
An Unequal Caching Strategy
for Shared-Memory Graph Analytics

YuAng Chen and Yeh-Ching Chung

Abstract—Recent advances in computer architecture significantly enhance the computational capacity of multicore systems. It allows

large-scale graphs to be processed inside a single machine. Nevertheless, the irregular processing pattern of graph-structured data

constrains the hardware resources from being productively utilized. In this paper, we investigate the constraints in two aspects:

workload imbalance and parallel inefficiency. When a graph analytics algorithm is multithreaded, the thread time is highly diversified,

indicating an uneven work distribution. Also, the intensive thread contention lowers the computing capacity of CPU cores, thereby

hindering the effective utilization of CPU resources. To address these challenges, we present a proactive graph caching strategy that

unequally segments graph components into cache-able subsets of varying sizes, namely Syze. First, the computational loads of cache-

sized subgraphs are estimated. Then, the demanding subgraphs are further subdivided until certain threshold is met. Moreover, during

the propagation of updates, a fraction of vertex ID (i.e., several bits) are encoded to facilitate the communication between subgraphs.

As a result, Syze is able to balance the workloads amongst the logical cores by shortening the longest thread execution time.

Meanwhile, it alleviates thread contention and thus elevates the parallel efficiency of multicores. Compared with well-optimized Ligra,

Gemini and GPOP, Syze achieves accelerations by up to 17:76� , 11:67� and 2:81� respectively. Additionally, the side effects of Syze

are evaluated, including raised cache misses and memory accesses. They play a trivial role in deciding the overall performance, as

their costs are far outweighed by the gains from the even distribution of workloads and the improved utilization of multicores.

Index Terms—Graph analytics, multicore system, parallel computing

Ç

1 INTRODUCTION

THE continuous evolution of CPU architecture and RAM
technology has remarkably boosted the computing power

of server-class multicore systems. Equipped with a huge vol-
ume of RAM, e.g., 1 Terabyte, a single multicore machine is
able to process the largest publicly available graph within its
ownmemory [1]. Without the necessity of offloading thework-
loads to external memory (i.e., disks) [2], [3] nor distributed
memory (i.e., clusters) [4], [5], the in-memory graph processing
avoids the overheads relating to disk I/Oandnetwork commu-
nication. Thus, it often delivers better performance compared
with its external- and distributed-memory counterparts [5], [6].

However, the irregular data structure of graphs still
imposes non-trivial challenges for the efficient utilization of
multicore systems. The computation of graphs invokes a
large volume of communication among the vertices along
their edges. This leads to highly randomized memory access
pattern [7]. Also, a race condition occurs when multiple ver-
tices share a common source/destination vertex. Hence,
many frameworks require heavy usage of atomics and
mutexes for synchronization [8].

Moreover, many real-world graphs are featured by power-
law degree distribution, as commonly observed in social, bio-
logical, citation andwebnetworks [9], [10], [11], [12]. In a graph,
a minority of vertices constitute a large portion of edges. By
contrast, themajority of vertices are sparsely connected or even
completely isolatedwith degrees equal to zero. The ”hot” verti-
ces (i.e., densely connected ones) raise frequent message
exchanges and create substantial workloads. During parallel-
ized graph processing, the ”cold” vertices (i.e., sparsely con-
nected ones) have to wait idly for the hot vertices to finish
executions. The skewed distribution of vertex degrees not only
causes imbalanced workloads for parallel graph processing,
but also burdens the synchronization overhead.

Besides the graph data, the irregularity also exists in
graph algorithms. When a graph is processed, in each itera-
tion, updates are propagated along the active edges. The
propagating path depends on the connectivity of root vertex
(if needed), the structure of graph and the algorithm design.
Hence, it is unpredictable. As a specialty, PageRank keeps
all vertices active and traverses all edges, which controls
itself as the most ”regular” graph algorithm.

To address aforementioned issues, a variety of optimiza-
tions are introduced by prior works. For example, Ligra
maintains a frontier of active vertices during graph traversal
to prevent unrelated vertices being cached [13]. Polymer
leverages NUMA awareness in multi-CPU machines to
reduce remote memory accesses [14]. GraphMat translates
graph algorithms into generalized sparse matrix vector mul-
tiplication (SpMV) and then accelerates the computation
from the angle of matrix [15]. Grazelle delicately refines the
nested parallelization in pulling direction [16].

In addition to the above, a series ofworks based on cache-able
subgraphs are proposed for aggressive graph caching [17], [18],
[19]. They follow a core methodology: the vertex set of a graph,

� The authors are with the Chinese University of Hong Kong, Shenzhen,
Guangdong 518172, China. E-mail: yuangchen@link.cuhk.edu.cn,
ychung@cuhk.edu.cn.

Manuscript received 30 September 2021; revised 15 August 2022; accepted
27 October 2022. Date of publication 9 January 2023; date of current version
24 January 2023.
This work was supported in part by the National Key Research & Development
Program of China under Grant 2018YFB1003505 and in part by the Large-
scale Graph Pattern Query System and Its Optimization Strategy of Ali
Damo Research Institute under Contract 2022E0018.
(Corresponding author: Yeh-Ching Chung.)
Recommended for acceptance by A. Randles.
Digital Object Identifier no. 10.1109/TPDS.2022.3218885

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023 955

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3392-8388
https://orcid.org/0000-0002-3392-8388
https://orcid.org/0000-0002-3392-8388
https://orcid.org/0000-0002-3392-8388
https://orcid.org/0000-0002-3392-8388
https://orcid.org/0000-0002-8704-9821
https://orcid.org/0000-0002-8704-9821
https://orcid.org/0000-0002-8704-9821
https://orcid.org/0000-0002-8704-9821
https://orcid.org/0000-0002-8704-9821
mailto:yuangchen@link.cuhk.edu.cn
mailto:ychung@cuhk.edu.cn

in the format of Compressed Sparse Row (CSR), is equally seg-
mented by the size of caches. The disjoint vertex subsets are
allocated to different threads for parallel execution. The access
range per thread is confined within the cache-sized segment
inside the cache. As a result, vertices are repeatedly accessed in
nearby locations, thereby promoting high cache locality.

In general, prior shared-memory works focus on the opti-
mization of memory-cache hierarchy in multicore systems.
They aim to eliminate memory accesses and cache misses.
In this paper, we investigate the optimization strategy from
an often-ignored perspective: the CPU cores.

Due to the irregularity of graphs, the performance of multi-
cores are limited by two issues: workload imbalance and paral-
lel inefficiency. When a graph algorithm is parallelized, its
overall processing time is bottlenecked by the longest thread
execution time. Further, due to thread contention, multicores
cannot be effectively utilized for parallelization. Full utilization
of logical coresmight even lead to a slowdown.

Motivated by these issues, we propose Syze, an unequal-
sized caching strategy for shared-memory graph processing on
multicore systems. It segments a graph into numerous sub-
graphs with the goals of alleviating uneven workloads and
improving parallel efficiency (i.e., the effective utilization of
available cores). In summary, our contributions can be general-
ized as follows:

� We showcase that, during the processing of graph,
the completion time of threads is highly diversified,
which reflects the imbalanced workloads. Moreover,
if an excessive number of threads are employed, the
thread pool would become overcrowded, thus hin-
dering the effective parallelism of multicores.

� To tackle the above problems, we propose an
unequal caching strategy, named as Syze. Syze splits
the vertex set of a graph into cache-able subsets of
varying sizes, so that the workload is fairly distrib-
uted and parallel efficiency is enhanced.

� Bitwise operations, namely Anchoring & Chaining, are
designed to locate the subgraph of any given vertex
according to its ID. Based on the manipulation of bits, a
bit-aware propagating mechanism is built, which pro-
motes efficient communication between subgraphs.

