Intel PT. In the attak scenario,
the tampered pointer and the original pointer determined by the
assignment statement are different.
7) Implicit assignments. The implicit assignment means that
the original control data does not appear in code segment.
Such data is determined by specific functions or compilers. For
example, the VTables in C++ code segment is determined by
the compiler.

For the control data stored in unwritable memory, such as
jump tables in .rodata, it cannot be tampered with. An adversary
can only tamper with the dereference to it. Such control data
will be modified to point to the executable code in the new space
instead of the probed code. If the control flow relying on the
data triggers a system trap again, it indicates the dereference
to the control data has been tampered with. The control flow
is illegal. Moreover, the vptr should point to the head of the
Vtable rather than its interior and the same vptr will not point
to different Vtables at different time points.

For the control data that is implicitly assigned and stored
in writable memory, such as the heap, it is copied from one
location to another by memory copy functions/statements. Such
control data will be modified to point to an unreadable transfer
module that can transfer the control flow to the right code in
the new space. At the same time, both the original control data
and the ICT instruction that relies on the data will be recorded.
If the ICT instruction triggers the system trap again, it indicates
that the original control data has been changed. The control
data should have the same directional characteristics before
and after changing. For example, the function pointer should
point to the function header instead of a code snippet inside the
function before and after the changing. The data attribute will
not be changed in the life cycle of the function. For example,
the control data will not become non-control data, and the

LI et al.: RANDOMIZE THE RUNNING FUNCTION WHEN IT IS DISCLOSED 1523

Fig. 5. The randomization of the risk function.

non-control data will not become control data. In addition,
neither the ICT instruction nor its control data can violate
strategies 2) ∼ 5).
8) Callback function. The callback function is a special case
in which callers can correspond to multiple callees, which de-
pends on the parameters passed to the caller. If the parameter
is determined by an assigning statement, we use the strategy
6) to check the control flow. If the parameter is implicitly
assigned, we use the strategy 7) to judge the legitimacy of the
control flow.

To find the assigning statements or memory copy functions,
we exploit Intel PT to record the instruction paths. The source
of the original control data can be obtained from the paths, as
shown in Fig. 5. Starting with the caller’s operands, we trace
backwards all the code blocks that have been executed in the
current function until we get the final assigning statement. If no
assigning statement to the control data is found in the current
function, the control data is implicitly assigned. It is important
to note that the callback functions use parameters as the caller’s
control data. If the operand is derived from a parameter of a
function, the last executed function will be a retrospective target
until an explicit assigning statement is found or an implicit
assignment is identified.

For the control flows that have been identified as legal, we
need to transfer them to right locations. After a system trap
occurs, we modify the guest rip in VMCS to make it point to the
executable code in new space. When the OS switches from host
to guest, the control flow can be redirected to the right location.

2) Protect the Control Flow After Randomization: After the
probed function is backfilled to the original space, the control
flow will jump to an unknown code block if an adversary uses
the original code address as a gadget address. As a result, it is
almost impossible for the code block currently being executed
to connect the next gadget. Therefore, RandFun can effectively
prevent the CRAs using the probed code blocks as gadgets.
So, we no longer need to track and analyze the control flow
that jumps inside the randomized function in the original space.
Nevertheless, CRAs (such as COOP) that use a full function as

a gadget can still be deployed. Because RandFun only random-
izes the code blocks in the function, and the function location is
not changed. Such a function still has the risk of being used as
a gadget if it has been known by adversaries. To prevent such
an attack, we need to track and detect the control flows jumping
to the header of the probed function after randomization.

We mark the header of the probed function with int3. As a
result, all control flows jumping to the probed function header
for the first time can be captured. We modify the guest rip
in VMCS to redirect the control flow to a detection module.
The module still uses the strategies proposed in section 5 to
check the control flow. If the control flow is legal, it replaces the
target of the caller instruction with the address of a transfer site.
The transfer site can execute the header of the probed function
and redirect the control flow to the right location through a
jump instruction.