� Compared with the state of the art, Syze proceeds at
a considerably faster speed. Comprehensive analy-
ses are undertaken to explore Syze’s effectiveness on
diverse graphs as well as its effect on the multicore
systems. Further, Syze is decomposed in order to
find the root cause for its high performance.

After the introduction, Section 2 discusses background
and motivation. Section 3 describes the design of Syze in
details. The performance of Syze is evaluated in Section 4.
Related research is provided in Section 5. Lastly, this paper
is concluded in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 Preliminaries
This section introduces a fundamental graph format and an
optimization methodology developed based on it.

2.1.1 Compressed Sparse Row

Compressed Sparse Row (CSR) represents a graph in a mem-
ory-efficient manner. CSR requires two arrays to encode a

graph: Vertex and Edge. Fig. 1 depicts a directed graph and its
CSR representation. For each vertex, the Vertex array registers
the starting offset of its out-neighbors in the Edge array. The
last element of the Vertex array stands for the number of edges.
The Edge array stores all out-edges by consecutively recording
the out-neighbor list of every vertex. Optionally, a Property
array is attached. For example, in the context of PageRank, the
Property array keeps the rank scores of vertices.

Traversing the graph, elements in Vertex array and Edge
vertex are sequentially accessed for only once. On the contrary,
the access to PA exhibits irregularity. For instance, P2 is consec-
utively requested for twice, P5 is never reached, and P0 is vis-
ited at the end. The irregular access to the Property array is the
root cause of randommemory access onmulticore systems.

2.1.2 Graph Analytics Based on CSR Segmentation

Based on the CSR format, a number of similar graph seg-
menting methods are proposed [17], [18], [19], [20]. In gen-
eral, these methods split the vertex set of the graph (i.e., row
array of CSR) into numerous subsets fitting in either Level 2
(L2) cache or Last Level Cache (LLC). The right part of
Fig. 1 exemplifies the segmenting results with an assump-
tion that a cache can accommodate three vertices.

After the segmentation of CSR, thread access to vertex is
restricted within local caches, which significantly enhances
the cache locality. Furthermore, a subgraph is exclusively
processed by one thread. Hence, the race condition is dimin-
ished and atomic instructions are removed. As a result, the
works (e.g., GPOP [7]) based on CSR segmentation signifi-
cantly outperform conventional vertex-centric frameworks.

Integrated into the essential CSR segmenting methodology,
various optimization techniques are designed. For example,
the edges of subgraphs are sorted to ensure sequential memory
access [18], [20]. Edges pointing out to multiple vertices inside
the same destination subgraph are compressed into one inter-
edge to reduce memory traffic [17]. Hierarchical frontier is
implemented for both subgraphs and vertices to avoid caching
unrelated graph components [7].

Additionally, some researchers refer to the graph processing
model built on CSR segmentation as the partition-centric para-
digm [7]. In following context, we use the terms ”partition-cen-
tric” and ”CSR-segmenting” exchangeably to describe the
graph processing paradigmwhereCSR is segmented by caches.

2.2 Motivation
This section investigates the computing challenges in prior
CSR-segmenting graph processing frameworks. We experi-
mentally demonstrate that CPU cores severely suffer from

Fig. 1. CSR representation of a directed graph. Assuming a private cache
can hold three vertices, the graph is divided into two subgraphs as the
round and square boxes respectively. In particular, hot vertices v4 and v5
are highlighted because they are densely connected with two out-edges.
They lead to workload imbalance between the two subgraphs.

956 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

workload imbalance as well as parallel inefficiency. These
issues motivate the proposal of our work.

2.2.1 Workload Imbalance

The contrast between hot vertices and cold ones causes
workload imbalance when a graph algorithm is multi-
threaded. To tackle this issue, conventional shared-memory
graph analytics frameworks dynamically parallelize graph
algorithms using the work-stealing policy of Cilk [13], [21]
or the dynamic scheduler of OpenMP [7], [18]. However, it
is insufficient to solely rely on the programming tool to
address the problem of imbalance.

In CSR-segmenting works, a subgraph is the basic unit
for threads to execute. Since the number of vertices in all
subgraphs are equated, the workload for each subgraph
mainly depends on the edges. The local concentration of hot
vertices leads to imbalance among subgraphs. In the exam-
ple of Fig. 1, vertices v4 and v5 together contribute 4 out-
edges in subgraph 2, while there are only 2 out-edges in
subgraph 1. Thus, subgraph 2 tends to involve heavier com-
munications as well as computations.

To validate our reasoning, we measure the execution
time of parallel threads by running PageRank under a CSR-
segmenting framework GPOP [7] on graph twitter [22]. Pag-
eRank is selected for its relatively regular pattern [23]. A
Intel Xoen Silver machine is used, the configuration of
which is detailed in Section 4.2. The application is parallel-
ized by 20 threads, and the size of segments is 256 KB.

Table 1 lists the experimental results. It can be observed
that the max thread costs considerably longer time than the
average and min threads. Such difference results from the
imbalanced distribution of hot vertices. Also, the vertex
degrees of each segment are summed up. The densely con-
nected vertices are highly concentrated in a few subgraphs,
exhibiting the intrinsic irregularity of the graph.

For a parallel region, the overall processing time is
decided by the longest thread time. The results in Table 1
suggests that the CSR-segmenting paradigm is hindered by
the fluctuating thread execution time due to the concentra-
tion of hot vertices. This encourages us to develop a strategy
that bridges the gaps between threads, i.e., shortening the
longest thread time when multithreading.

2.2.2 Parallel Inefficiency

CSR segmentation leads to inefficient utilization of CPU
cores. The efficiency of a program utilizing available cores
is defined by parallel efficiency (PE). This metric reports the
percent of average utilization by all cores, which can be

measured via Intel Vtune Profiler [24]. By multiplying PE
with the number of available cores, the number of effective
cores is acquired. For example, assuming a 20-core system,
a parallel efficiency of 50% means that the system behaves
as if 20� 50% ¼ 10 cores are fully loaded by computations.

Today’s CPU is able to provide two logical cores (i.e.,
threads) per physical core byHyper-Threading [25]. It is benefi-
cial when two logical cores execute independently without
resource contentions [26]. The parallel efficiencies of logic cores
(PEL) and physical cores (PEP) can be measured simulta-
neously using Vtune Profiler. PageRank is tested for its dense
computation [23], which heavily consumes resources. The
same Intel Xoen Silver machine is used, offering 20 physical
and 40 logical cores. Fig. 2 depicts the PEL, PEP and speedup
with varied size of thread pool T .

PEL scales almost linearly with increasing T , while the scal-
ing behaviors of PEP and speedup are both sub-linear. The
later two achieve peak performance when T ¼ 20 ¼ the num-
ber of physical cores. At this point, PEP ¼ 42:4% and PEL ¼
23:5%, and the system functions as only around 9 cores actively
executing the application, though 20 threads are deployed. The
lowvalues ofPEP andPEL signal that available CPU resources
are underutilized. As T grows from 20, PEP and speedup are
saturated, and even deteriorated. Cache-friendly programs
might suffer from Hyper-Threading due to thread conten-
tion [27], [28]. In GPOP, the cache-fitting subgraphs promote
high cache efficiency. The logical cores sharing a physical core
could compete for caches’ accesses. Thereby, the computing
capacity (e.g., effective L2 cache size and speed) of a logical
core is halved. Compared with a physical core, two logical
cores in parallel attain the same throughput, but double the PE
as two units are counted. The contrast between PEP and PEL

reflects the occurring of thread contention.
PE is the result of complex interactions among workload

imbalance, thread contention and resource underutilization. It
is rarely discussed in prior CSR-segmenting works [7], [17],
[18], [20], which simply set the size of thread pool equals the
number of physical cores. In this paper, in-depth investigations
intoPE are undertaken tomaximize the performance.

3 DESIGN OF SYZE

To ameliorate workload imbalance and enhance parallel effi-
ciency, we propose Syze, an optimization strategy for graph
processing based on CSR segmentation. The abstraction of
Syze is visualized in Fig. 3 and the design goal of it is to dilute
the hot subgraphs. In principle, the subgraph identified as
”hot” are further subdivided into sub-units with smaller sizes
to alleviate the concentration of hot vertices. The details of Syze
are elaborated in following sections.

TABLE 1
Statistical Summary of GPOP-Based

PageRank on Graph Twitter

Attribute Max Min Aver

Thread Time (ms) 320.39 1.78 6.06
Ratio (Max/�) 1.00� 180.16� 52.86�
Degree Sum (million) 212.52 0.63 2.31
Ratio (Max/�) 1.00� 339.49� 92�
The execution time of threads (Thread Time) per iteration and the sum of vertex
degrees (Degree Sum) per segment are presented in terms of the maximum (Max),
minimum (Min) and average (Aver) results. The lower row (Ratio) within each
attribute lists the ratios between the max result and respective results.

Fig. 2. Parallel efficiency of physical cores and logical cores and the
speedup over the 1-threaded implementation, by performing GPOP-
based PageRank on graph twitter.

CHEN AND CHUNG: UNEQUALCACHING STRATEGY FOR SHARED-MEMORYGRAPH ANALYTICS 957

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

3.1 Unequal Caching
Before describing the mechanism of unequal caching, we
first formally define the terminologies with respect to the
graph and subgraphs. A graph is represented by G ¼
ðV;EÞ, where V is the vertex set and E is the edge set. The
capacity of cache is denoted as C = {size of cache}/{size of a
vertex}. Further, Subgraph degree Ds is defined as the total
sum of vertex degrees in a vertex subset. Based on the defi-
nitions, we unequally cache a graph in 3 steps:

Step 1: Initial Segmenting. First of all, the vertex set V is seg-
mented into N cache-able subset Vi with identical sizes of C:
N ¼ jV j=C and jVij ¼ C, where 0 � i < N and j � j means the
size of a set. A global operandR ¼ log2 C is used by any given
vertex v to locate its belonging subgraph Si, as formulated in
Eq. (1)

i ¼ v � R: (1)

Here, � is the right shift operator. The locating of a sub-
graph is a critical operation in partition-centric paradigm,
because the destination subgraph (containing the destina-
tion vertex) is needed when an update is propagated
across subgraphs. This bit-aware propagating mechanism
is detailed in Section 3.3.

An example is offered as in Fig. 4. The old array lists the sub-
graphs constructed in the initial segmenting step. Assume 64
vertices are separated into 4 subsets in the order of vertex ID.
Each subset contains 16 vertices, so the R equals 4. The vertex
ID can be represented in 6-bit binary format.1 To locate the
belonging subgraph of a vertex, only the leftmost 2 bits are
needed; the rightmostR ¼ 4 bits are ignored due to right shift.
In other words, the coverage of each subgraph is expressed by
the leftmost 2 bits of vertex ID. This is exactly the same as prior
CSR-segmenting graph processing,where the sizes of all vertex
subsets are equally fixed [17].

Step 2: Identifying Hot Subgraphs. With all subgraphs seg-
mented with a uniform size, we measure the hotness of sub-
graphs by the sum of vertex degrees per subgraph. The
average subgraph degree Ds is obtained by multiplying the
average vertex degree over the entire graph D with the size
of vertex subset: Ds ¼ D � C. It serves as a threshold. The
hotness of a subgraph is evaluated by simply comparing its
Ds

i with Ds as in Eq. (2). When hoti � 2, the corresponding
subgraph is identified as hot

hoti ¼ Ds
i =D

s: (2)

Step 3: Subdividing Hot Subgraphs. According to the hoti of
hot subgraphs, further subdivision is conducted. The

number of sub-units ni split from each hot subgraph is cal-
culated by performing binary exponentiation and binary
logarithm together as in Eq. (3)

ni ¼ 2Oi ¼ 2blog2ðhotiÞe: (3)

The b�e stands for the rounding of a number, and the
rounded value for each subgraph is recorded as local offset
Oi ¼ blog2ðhotiÞe later used in Section 3.2. Eq. (3) forces ni to
be an integer that is a power of 2, e.g., 1, 2, 4 and 8, where
ni ¼ 1 means no subdivision. By contrast, hoti can be any
floating number. As a result, a hot subgraph is subdivided
into ni sub-units, the size of each which is C=ni.

For the example of Fig. 4, we further assume that S0 and
S1 are hot subgraphs and can be subdivided into 4 and 2
sub-units respectively. Hence, S0 is associated with ðn0 ¼
4; O0 ¼ 2Þ, S1 is with ðn0 ¼ 2; O0 ¼ 1Þ, and both S2 and S3

are with ðn0 ¼ 1; O0 ¼ 0Þ. After the subdivision, new sub-
graphs, including the sub-units, are constructed as in the
new array of Fig. 4.

3.2 Locating a Subgraph
The subdivision of hot subgraphs leads to an increase in the
number of subgraphs, containing the sub-units with sizes <
C. The varying size of subgraphs invalidates the bitwise
operation for locating a subgraph by a given vertex ID, i.e.,
Eq. (1). One possible alternative is to use if & else or
switch & case statements to exhaustively examine the
coverage of each subgraphs until the correct one is found.

Nevertheless, those conditional statements are computa-
tionally inefficient. For example, they might cause a massive
number of mispredicted branch instructions, which wastes
the pipelines of CPU. Thereby, for computational efficiency,
we advance the bitwise operation by Anchoring & Chaining:

Anchoring. A mapping table is maintained between the
original subgraphs and the new subgraphs after subdivi-
sion. As in Fig. 4, every subgraph in the old array points to
its first sub-units or itself (with new ID if not subdivided) in
the new array. For the newly created subgraphs, we refer to
the pointed elements as the anchored subgraphs and the

Fig. 3. Abstraction of unequal-sized caching. A graph is first segmented
into cache-able subgraphs (grey cycles) with uniform vertex subset size.
Then, the hot subgraph accommodating an excessive number of hot ver-
tices (in dark grey) is further subdivided into smaller units.

Fig. 4. An example of unequal-sized segmenting. Hot subgraphs in the
old array are subdivided into smaller units in the new array. The
anchored subgraphs are plotted with thick boxes and mapped to their
original subgraphs. The precise location of a target subgraph in the new
array depends on both anchor bits and chain bits. The coverage of each
subgraph is annotated in binary format.

1. The subscript b denotes a binary number

958 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

remaining ones as the chained subgraphs. Hence, we can still
rely on the leftmost 2 bits, which we label as anchor bits, to
locate an anchored subgraph. For instance, given vertex ID
11xxxxb, where 8x 2 f0; 1g, shift it rightwards by R ¼ 4
bits, and its anchor equals 11b ¼ 3. Thus, it originally lies
in S3, which is now pointing to ~S7, forming a mapping rela-
tionship:mapðS3; ~S7Þ andmap½S3	 ¼ ~S7.

Nonetheless, the mapping table only allows us to recog-
nize a fraction of subgraphs (i.e., anchored subgraphs) in
the new array. The chained subgraphs stay out of reach. For
a complete solution, one more step is planned.

Chaining. To find the chained subgraphs in the new array,
extra bits in the vertex ID are utilized. Recall that, in Step 3,
an offset Oi is affiliated to each subgraph in the old array. It
indicates the number of extra bits, labeled as chain, needed to
scan right after the anchor bits. The value of chain is the off-
set from current anchored subgraph to target subgraph.