In theory, RandFun still has some limitations in terms of
security, as it cannot handle all CRAs. If an attacker is able to
deploy CRAs without code probes, RandFun can be bypassed.
Deploying such attacks has strict limitations. Attackers must
know the code layout and code forms of the closed-source
software in advance, so that they can directly obtain available
gadgets without code probes. Such a condition are clearly im-
possible in an OS with ASLR (especially fine-grained ASLR)
enabled. In addition, if an attacker can hijack the direct jump
branch by tampering with non-control variables, RunFun can
also be bypassed. For example, for “if (a) call func-1; else call
func-2”, attackers can alter the control flow path by tampering
with the variable a on the stack. Fortunately, the control flow
hijacked by such an attack can only flow to a fixed location
rather than to any locations requested by CRAs.

VI. EVALUATION

We conduct all experiments on a Dell PC equipped with an
i7-6700@3.4GHZ CPU and 16GB memory. The OS is Ubuntu-
20.04 with kernel 5.1.4. All performance results are averaged
after 10 runs.

1524 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 6. Detect vector 1.

A. Security Evaluation

Inspired by IH [32], we test the code probe allocation oracle
(Vector 1) [1] on Nginx in original OS. In our test, Vector 1
takes about 7ms-14ms for one probe. It usually needs 70 probes
and 500ms-1000ms to probe one mapped code area. Under
the protection of RandFun, Vector 1 still maintains a time of
7ms-14ms to get one mapped area. However, it takes about
10-15 minutes to get an area containing the real code page, as
shown in Fig. 6. Because most of the mapped areas obtained
by Vector 1 are trap spaces set by RandFun, which have been
mapped to a trap page. Our test shows that one real code area
is contained in tens of thousands trap spaces, while Vector 1
cannot identify which mapped area is the real code area. In
general scenarios, Vector 1 is just an auxiliary tool and it cannot
locate available gadgets. It will immediately notify the memory
scanning tool to analyze the mapped area after locating it.
From a probability perspective, the probability of the analyzed
area being trap spaces exceeds 99.99%. When searching for
gadgets with ROPgadgets in original OS, attackers can discover
20 gadgets within 300ms. However, under RandFun’s protec-
tion, the ROPgadget will be detected when scanning the first
binary code.

To deploy arbitrary jump (Vector 4), we exploit the func-
tion ngx_http_parse_chunked to trigger the vulnerability CVE-
2013-2028 in nginx-1.3.9, which can arbitrarily tamper with
the return address. If only the last 12 bits of the return address
are tampered with, SIGILL or SIGSEGV will be triggered
when up to 5 code blocks are executed. If the return address
is tampered with a random 64-bit address, the probability of
triggering SIGILL, SIGSEGV and EPT exception exceeds 99%.
Then, RandFun can obtain the probed function. In addition,
RandFun will trace upward according to the LBR and judge
the legitimacy of the executed code blocks through the security
strategies, until a legal code block is found.

For other probes including Vector 2, Vector 3, and Vector 5,
they will be captured due to accessing trap pages, triggering

Fig. 7. Minimum time to obtain the turing-complete gadget set with a time-
line for new gadget type leaks. Each (•) with a number n on top of it represents
the time to leak/randomize n gadget types. xx-native: jitrop-native runs in the
native OS; xx-RandFun: jitrop-native runs in the OS equipped with RandFun,
xx-rand: RandFun randomize the function.

exception signals, or causing EPT violation. Then, RandFun
performs runtime randomization for the probed function.

RandFun’s main idea is to change the address of the probed
code before the gadget is executed. After a code probe occurs,
RandFun randomizes the probed code. If we can complete ran-
domization before the probed code is executed, CRAs cannot be
deployed. In addition, detecting control flows that jump to the
functions that have been probed but have not yet been random-
ized can also prevent CRAs. We use the modified jitrop-native
[33] (the modified one can output more code addresses and
more probing time) to probe gadget types in real applications.
We measure the probe time and randomization time, which can
verify the effectiveness of RandFun’s runtime randomization.
The results are shown in Fig. 7.