For example, since S0 is attachedwithO0 ¼ 2, it requires 2-
bit anchor and additional 2-bit chain, together the leftmost
4 bits, to locate its sub-units. Given vertex ID 00 01xxb, by its
anchor 00b, we identify that it is initially contained in S0,
which now links to the anchored subgraph ~S0. Then, accord-
ing to the chain 01b ¼ 1, we can locate the target subgraph
by offsetting its anchored subgraph ~S0 by 1, which is ~S1.

In a compact form, Anchoring & Chaining can be mathe-
matically described as following formulas

anchor ¼ v � R (4a)

anchored sub ¼ map½anchor	 (4b)

chain ¼ ð1
 Oi � 1Þ&ðv � ðR�OiÞÞ (4c)

chained sub ¼ anchored subþ chain (4d)

Eq. (4a) first finds the old subgraph before the subdivi-
sion is performed. Eq. (4b) depicts the mapping procedure
between the original subgraph and the anchored subgraph.
Eq. (4c) shows the arithmetic operations of truncating the
chain bits from a vertex ID. Finally, Eq. (4d) locates the
chained subgraph after subdivision.

It is worthy to note that, in Step 1, the optimal initial seg-
menting size for CSR segmentation does not always equate
to the size of caches, e.g., neither L2 nor LLC. The explora-
tion regarding the proper initial segmenting size is dis-
cussed in Section 4.7.

3.3 Bit-Aware Propagation
The propagation of updates in Syze behaves as a variant of
the classic Scatter-Gather model. A source (src) vertex first
broadcasts its property data over its active neighboring sub-
graphs (Scatter). The data are stored in the buffers of these
subgraphs. Then, the destination (dst) vertex collects all the
received data from the local buffer of its belonging sub-
graph (Gather). The propagating mechanism of Syze exhib-
its the uniqueness in its bit-awareness of vertex ID. During
the scattering phase, the leftmost bits of the dst vertex are
extracted to locate the dst subgraph. Also, during the gath-
ering phase, an extra bit is inserted in front of the dst vertex
to reduce communication between subgraphs.

Fig. 5 explains the bit-aware propagation of Syzewith a con-
crete example. The upper part of Fig. 5 presents a conventional
message passing from one src vertex to two dst vertices. We
assume the src vertex and dst vertices reside inside two differ-
ent subgraphs (within twoL2 caches) in the context of CSR-seg-
menting graph processing. Hence, the propagation of data

along the edgeswould cross theprivate caches of cores, and tra-
verse the LLC or evenmainmemory, causing a high latency.

The lower part of Fig. 5 plots the data flow triggered by
the same vertices in Syze. The Scatter and Gather phases are
presented, which govern the transmission of updates.
Notice that the dst vertices v6 and v7 only differ in one bit,
so they are included in the same subgraph ~S1.

In the Scatter phase, according to composition of v6 (i.e.,
anchor bits 00 and chain bits 01), the update reaches to
the subgraph ~S1 via S0. The edges ðv51; S0Þ and ðS0; ~S1Þ are
delineated conceptually. In actual implementation, they are
enacted by Anchoring & Chaining, which form an inter-
edge transmitting data between v51 and ~S1. The linking
procedure is detailed in Section 3.2.

In theGather phase, the data buffered in ~S1 is locally fetched
by the dst vertices. The edge compression [17] is adopted for
the reduction ofmemory traffic. Since v6 and v7 share the same
src vertex v51, the data fetched by v6 is copied to v7, instead of
transmitting again from v51 to v7. To achieve this, one com-

press bit is inserted in front of the dst vertices: v6 ! ~v6 and
v7 ! ~v7. When compress equals one, the vertex (e.g., ~v6) is
responsible for collecting the data from local buffer. If the com-
press of next vertex is zero, then the data assigned to the pre-
vious vertex (e.g., ~v6) is duplicated to the next vertex (e.g., ~v7).

Similarly, the edges ð ~S1; ~v6Þ and ð~v6; ~v7Þ are conceptual
designs. They are actually implemented by a simple bitwise
operation: examining the compress bit of vertex ID. This
bit compresses two edges into one intra-edge. Following
prior works [17], we employ the most significant bit (MSB)
of vertex ID (32-bit unsigned integer) as the compress bit.
The encoding of compress bit is performed only once dur-
ing the segmenting of graphs, hence leading to no overhead
during the propagating of messages.

The cooperation between the inter-edge and the intra-edge
effectively reduces memory traffic at the (negligible) cost of
additional computation. In the original propagation process
(upper part of Fig. 5), two cross-core messages are transmit-
ted. In comparison, in the lower part, the propagation of Syze
compresses two cross-core messages into one inter-edge, and
then locally sends out themessage via one intra-edge.

3.4 Program Execution
Like preceding CSR-segmentingworks [17], [18], [29], the itera-
tive execution of Syze are decomposed into two separate paral-
lel regions as outlined in Algorithm 1. The first region (line 14-
17) includes the Scatter phase; the second covers the Gather
phase (line 18-21). Besides, inheriting from GPOP [7], the Reset
phase and the Apply phase are provided at the end of each

Fig. 5. Bit-aware propagation of Syze.

CHEN AND CHUNG: UNEQUALCACHING STRATEGY FOR SHARED-MEMORYGRAPH ANALYTICS 959

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

region. They convey similar semantics, both which can update
vertex data and control vertex state in the frontier (i.e., active or
inactive). The cooperation of Reset and Apply improves the
flexibility of expressing graph algorithms and reduces pro-
gramming efforts.

During the execution, each phase corresponds to an inter-
face calling a specific user-defined function. The example of
PageRank is illustrated in line 1-12. Function PR.scatter

returns the scaled rank scores of vertices (line 2), which is
passed to Scatter for broadcast from current subgraphs to
neighboring subgraphs. Then, the rank scores of vertices are
reset to zero and vertex states stay active with PR.reset (line
4) called by Reset. PR.gather (line 7) belonging to Gather

accumulates the rank scores from the local buffers of active sub-
graphs. Finally, the rank scores are normalized by PR.apply

(line 9) that is passed toApply.
Apparently, the Scatter and Gather phases are the main

source of workloads. They introduce sequential inner loops
over all active subgraphs. Also, heavy memory traffic are
invoked due to the data propagation across these subgraphs.
On the contrary, the Reset andApply phasesmerely perform
on current subgraphswith basic arithmetic operations.

Meanwhile, Syze enjoys the hierarchic frontier of GPOP
too, which maintains the activity states of graph compo-
nents [7]. The frontier consists of two levels that record the
states of subgraphs and vertices respectively. A subgraph
turns active if it accommodates at least one active vertex.
The active subgraphs and vertices are filtered out by the
hierarchic frontier. Hence, for dynamic graph applications,
such as BFS, the access to the inactive is avoided.

Algorithm 1. Iterative Execution of PageRank

1: Structure PR { //define a graph algorithm
2: Function scatter(v)
3: return rank½v	=deg½v	
4: Function reset(v)
5: rank½v	 ¼ 0
6: return true
7: Function gather(v; update)
8: return rank½v	þ ¼ update
9: Function apply(v)
10: rank½v	 ¼ ð1� dÞ=jV j þ d � rank½v	
11: return true
12: }
13: while !converged&iter < max iter do // run a task
14: for all curr 2 active subs do in parallel // region 1
15: for next 2 active subs do
16: Scatter(PR.scatter; curr; next)
17: Reset(PR.reset; curr)
18: for all curr 2 active subs do in parallel // region 2
19: for next 2 active subs do
20: Gatter(PR.gather; curr; next)
21: Apply(PR.apply; curr)

3.5 Benefits and Costs
The most prominent difference between Syze and prior CSR-
segmenting works lies in the segmenting procedure of graphs.
In Syze, a graph is unequally cached. Hot subgraphs are identi-
fied and further subdivided into smaller units. By contrast, pre-
vious methods only deploy a equal-sized segmenting strategy

where the sizes of all segments are equivalent, which is just the
first step of Syze’s unequal caching strategy.

The benefits of unequal caching strategy involves two
aspects. First, the workloads amongst threads are balanced,
since hot subgraphs are split into smaller ones. This effec-
tively shortens the longest threads execution time, and thus
reduces the overall graph processing time (see Section 4.5.1).
Second, the thread contention is alleviated. Thanks to the
subdivision of hot subgraphs, threads (i.e., logical cores) are
assigned with smaller data unit to process. As a result, the
computing pressure of CPU cores are relieved, and therefore
the exhaustion of resources are postponed (see Section 4.5.2).

Though Syze improves the performance of CPU cores and
accelerates graphprocessing, it imposes side effect on themem-
ory-cache hierarchy in multicore systems. The subdivision
creates extra subgraphs, which leads to more inter-edges.
Moreover, the Anchoring & Chaining procedure requires sup-
plementary memory space for the mapping table and addi-
tional arithmetic operations. Consequently, memory traffic is
raised and cachemisses are increased (see Section 4.5.3).

Another distinct feature of Syze is that it employs more
threads for multithreading than prior CSR-segmenting meth-
ods, e.g., 36 versus 20. Syze takes the advantage of relieved
thread contention by increasing the size of thread pool. There-
fore, the available CPU resources are better exploited. The ben-
efit of adding more threads relies on the unequal caching
strategy, and is relativelyminor (see Section 4.6).

4 EVALUATION

In this section, dual evaluations combining theoretical cal-
culations and experimental observations are undertaken.
First, the intrinsic characteristics of graphs are profiled with
respect to skewness and imbalance, which theoretically
affect the effectiveness of Syze.

Then, the performance of Syze is evaluated by comparing
with state-of-the-art graph processing frameworks. We also
investigate the impact of Syze on CPU cores as well as cache
and memory. Furthermore, Syze is decomposed for a better
understanding of its contribution.

4.1 Estimating Imbalance
The power-law degree distribution (i.e., skewness) of
graphs does not necessarily guarantee the graph are imbal-
anced as well. It is possible that the hot vertices, though
being a minority, are evenly distributed throughout the
graph; that is, in the context of equal-sized CSR segmenta-
tion, subgraphs contain comparable hot vertices.

To estimate the imbalance of a graph, the subdivision factor
ni from Eq. (3) is utilized, which is the number of sub-units to
be subdivided from a hot subgraph. It indicates the density of
subgraphs before further subdivision. The larger the value ofni

is, the more hot vertices are concentrated in the corresponding
subgraph, and hence the more imbalanced the graph is. For an
imbalanced graph, it is expected to consist of a tiny portion of
hot subgraphs with ni � 1 and a large portion of cold sub-
graphs with ni ¼ 1. In opposition, when ni ¼ 1, a subgraph
needs no subdivision. If all subgraphs of a subgraph are associ-
atedwithni ¼ 1, the graph is perfectly balanced.

Table 2 lists a diversity of graphs collected from the real
world or generated by software tools. Graphs are equally
segmented into subgraphs in which the vertex subsets are
of size 256 KB. Their skewness is indicated by (1) the ratio

960 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

of hot vertices over all vertices and (2) the percentage of hot
vertices’ edges over all edges. Their imbalance is portrayed
by (1) the ratio of hot subgraphs over all subgraphs and (2)
the maximum ni of all subgraphs.

The first five graphs exhibit high skewness as well as
high imbalance. A minority (9� 22%) of vertices are respon-
sible for constituting a majority (63� 94%) of edges. Mean-
while, their hot subgraphs, in spite of being rare (2� 4%),
are crowded with hot vertices, delivering ni up to 128.

The last three graphs kron and urand are well balanced (i.e.,
ni ¼ 1; 8i 2 ½0;NÞ,). Though kron follows the power-law
degree distribution (i.e., 9% vertices for 93% edges), its hot ver-
tices are evenly distributed as none of its subgraphs requires
subdivision. In urand, a connection is established by any two
vertices with equal probability. Thereby, urand is absolutely
unskewed and balanced. Graph road represents an important
category of mesh-structured graphs that are characterized by
lowdegrees and balanced distributions.

The statistical summary of graphs in Table 2 demonstrates
that the skewness of a graph does not promise its imbalance. It
is possible that a highly skewed graph has a uniform distribu-
tion of hot vertices across its subgraphs, such as kron. In such
case, subgraphs will not be further subdivided, which cancels
out the optimization of Syze. In theory, Syze cannot boost the
performance of balanced graphs. Hence, in following sections,
we only conduct experiments on the imbalanced graphs.

4.2 Experiment Setup
The experiments are performed on a dual CPU machine.
The model of CPU is Intel Xeon Silver 4210 with Skylake
microarchitecture. Each CPU is composed by 10 physical
cores and 20 threads with Hyper-Threading enabled. The
volume of main memory, shared LLC, private L2, and pri-
vate L1 are 256 GB, 13.75 MB, 1 MB and 64 KB respectively.
The operating system is Ubuntu 20.04.

Syze2 is implemented by modifying the source code of
GPOP [7]. The code is written in C++ with g++ 9.3.0 and
compiled with optimization level O3. The multithreading is
enabled by the use of OpenMP [36]. The cache utility and
the memory dynamics are monitored by Perf [37] and
Likwid [38] respectively.

The initial segmenting size is tuned to 256 KB, a quarter
of L2 cache (explained in Section 4.7). 36 threads are used
for the parallelization of graph algorithms (explained in Sec-
tion 4.5.2). Each experiment is repeated for 10 rounds, and
the average result is reported. For each round of PageRank,
program runs for 20 iterations.

Graph Frameworks. The performance of Syze is compared
with four cutting-edge frameworks: Ligra [13], Polymer [14],
GPOP [7] and Gemini [5]. To obtain the best results, Ligra is
multithreaded by OpenCilk [39] with the optimization of
numactl. The native Ligra parallelized via OpenMP yields
substantially poorer performance and therefore is not dem-
onstrated. Polymer enhances Ligra by exploiting the NUMA
feature of modern multicore systems. GPOP is set with 20
threads and 256 KB partition size to attain optimal perfor-
mance. Although developed for distributed systems, Gemini
draws considerable inspiration from shared-memory graph
processing, such as NUMA awareness and hybrid push-pull
engine. It exhibits superior performance than many shared-
memory frameworks on singlemachine [5].

Graph Algorithms. Under these graph frameworks, four
graph algorithms are tested. PageRank (PR) ranks the impor-
tance of vertex based on their connectivity [40]. Breadth-first
search (BFS) traverses a graph from a given root vertex in
breadth-first order. Single source shortest path (SSSP) finds the
shortest path between a given root vertex and all other reach-
able vertices. Connected component (CC) classifies connected
vertices into components using label propagation.

It is reported that [7], GPOP exhibits dominant advantage in
PR, CC, SSSP thanks to its aggressive caching technique, com-
pared to state-of-the-art works (e.g, GraphMat [41] and
Galios [15], Ligra [13]). Meanwhile, Ligra offers the fastest
implementation for BFS. Also, Gemini oftentimes delivers bet-
ter performance than Ligra andGalios [5] on a singlemachine.

Due to limited space, our discussions focus onPageRank and
BFS. They behave oppositely as the two ends of a spectrum. In
our implementation, PageRank is exempted from the deploy-
ment of frontier because every vertex is updated in every itera-
tion. It enables a system to run at the peak performance. Also,
the examination of convergence is removed in all frameworks,
so the accurate performance per iteration is obtained.

In contrast to PR, BFS is completely driven by frontier. Dur-
ing the whole processing, a vertex is accessed for only once.
Therefore, BFS introduces lightweight communication and
computation. Additionally, for root-dependent algorithms, the
vertex with the largest degree is selected as the input to start
graph traversal.