In the presence of RandFun, code probes become slower. The
reason is jitrop-native frequently reads the process code, which
causes system traps. We found that the runtime randomization is
so fast that it can be completed in a short time after a code probe.
More interestingly, some runtime randomization can even be
completed before jitrop-native finds new gadget types. The
reason is when jitrop-native reads the first byte of a function,
the function will be randomized by a parallel kernel thread.
Before the gadget in this function is found, the parallel kernel
threads may have completed randomization. In a word, since
multiple (up to twice the number of CPU cores) parallel kernel
threads are used, RandFun can quickly randomize the probed
code. As a result, before the attacker obtains enough gadgets,
the previously probed gadgets have become unavaiable.

B. Performance Evaluation

SpecCPU2006 is used to measure the CPU overhead. In prac-
tice, the benign applications do not probe the code. Therefore,
we cannot measure the impact caused by handling code probes.
To solve this problem, we use an LKM (loadable kernel module)
to read the code of the target function. It only reads one byte to
trigger runtime randomization. The number of probed functions

LI et al.: RANDOMIZE THE RUNNING FUNCTION WHEN IT IS DISCLOSED 1525

Fig. 8. The CPU overhead introduced by RandFun.

Fig. 9. The latency overhead introduced by RandFun.

increases from 0 to 100%, and all results are normalized based
on original OS, as shown in Fig. 8.

In the scenarios without code probes, RandFun only intro-
duces an average of 1.6% CPU overhead. When 10% functions
in a process are probed, the average overhead is 3.9%. When
100% functions are probed, the average overhead is more than
30%. When a code probe occurs, RandFun needs to randomize
the probed function and judge the legitimacy of the control
flow. The more functions are probed, the greater impact on
the running process. We believe that attackers should avoid
performing large-scale and prolonged code probes on the target
process. The reason is the scanning activities can slow down the
target process and increase CPU/memory/network load, which
will attract the attention of defenders. Therefore, we believe
RandFun’s overhead on the protected process is acceptable.

In real execution scenarios, code probes rarely occur. To
observe the overhead introduced by RandFun in the scenarios
without code probes, we use Lmbench to test the impact of
RandFun on system latency and bandwidth, and the results are
shown in Fig. 9. The average system latency is 2.4%, and the
bandwidth overhead is 2.7%.

IOmeter is used to measure the impact of RandFun on I/O
throughput and I/O response time when there is no code probe,
as shown in Fig. 10. RandFun reduces the I/O throughput by
3% on average and increase the I/O response time by 3.9% on
average.

Similar with BUDDY [36], we use Apache httpd to measure
the overhead of RandFun on the network, as shown in Fig. 11.
We measure the performance of httpd with different numbers
of worker processes (p) and different numbers of concurrent
connections (c). The size of requested file is 1MB. The average
network delay of each group is 2.5%, 3.1%, 3.4%, 3.2%, 4.9%
and 3.9% respectively.

The above measurements show that RandFun does not in-
troduce excessive overhead to system latency, local bandwidth,

Fig. 10. The I/O overhead introduced by RandFun.

I/O, and network speed in normal scenarios. In fact, the over-
head mainly comes from control flow detection and system
traps. In the scenario without code probes, RandFun does not
analyze the legitimacy of the control flow. However, the system
trap events are inevitable. The system traps can be divided
into unconditional traps and conditional traps. In the guest,
the instructions cpuid, gettsec, invd, xsetbv and all VMX
instructions except vmfunc will cause system traps uncondi-
tionally. Conditional traps are triggered by the specific events
set by RandFun, which relates with code probes and control
flow detection.

1526 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 11. The impact on network throughput.

TABLE I
MICRO BENCHMARKS

Native OS OS With Lrand
CA JA CP JP MinF MajF PW ES ST CA1st CA2nd CP1st CP2nd JA1st JA2nd JP1st JP2nd MinF MajF PW
2.7 2.5 2.7 2.6 1321 3.9*105 16.5 96.4 499 1245 2.7 1.3*106 2.8 2.6 2.5 1.1*106 3.2 1334 4.2*105 81.4

Fig. 12. Reduced overhead with process execution.

We use some micro benchmarks to measure the impact of
RandFun on the randomized functions, as shown in Table I.
The probed function will be filled back into the original space
after randomization. After that, the control flow that jumps to
the probed function head will trigger a system trap and it needs
to be checked. Then, the control flow will be redirected to the
transfer site. Therefore, the instructions that jump to the probed
function head for the first time are time-consuming. For the
legal instruction call offset, its operands will be modified with
the offset of the transfer site when it is captured due to a system
trap. Then, there are no system trap and control flow detection
when the call offset is executed again. For the control data that
is explicitly assigned, it will be fixed to point to the transfer site,
which also avoids the system trap and control flow detection.
Therefore, the CP2nd and JP2nd are faster. In addition, the
speed of the page walk will be significantly affected. The reason
is EPT leads to more page table walking.

In principle, the impact of RandFun on the probed process
will gradually decrease with the process running. To verify
this conclusion, we use web servers to measure RandFun, as
shown in Fig. 12. For these web servers, the number of work
processes is 4, the number of connections is 32, and the size
of the requested file (S) is increasing. Before the web servers
transfer data, we use a memory scanning tool to read the process

code proportionally, which is a simulated code probe. After that,
web servers are immediately used to transfer data. The overhead
at this time is shown by the dotted line in the figure. Next, we
continue to transfer data without measuring the overhead. 10
minutes later, we transfer the data again and measure the current
overhead. The results are shown as solid lines. In contrast,
the overhead introduced by RandFun gradually decreases. The
reason is more and more legal control flows have been found
with the process execution. RandFun corrects them so that the
subsequent system traps and control flow detection become less
and less.

To test the overhead in the scenarios where the CPU needs to
be preempted, we run network applications with multiple work
processes, as shown in Fig. 13. The CPU we use supports up
to 8 threads. To ensure that the running processes can occupy
all CPU cores, we set the minimum number of workers for the
network applications to 8 and gradually increased it. At the
same time, we continuously increased the code probe percent-
age. The size of the requested file is 1MB, and the number of
connections is 32. We still respectively test the overhead at 0
and 10 minutes after the code probe occurs. The experiment
results show that in the scenarios where all CPU cores have
been occupied by the running processes, RandFun has a greater
impact on the protected processes. The reason is that when code

LI et al.: RANDOMIZE THE RUNNING FUNCTION WHEN IT IS DISCLOSED 1527

Fig. 13. The impact on multiple processes.

TABLE II
COMPARISON WITH THE EXISTING ASLR METHODS. AS: ACCESS TO SOURCE CODE; CM: COMPILER

MODIFICATION; KM: KERNEL MODIFICATION; LIM: LINKER LODIFICATION; LOM: LOADER MODIFICATION;
G: GRANULARITY; INP: INVALIDATION POINTS; RS: RANDOMIZATION SCOPE; U: USER-SPECIFIED; NUMBER

X: EVERY XMS; SC: SYSTEM CALL; F: FORK(); P: PROBING EVENT; L: LOAD TIME; C: COMPILE TIME;
F: FUNCTION; B: BASIC BLOCK; M: MODULES; S: THE WHOLE SEGMENT OR STACK/HEAP; O: OVERHEAD

WITH SPEC OR OTHER BENCHMARKS; INS: INCREASE THE SIZE OF FILE OR CODE

AS. CM KM LiM LoM G. InP RS O Ins
RandFun (our method) n n y n n B P F 1.6% 1.1% ∼ 6%

Mixr [26] n n n n n U U U 1.66x 3.51x
Remix [21] y y n n n B U U 2.8% 14.8%
TASR [22] y y y y y S SC S 2.1% 1MB

CodeArmor [20] n n n n y S SC S 6.9% 4.4% or 13.4%
STABILIZER [8] y y n n n F 500 S 6.7% -
Chronomorph [34] y n n n n B U S - > 50%

Shuffler [9] y n n n y B 50 S 14.9% 74% ∼ 117%
Reranz [31] n n y n n B SC S 6% 73MB
CCR [25] y y n y n B L S 0.28% 11.46%