Graph Datasets. Five power-law graph datasets are selected
for performance evaluation. Graphs wiki is extracted from the
hyperlinks of wikipedia [32]. track collects web domains and
their embedded tracker [30]. live, twitter and mpi are social
graphs modeling social networks [22], [31], [33]. Table 4 lists
the numerical information of the graphs.

4.3 Execution Time
Table 3 lists the execution time for the four graph algorithms
implemented under Syze and cutting-edge frameworks. Syze
constantly outperforms other competitors in all analytics algo-
rithms except for BFS. Syze achieves speedups over Ligra, Poly-
mer, Gemini and GPOP by up to 17:76� , 26:45�11:67� and
2:81� , and on average 3:34� , 7:35� 2:55� and 1:80� respec-
tively. Nevertheless, it worth mentioning that Syze is theoreti-
cally ineffective at the intrinsically balanced graphs as
previously analyzed in Section 4.1.

For PR, CC and SSSP, Syze provides the fastest results on
most of datasets, except SSSP on track. GPOP, which is also

TABLE 2
Graph Features in Terms of the Hot Vertices Percentages (V),
the Edge Coverage of Hot Vertices (E), the Hot Subgraphs Per-

centage (H), and the Maximum ni

Graphs Description Skewness Imbalance

V (%) E (%) H (%) maxðniÞ
track Web Tracker [30] 18 63 2 128
live Live Journal [31] 22 91 2 32
wiki Wiki Link [32] 19 94 4 32
twitter Twitter Follower [22] 9 79 2 64
mpi Twitter Influence [33] 11 81 3 128

kron Synthetic Graph [34] 8 93 0 1
urand Synthetic Graph [34] 51 59 0 1
road USA Road [35] 50 66 0 1

2. https://github.com/yuang-chen/Syze-TPDS-22

CHEN AND CHUNG: UNEQUALCACHING STRATEGY FOR SHARED-MEMORYGRAPH ANALYTICS 961

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

partition-centric but with equal segmenting size, performs
as the second fastest framework. The partition-centric para-
digm (e.g., Syze and GPOP) shows considerable advantages
over the vertex-centric paradigm (e.g., Ligra, Polymer and
Gemini) on shared-memory multicore systems. This attrib-
utes to the aggressive cache and memory optimizations in
the former, including cache-aware graph partitioning [19]
and edge compression [17].

For BFS, Ligra performs as the best framework. We deliber-
ately fine-tune Ligra to maximize its performance. Cilk is
employed by Ligra for multithreading, which is substantially
faster than the OpenMP-based Ligra. The hybrid push-pull
processing engine and the lightweight vertex frontier plus the
NUMA-awareness significantly shortens the execution time for
BFS. On the contrary, Syze is parallelized by OpenMP. It is nei-
ther optimized in the propagation direction nor aware of
NUMA. Also, the hierarchic frontier adopted by Syze imposes
an extra burden of filtering subgraphs. Nevertheless, Syze still
acts as the second fastest frameworks for BFS, offering perform-
ances comparable to Ligra.

Syze far outperforms GPOP due to the unequal caching
strategy deployed on the imbalanced graphs. The hot sub-
graphs are identified and subdivided into smaller units for
workload balance, which imposes high overheads. Moreover,
the subdivision inevitably induces more subgraphs and com-
plicates the connectivity amongst them.Also, the bit-wise oper-
ations Anchoring & Chaining lead to additional computations
that may affect the overall performance. In the next sections,
the benefits and costs of Syze are elaborated.

4.4 Preprocessing Overhead
The preprocessing overhead is an important metric to eval-
uate the practicality of a given framework. It is not counted

in the processing time in other sections. Table 5 presents the
overheads of different graph frameworks, which excludes
the loading of data from disks.

TheNUMA-aware frameworks Polymer andGemini gener-
ate staggeringly high overheads, thus being impracticable for
real-world deployment. After the graph data is loaded, these
frameworks have to partition and duplicate the graph data in
different NUMA nodes again. The partitioning strategy for
load balance and re-allocation of data in memory inevitably
causes high computational andmemory cost.

GPOP incurs the lowest overhead. Syze is built on GPOP
by enabling unequal-sized CSR segmentation. For imbal-
anced graphs, Syze creates a larger number of inter-edges to
encode (see later Section 4.5.3), thus leading to higher over-
heads. The overhead of Syze is roughly the same as that of
Ligra, but Syze significantly outperforms Ligra for most of
graph applications, including PR, CC and SSSP.

Furthermore, in Syze, the results of the preprocessing
step (i.e., inter-edges, intra-edges, and a mapping table) are
used by all downstream graph applications. Therefore, it is
possible to store them as offline data, and reload them
whenever a graph application needs to be executed. The
preprocessing of a graph is performed only once for multi-
ple applications. In such way, the overheads of Syze can be
further reduced. We consider this feature as future work.

4.5 Impact on Multicores
Following our motivation in Section 2, we investigate the
impacts of Syze on the multicores in two aspects: (1) workloads
balance and (2) parallel efficiency.We also analyze the side effect
of Syze in terms of cache and memory utilities. Moreover, the
cost ofAnchoring&Chaining ismeasured. Syze is benchmarked
against a degraded version of itself that is deprived of any opti-
mizations. In other words, the comparing baseline does not
allow subdivision of hot subgraphs and only utilizes 20 threads,
which is the same as prior partition-centricworks (e.g., GPOP).

4.5.1 Workload Balance

The workload distribution amongst multicores is profiled
by the execution time of threads. The thread with the longest
completion time is evaluated, since it is decisive in a parallel
region. Also, the majority of threads is represented by the
average execution time of all threads.

TABLE 4
Graph Information (K: Thousand, M: Million, B: Billion)

Graphs Vertices Edges Max Deg. Refer.

track 27.7 M 140.6 M 1.1 M [30]
live 7.5 M 112.3 M 300 [31]
wiki 18.3 M 172.1 M 9300 [32]
twitter 41.7 M 1.5B 3.0 M [22]
mpi 52.6 M 2.0B 779 K [33]

TABLE 3
Graph Processing Time (In Seconds) Excluding the Overhead for Graph Algorithms Under Different Graph Frameworks

PageRank Connected Component

Frameworks live mpi track twitter wiki Frameworks live mpi track twitter wiki

Syze 0.866 7.990 2.105 5.562 0.888 Syze 0.231 0.679 0.466 1.153 0.174
GPOP 2.193 17.915 2.753 9.897 1.542 GPOP 0.650 1.587 0.521 1.484 0.409
Ligra 15.369 92.885 10.949 40.895 7.240 Ligra 1.122 5.660 2.096 2.814 0.790
Polymer 7.540 63.000 7.650 40.200 4.520 Polymer 1.020 7.490 1.300 3.940 0.788
Gemini 1.602 22.573 2.826 10.767 2.677 Gemini 0.372 7.916 0.915 5.326 1.009

Single Source Shortest Path Breadth-First Search
Frameworks live mpi track twitter wiki Frameworks live mpi track twitter wiki

Syze 0.249 1.688 0.094 1.410 0.266 Syze 0.090 0.827 0.065 0.829 0.143
GPOP 0.652 2.906 0.093 1.661 0.497 GPOP 0.228 1.432 0.070 1.079 0.206
Ligra 0.269 3.037 0.123 3.002 0.501 Ligra 0.054 0.526 0.050 0.408 0.152
Polymer 0.252 2.140 0.208 1.730 0.340 Polymer 1.140 20.400 1.710 3.660 1.870
Gemini 0.305 3.259 0.461 1.813 1.149 Gemini 0.339 1.063 0.649 0.805 1.612

962 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 6 illustrates the speedup of Syze over the baseline in
terms of graph processing, corresponding longest thread
and average thread. Both the overall process and the longest
thread (i.e., the most imbalanced workload) achieve remark-
able accelerations. The longest thread time is reduced by
1:02� 4:07� (on average 2:27�) over all trials. Meanwhile,
the speedup of graph processing is 1:20� 4:20� (on average
2:70�). The reduction of the longest thread time demon-
strates the effectiveness of Syze in balancing workloads.