SafeHidden [19] n n n n n S f/SC/P U 2.75% -
Adelie [23] y y n n n B C S < 2% -

RuntimeASLR [7] n n n n n M f S > 217x -

probes occur, RandFun needs to preempt the CPU. If there are
multiple processes being probed, RandFun needs to create more
threads for randomization, which further increases the number
of threads that preempt the CPU. For the running processes, the
more processes being probed, the greater the CPU load. This
results in their CPU time slices being frequently preempted by
RundFun, which affects their running speed. Fortunately, the
overhead caused by RandFun on protected processes does not
last long, and it will gradually decrease. The reason is that the
threads used for randomization will exit after completing the
randomization. Moreover, more and more legal paths will be
identified as process execution, and less and less control flows
need to be detected.

Although the trap spaces are huge, they do not occupy too
many page tables. Because most page tables at all levels are
shared. For example, 0x3f298000ff18 and 0x4a501000e297 use
different entries in the first level page directory, while the ad-
dresses in their entries point to the same second page table; All
entries in the second level page table point to the same third
level page table, all entries in the third level page directory
point to the same fourth level page table, and all entries in the
fourth level page table point to the same trap page. According

to our observation, the memory occupied by all trap spaces
does not exceed 64KB. If the probed target is shared library,
all probed code will become private to the current process.
Therefore, the more shared code being probed, the larger the
memory overhead.

C. Comparison and Discussion

Similar to Mixr [26], we compared RandFun with the current
ASLR solutions, as shown in Table II. The results show the
overhead of RandFun is smaller. Compared with other meth-
ods, RandFun only randomizes the probed function instead
of the entire code segment, and the randomization is parallel
to the process. Therefore, the randomization target is smaller
and the process suspending time is shorter, which reduces the
randomization complexity and the delay. To the best of our
knowledge, RandFun is the first runtime randomization method
that only handles the probed functions instead of the entire
code segment.

Moreover, we also compared RandFun with the existing CFI
(control flow integrity) methods, and the results are shown in
Fig. 14. Except for RP, all other indicators are the qualitative

1528 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 14. Comparison with other methods.

result that analyzes the security method’s defense principles,
whose definitions are shown as (1)∼(4).

CF =

N∑

k=1

(P
k
app × Ikapp + P k

lib × Iklib) (1)

AP.F =

M∑

m=1

Pm
attack × F_Imattack

F_Imall
(2)

AP.B =

M∑

m=1

Pm
attack × B_Imattack

B_Imall
(3)

Q=
tar_num∑

n=1

Pn
mal ×

1

Ln
(4)

P k
app and P k

lib respectively represent the probability that
the kth control flow transfer instruction (including call
*pointer/*register, ret and some other instructions that can be
used as gadgets) can be tracked in the application and library.
Ikapp and Iklib respectively represent the percentage of the kth

control flow transfer instructions in applications and libraries.
The number of the control flow transfer instructions to be
tracked is positively correlated with CF. If all the instructions
that can be used as gadgets by CRAs can be tracked, an ideal
CF can be obtained. Pm

attack represents the probability that the
mth attack scenario can be identified. F_Imattack and B_Imattack
respectively represent the number of the illegal forward instruc-
tions and the number of the illegal backward instructions in the
mth attack scenario. F_Imall and B_Imall respectively represent
the number of all tracked forward instructions and the number
of all tracked backward instructions in the mth attack scenario.
In a normal scenario, all control flows are legal. At this time,
it is unnecessary to track and detect the legal control flows.
Screening out the potential attack scenarios can reduce the un-
necessary tracking and detection, which is the key to improving

the efficiency of security methods. Another word, only tracing
the control flow transfer instructions in the attack scenario can
obtain the high AP.F and AP.B.