By contrast, the majority of threads are decelerated since
the average speedup is 0:51� 1� (below 1 indicting a slow-
down). This validates that it is the longest-running executor
determining the overall processing time of a parallel region,
instead of the majority. Moreover, the slowdown of the
average thread encapsulates the cost of Syze, including the
compromised efficiencies of memory and cache.

4.5.2 Parallel Efficiency

Fig. 7 shows the parallel efficiencies of Syze and the baseline
by running PageRank on graph twitter. The parallel efficien-
cies of physical cores PEP and logical cores PEL are pre-
sented with varied number of working threads. Also, the
execution time for PageRank is normalized by the single-
threaded PageRank. The normalized results demonstrate
the scalability of Syze. Compared with the baseline, Syze
improves the utilization of CPU resources in two aspects:
higher parallel efficiency and better scalability.

Syze raises PEP and PEL by up to 20 percent in compari-
son with the baseline. The enhanced parallel efficiency
attains a significant acceleration for Syze. Against the sin-
gle-threaded implementation, Syze with 20 threads delivers
speedups of 9:85� . Meanwhile, the baseline achieves the
highest speedup by only 5:99�with 20 threads.

Syze exhibits better scalability than the baseline. As in
Fig. 7b, when thread number > 20, the baseline receives no
improvement, which behaves the same as GPOP in Fig. 2.
This is because excellent cache affinity invokes thread con-
tention on cache resources and counteracts the benefits of
Hyper-Threading [26], [27], [28].

With underutilized caches (see later Section 4.5.3), Syze is
enable to reduce thread contention and hence to leverage
Hyper-Threading. The saturation of performance is post-
poned for Syze: it achieves the highest PEP at 40 threads and
the highest speedup by 10:70� at around 36 threads. Multi-
threading with 36 out 40 threads serves as a good heuristic for
all tested graph algorithms. The leftover capacity (e.g., 4
threads) is considered to be occupied by the background pro-
cesses initiated byOS.

Syze’s high utilization of CPU cores essentially results from
the subgraphs of varying sizes. The balancedworkloads of sub-
graphs reduce thewaiting time of parallel threads. This enables
more active engagement of threads and thus facilitates higher
parallel efficiency. Furthermore, since the caches can more eas-
ily accommodate small-sized subgraphs, the logical cores are
less likely to compete for the cache resources, thereby leading
to higher utilization of available cores.

4.5.3 Cost of Syze

Though Syze brings substantial accelerations to graph applica-
tions, it also causes various side effects on the multicore sys-
tems. Hence, additional multicore activities are monitored,
such as memory accesses and L2 cache misses. To better illus-
trate the cost of Syze, we report these metrics using performance
decline = {Result of Syze}/{Result of Baseline}. The larger the
value, theworse performance Syze incurs.

The performance deterioration related tomemory and cache
are plotted in Fig. 8. The average thread (defined in Sec-
tion 4.5.1) is presented as well. Its performance decline equals
the inverse of its speedup depicted in Fig. 6. The deployment of
Syze lifts memory accesses as well cache misses, which results
in the slowdownof the average thread.

The increased memory accesses and cache misses origin
from the newly created subgraphs. As listed in Table 6, for
Syze, the subdivision of hot subgraphs causes an upsurge of
sub-units (i.e., smaller subgraphs) as well as inter-edges con-
necting these subgraphs. Hence, cross-subgraph communica-
tions are raised, which consequently leads to higher memory
traffic. Also, although the small-sized subgraphs deteriorate
the cache efficiency, they relieve thread contention on caches.

Also, Syze incurs additional cost in locating the sub-
graphs of vertices. For the baseline, the Chaining procedure
is no more needed for locating the subgraphs due to its
equal-sized segmenting; that is, Eqs. (4b), (4c) and (4d) are
not performed by the baseline. In comparison, Syze requires
complete Anchoring & Chaining for every vertex to locate
its belonging subgraphs. Thus, Syze involves heavier com-
putations and memory usage. Nonetheless, the overheads
of locating the subgraphs are minor. As listed in Table 6, it
costs less than 0.3 ms for any graphs to locate the subgraphs
of all vertices.

Given the costs in the memory-cache hierarchy, Syze still
delivers remarkable acceleration to the overall graph

TABLE 5
Preprocessing Overheads of Different Graph Frameworks

in Seconds

Syze GPOP Ligra Polymer Gemini

live 0.194 0.140 0.503 8.450 14.700
mpi 12.501 7.443 9.635 242.000 350.850
track 0.608 0.455 0.772 10.600 20.910
twitter 10.758 7.582 8.920 148.000 268.000
wiki 0.978 0.658 1.098 15.900 21.880

PR Iter. 20.453 13.651 19.971 358.382 574.572

Bottom row presents the average number of PageRank iterations by Syze to
amortize the overheads.

Fig. 6. The speedup of the graph processing, the longest thread and the
average thread over the baseline. The results stand for the mean of dif-
ferent graph algorithms with 80 percent confidence interval.

CHEN AND CHUNG: UNEQUALCACHING STRATEGY FOR SHARED-MEMORYGRAPH ANALYTICS 963

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

processing, which is on average 2:70� . This is because the
gain from workload balancing and effective parallelism far
outweigh the loss from cache and memory inefficiencies.
For instance, comparing Fig. 6 with Fig. 8, it can be observed
that the speedup of the longest thread (on average 2:27�) is
much higher than the performance decline of memory (on
average 1:14�) and cache (on average 1:17�). In the next
section, we explicitly quantify the respective contributions
of balanced workload and improved parallelism.

4.6 Decomposition of Syze
The design of Syze differs from existing partition-centric para-
digm in two distinct features. (1) Unequal-sized graph caching:
the segment sizes are diversified due to the subdivision of hot
subgraphs. Contrarily, prior works equally segment a graph
into vertex subsets of the same size. (2) Optimized thread utili-
zation: we exploit higher utilization of threads by deploying 36
out of 40 available threads. Other partition-centric methods,
however, only employs half of available threads (e.g., 20) for
task parallelization to prevent saturation.

To understand the contributions of the two features, the
design of Syze is disintegrated and the components are eval-
uated separately. We employ Syze without unequal caching
and with 20 threads as the plain baseline. Then, the baseline
is compared with three variants of Syze. (1) Syze without
unequal caching but with 36 threads, denoted as Syze-
equal. (2) Syze with unequal caching and half-size thread
pool, e.g, 20 out of 40 threads, denoted as Syze-half. (3) The
fully functional Syze with unequal caching and 36 threads.
The comparison results are presented in the form of
speedup over the baseline as in Fig. 9.

Fig. 9 demonstrates that the unequal caching strategy acts as
the main contributor to the effectiveness of Syze. Without the
unequal solution, Syze-equal oftentimes causes a slowdown
with speedup < 1� . Simply adding more threads into the
parallelization of a graph application is prone to deteriorate the
processing speed. When the unequal caching is adopted by
Syze-half, the performance immediately receives a substantial
boost. Based on Syze-half, the addition of threads further accel-
erates graph processing, though the improvement from Syze-
half to Syze is relativelyminor.

On the average of all graph algorithms and datasets, Syze-
equal, Syze-half and Syze achieves speedups over the baseline
by 1:06� , 1:76� and 2:09� respectively. The whole is greater
than the sum of the parts. Also, the unequal caching strategy is
rankedwithhigher importance than the large size of threadpool.