The factors affecting Q mainly include three aspects: at-
tack principles, defense principles and the characteristics of
the attack objects. We qualitatively analyze Q around the three
aspects. Tar_num represents the total number of control flow
transfer instructions. Pn

mal represents the probability of the nth

control flow transfer instructions that can be maliciously used.
It is determined by the characteristics of the attack principles
and the characteristics of the attack objects. Ln represents the
jump target number of the nth control flow transfer instruction
in the attack. In practice, each control flow transfer instruction
has only one legal jump target when it is executed. If a security
method can ensure that each control flow can be transferred to
the only one legal target, it can get an ideal Q. That is, the ideal
Ln is 1. The larger the Ln, the smaller the Q. For the code
that cannot be used by an attacker, its Pn

mal is 0. Therefore, it
does not have any effect on improving Q, which is reasonable
to profile Q. The larger the Pn

mal, the greater the risk of the
nth instructions. So, the more a security method protects such
instructions, the more its effort contributes to improving Q.

In summary, RandFun is a more balanced method. Compare
with the existing methods, it randomizes the specific function
instead of the entire code segment only when the probed func-
tion is detected. Therefore, RandFun has stronger target speci-
ficity and scenario specificity. The randomization triggered by
code probes can reduce unnecessary randomization. Runtime
randomization in parallel with the process can reduce the sus-
pending time of the process, thereby reducing the running de-
lay. Moreover, the partial randomization can reduce the size
of the protected object, thereby reducing the randomization
complexity. In addition, RandFun can also protect control flow
during randomization and mitigate the COOP attack after ran-
domization. We believe that the event-triggered runtime partial
randomization is a very promising security method.

LI et al.: RANDOMIZE THE RUNNING FUNCTION WHEN IT IS DISCLOSED 1529

VII. CONCLUSION

This paper proposes a runtime partial randomization method
RandFun. It can perceive code probes during process running.
Unlike existing methods, we do not directly block the potential
code probes, but rather randomize the probed functions and
detect control flows that jump into them. The probe activity
is used as a trigger event for randomization, and the probed
function is the only target to be randomized. In our design, the
randomization and process execution are parallel. To ensure the
probed function can be called normally during randomization,
the function will be migrated to a new space. In addition, all
control flows that jump into the probed function are detected.
Compared to existing methods, RandFun has stronger target
specificity and scenario specificity. Experiments and analysis
show that RandFun has a good defense effect against code
probes and CRAs, and only introduces 1.6% CPU overhead.

REFERENCES

[1] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida,
“Poking holes in information hiding,” in Proc. 25th USENIX Secur.
Symp. (USENIX Secur. 16), 2016, pp. 121–138.

[2] W.-L. Mow, S.-K. Huang, and H.-C. Hsiao, “LAEG: Leak-based AEG
using dynamic binary analysis to defeat ASLR,” in Proc. IEEE Conf.
Dependable Secure Comput. (DSC), Piscataway, NJ, USA: IEEE Press,
2022, pp. 1–8.

[3] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A. R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Proc. IEEE Symp. Secur.
Privacy, 2013, pp. 574–588.

[4] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in Proc. IEEE Symp. Secur. Privacy, Piscataway, NJ, USA:
IEEE Press, 2016, pp. 969–986.

[5] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières and D. Boneh,
“Hacking blind,” in Proc. IEEE Symp. Secur. Privacy, Piscataway, NJ,
USA: IEEE Press, 2016, pp. 227–242.

[6] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the line: Practical cache attacks on the MMU,” in Proc. Netw. Distrib.
Syst. Symp., vol. 17, 2017, p. 26.

[7] K. Lu, W. Lee, S. Nürnberger, and M. Backes, “How to make ASLR
win the clone wars: Runtime re-randomization,” in Proc. Netw. Distrib.
Syst. Symp., 2016, pp. 1675–1689.

[8] C. Curtsinger and E. Berger, “Stabilizer: Statistically sound performance
evaluation,” ACM SIGARCH Comput. Archit. News, vol. 41, no. 1,
pp. 219–228, 2013.

[9] D. Williams-King et al., “Shuffler: Fast and deployable continuous
code re-randomization,” in Proc. USENIX Symp. Operating Syst. Des.
Implementation, 2016, pp. 367–382.

[10] A. Milburn, E. Van Der Kouwe, and C. Giuffrida, “Mitigating infor-
mation leakage vulnerabilities with type-based data isolation,” in Proc.
IEEE Symp. Secur. Privacy, Piscataway, NJ, USA: IEEE Press, 2022,
pp. 1049–1065.

[11] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos, “No
need to hide: Protecting safe regions on commodity hardware,” in Proc.
12th Eur. Conf. Comput. Syst., 2017, pp. 437–452.

[12] S. Carr and M. Payer, “DataShield: Configurable data confidentiality
and integrity,” in Proc. ACM Asia Conf. Comput. Commun. Secur., 2017,
pp. 193–204.

[13] A. Brahmakshatriya and P. Kedia, “ConfLLVM: A compiler for en-
forcing data confidentiality in low-level code,” in Proc. 14th EuroSys
Conf., 2019, pp. 1–15.

[14] M. Neugschwandtner and A. Sorniotti, “Memory categorization: Sepa-
rating attacker-controlled data,” in Proc. Detection Intrusions Malware,
Vulnerability Assessment: 16th Int. Conf., 2019, pp. 263–287.

[15] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting mem-
ory disclosure with efficient hypervisor-enforced intra-domain isola-
tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 1607–1619.

[16] E. Van Der Kouwe, T. Kroes, C. Ouwehand, H. Bos, and C. Giuffrida,
“Type-after-type: Practical and complete type-safe memory reuse,” in
Proc. 34th Annu. Comput. Secur. Appl. Conf., 2018, pp. 17–27.

[17] P. Rajasekaran, S. Crane, D. Gens, Y. Na, S. Volckaert, and
M. Franz, “CoDaRR: Continuous data space randomization against data-
only attacks,” in Proc. 15th ACM Asia Conf. Comput. Commun. Secur.,
2020, pp. 494–505.

[18] L. Davi, D. Gens, C. Liebchen, and A. R. Sadeghi, “PT-Rand: Practical
mitigation of data-only attacks against page tables,” in Proc. Netw.
Distrib. Syst. Symp., 2017, pp. 1–15.

[19] Z. Wang et al., “SafeHidden: An efficient and secure information hiding
technique using re-randomization,” in Proc. USENIX Secur., 2019,
pp. 1239–1256.

[20] X. Chen, H. Bos, and C. Giuffrida, “CodeArmor: Virtualizing the code
space to counter disclosure attacks,” in Proc. IEEE Eur. Symp. Secur.
Privacy (EuroS&P), 2017, pp. 514–529.

[21] Y. Chen, Z. Wang, D. Whalley, and L. Lu, “Remix: On-demand live
randomization,” in Proc. 6th ACM Conf. Data Appl. Secur. Privacy,
2016, pp. 50–61.

[22] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
rerandomization for mitigating memory disclosures,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2015, pp. 268–279.

[23] R. Nikolaev, H. Nadeem, C. Stone, B. Ravindran, “Adelie: Continuous
address space layout re-randomization for Linux drivers,” in Proc.
ACM Int. Conf. Archit. Support Program. Lang. Operating Syst., 2022,
pp. 483–498.

[24] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee,
“ASLR-Guard: Stopping address space leakage for code reuse at-
tacks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 280–291.

[25] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis and M. Polychronakis,
“Compiler-assisted code randomization,” in Proc. IEEE Symp. Secur.
Privacy (SP), 2018, pp. 461–477.

[26] W. Hawkins, A. Nguyen-Tuong, J. D. Hiser, M. Co, and J. W. Davidson,
“Mixr: Flexible runtime rerandomization for binaries,” in Proc. Work-
shop Moving Target Defense, 2017, pp. 27–37.

[27] K. Lu, M. Xu, C. Song, T. Kim and W. Lee, “Stopping mem-
ory disclosures via diversification and replicated execution,” IEEE
Trans. Dependable Secure Comput., vol. 18, no. 1, pp. 160–173,
Jan./Feb. 2021.

[28] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in Proc. IEEE
Symp. Secur. Privacy, 2015, pp. 745–762.

[29] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the contents of
userspace memory in the face of disclosure vulnerabilities,” in Proc.
5th ACM Conf. Data Appl. Secur. Privacy, 2015, pp. 325–336.

[30] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proc. IEEE Symp. Secur. Privacy
(SP), 2015, pp. 605–622.

[31] Z. Wang et al., “ReRanz: A light-weight virtual machine to mitigate
memory disclosure attacks,” in Proc. 13th ACM SIGPLAN/SIGOPS Int.
Conf. Virtual Execution Environ., 2017, pp. 143–156.

[32] Z. Wang et al., “Making information hiding effective again,” IEEE Trans.
Dependable Secure Comput., vol. 19, no. 4, pp. 2576–2594, Jul./Aug.
2022.

[33] S. Ahmed, Y. Xiao, K. Z. Snow, G. Tan, F. Monrose, and D. Yao,
“Methodologies for quantifying (Re-) randomization security and timing
under JIT-ROP,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2020, pp. 1803–1820.

[34] S. Friedman, D. J. Musliner, and P. K. Keller, “Chronomorphic pro-
grams: Runtime diversity prevents exploits and reconnaissance,” in Proc.
Int. J. Adv. Security, 2015, pp. 120–192.

[35] M. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity,” in Proc. USENIX Secur. Symp., 2019,
pp. 195–211.

[36] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and Y. Cheng,
“Adaptive call-site sensitive control flow integrity,” in Proc. IEEE
Eur. Symp. Secur. Privacy, Piscataway, NJ, USA: IEEE Press, 2019,
pp. 95–110.

[37] D. Bounov, R. G. Kici, and S. Lerner, “Protecting C++ dynamic
dispatch through VTable interleaving,” in Proc. Netw. Distrib. System
Symp., 2016, pp. 1–15.

[38] M. Bauer, I. Grishchenko, and C. Rossow, “TyPro: Forward CFI for
C-style indirect function calls using type propagation,” in Proc. 38th
Annu. Comput. Secur. Appl. Conf., 2022, pp. 346–360.

1530 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

[39] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “CCFI: Cryp-
tographically enforced control flow integrity,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2015, pp. 941–951.

[40] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow
integrity for kernel software,” in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroS&P), 2016, pp. 179–194.

[41] Y. Lin, X. Cheng, and D. Gao, “Control-flow carrying code,” in Proc.
ACM Asia Conf. Comput. Commun. Secur., 2019, pp. 3–14.

[42] W. He, S. Das, W. Zhang, and Y. Liu, “BBB-CFI: Lightweight CFI
approach against code-reuse attacks using basic block information,”
ACM Trans. Embedded Comput. Syst., vol. 19, no. 1, pp. 1–22, 2020.

[43] C. DeLozier, K. Lakshminarayanan, G. Pokam, and J. Devietti, “Hur-
dle: Securing jump instructions against code reuse attacks,” in Proc.
Int. Conf. Archit. Support Program. Lang. Operating Syst., 2020,
pp. 653–666.

[44] J. Li, L. Chen, G. Shi, K. Chen, and D. Meng, “ABCFI: Fast and
lightweight fine-grained hardware-assisted control-flow integrity,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 39, no. 11,
pp. 3165–3176, Nov. 2020.

YongGang Li received the Ph.D. degree from the
University of Science and Technology of China,
in 2019. He was a Postdoctoral Fellow with the
Chinese University of Hong Kong, Shenzhen. Cur-
rently, he is an Associate Professor with the School
of Computer Science and Technology, China Uni-
versity of Mining and Technology. His research
interests include computer architecture, virtual-
ization principle, cloud computing, and system
security.

Yu Bao received the Ph.D. degree from Tongji
University, in 2011. Currently, he is a Staff Engineer
with the Security Department of Computer Science
and Information Technology Institute, China Uni-
versity of Mining and Technology. His research
interests include information security and privacy in
AI distributed network and cyber security in IoT.

Yeh-Ching Chung (Senior Member, IEEE)
received the Ph.D. degree in computer and
information science from Syracuse University, in
1992. Currently, he is a Professor with the Chinese
University of Hong Kong (CUHK), Shenzhen. His
research interests include parallel and distributed
processing and system software.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