4.7 Initial Segmenting Size
To acquire the optimal size for the initial segmentation of
graphs, a sensitivity analysis is conducted. The performance
of Syze is examined by setting different initial segmenting
size. As shown in Fig. 10, the results are normalized by the
execution time of 16 KB.

The majority of graphs achieve the best performance when
their initial segmenting sizes range within L2 cache: L1 cache
size < segmenting size < L2 cache size. If the vertex subset is
too small (i.e., fitting into L1 cache), there will be an upsurge in
inter-edges and computational loads. Oppositely, if the size is
too large, subgraphwill spill over into LLC or evenmainmem-
ory, resulting in low cache locality and high memory traffic. In
such case, the performance of Syze is drastically deteriorated.

Graph live behaves abnormally because its small size of
vertex set. If segmented by 256 KB, live is subdivided into
149 subgraphs. On average, each thread is allocated with
approximately 4 subgraphs. It is insufficient to fully exploit
OpenMP’s dynamic scheduler as threads might have to
wait idly without new tasks.

Consequently, we choose 256 KB as the basic segmenting
parameter at the stage of initial segmentation. Furthermore, a
sufficient number of subgraphs N is required to facilitate
dynamic scheduling policy. Thereby, we set N � 8 � T , where
T stands for the size of thread pool. For small-scale graphs, the
initial segmenting size is halved consecutively until this condi-
tion is fulfilled.

5 RELATED WORK

Graph Processing.Avariety of high-performance graph analytics
frameworks have been developed in recent decades. The ver-
tex-centric programmingmodel is introduced by the pioneering
Google’s Pregel [42] and then employed by Apache’s Gir-
aph [43] and Facebook for analyzing social networks [44]. How-
ever, these frameworks are operated on distributed systems
andusually suffer fromexpensive network traffic.

Exempted from the network overhead, shared-memory
graph frameworks are created for single-machine multicore

Fig. 7. The speedups of Syze and baseline and the parallel efficiencies
of physical cores and logical cores, by performing PageRank on twitter.

Fig. 8. The performance decline of the memory, the cache and the aver-
age thread compared with the baseline. The results stand for the mean
of different graph algorithms with 80 percent confidence interval.

964 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

systems [1]. The vertex-centric paradigm is customized with
diverse features, such as hybrid push-pull engine [13], [16] and
NUMA-awareness [14], [45]. These techniques, in return,
inspire the advancement of the distributed counterparts [5].

In the situationwhere thememory volume is limited, out-of-
core frameworks are devised to process graphs by the usage of
disks [3], [6]. X-Stream invents the edge-centric programming
model to reduce random disk accesses [46]. GridGraph further
promotes efficient streamingof edges on thedisk-based systems
by deploying graph 2-D partitioning [2]. Besides, there are a
genre of subgraph-centric frameworks that focus on local proc-
essing of graph subsets for distributed systems [47], [48], [49]. A
number of shared-memory graph works adopt the concept of
subgraph by segmenting the vertex set of CSR [7], [17], [18],
[19], which can be referred to as the partition-centric paradigm.
Following above definitions, Syze can be categorized as a
shared-memory partition-centric framework designed for mul-
ticore systems. Domain Specific Languages (DSLs) are another
research field of high-performance graph analytics. The DSLs
aim to provide simplicity and efficiency for graph analytics.
Green-Marl compiler allows intuitive expression of graph algo-
rithms and produces an optimized parallel C++ implementa-
tion [50]. GraphIt separates graph description and optimization
with an algorithm language and a scheduling language respec-
tively [51]. Users are able to explore well-known optimizations
with minimum implementation effort. In the future, it is possi-
ble to embed the essence of Syze into the graphDSLs.

Graph Partitioning. The partitioning of graphs functions
as a prerequisite for distributed graph frameworks.
Improper partitioning results will lead to imbalanced com-
putation and communication among the machines, which
bottlenecks the parallel graph processing. The issue of
workload imbalance is an important concern for graph

partitioning, especially for skewed graphs [52], [53]. Hence,
most of distributed graph frameworks have already taken
the this issue into consideration when being designed.

For instance, PowerGraph deploys vertex cut [54] that
assigns machines with even number of edges and replicated
vertices. PowerLyra applies hybrid cut [52], where low-
degree and high-degree vertices are differentially parti-
tioned and replicated to minimize replication overhead.
Gemini ensures inter-machine balance by assigning each
machine with balanced vertices and out-edges (similar to
our method) [5]. Also, it employs work-stealing to balance
the inter-core loads. Graphite proposes a 2-D partitioning
and placement scheme is proposed to balance the computa-
tion/communication and to eliminate synchronization
overheads [55].

Finding the optimal result of graph partitioning (i.e.,
min-cut) is proved to be NP-hard [56]. There have been
growing attempts to reach an approximate solution to it,
such as METIS [57], KaHIP [58] and PULP [59]. In order to
obtain high-quality results, these partitioners undertake
complicated calculations to analyze the internal structure of
graphs (e.g., tree and community). However, despite the
effectiveness in boosting the downstream graph applica-
tions, they tend to incur excessively high overheads. For
high performance, their parallelized versions are proposed,
including ParMETIS [60], ParHip [61], XtraPULP [62].

In most of shared-memory frameworks, a graph is globally
accessible to all cores. Graphpartitioning is unnecessary, unless
a specific optimization is designed. Also, the issue of workload
imbalance is poorly considered. Many frameworks simply rely
on existing thread management policies, such work stealing or
dynamic scheduling to handle this issue [7], [13], [18], [21]. As
an exception, the shared-memory Polymer [14] adopts graph
partitioning for NUMAmachines and optimizes the workload
distribution acrossNUMAnodes.

Syze splits a graph into subgraphs for cache locality. It takes
proactive action to tackle the issue of imbalancedworkloads by
varying the sizes of subgraphs. Syze segments vertices accord-
ing to edge information (i.e., vertex degrees). It leverages the
very basic structural property of graphs (i.e., degrees), and thus
causes a lightweight computational load. Moreover, the bit-
aware propagation is customized for the unequal segmenta-
tion, together coalescing into the framework to facilitate the
parallel execution of subgraphs.

TABLE 6
The Numbers of Subgraphs and Inter-Edges (In Million), and the
Time for Locating the Subgraphs of All Vertices (In Milliseconds)

by Syze and the Baseline

live mpi track twitter wiki

Subgraphs Syze 140 1055 566 747 350
Baseline 115 803 423 636 279

Inter-Edges Syze 41 888 69 499 83
Baseline 18 549 45 437 56

Time Cost Syze 0.042 0.209 0.109 0.146 0.073
Baseline 0.039 0.160 0.094 0.120 0.063

Fig. 9. The speedups delivered by Syze and its variants in comparison
with the baseline, by performing BFS on twitter.

Fig. 10. The normalized execution time of Syze with different initial seg-
menting size, by performing BFS.

CHEN AND CHUNG: UNEQUALCACHING STRATEGY FOR SHARED-MEMORYGRAPH ANALYTICS 965

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

6 CONCLUSION

In this paper, we propose an unequal caching strategy for
high-performance shared-memory graph analytics, namely
Syze. The proposal of Syze is motivated by the in-depth
analyses of existing CSR-segmenting graph processing
works. We experimentally demonstrate that, when the
equal-sized CSR segmenting optimization is deployed on
power-law graphs, CPU cores suffer from not only work-
load imbalance but also parallel inefficiency.

In order to address these issues, Syze identifies the hot sub-
graphs, and then subdivides them into smaller units. To locate
the belonging subgraph of a vertex, the bitwise operations
Anchoring & Chaining are designed, which efficiently encode
the individual bits of vertex IDs. In this sense, updates of data
are propagatedwith the awareness of vertex bits.

Syze is effective at graphs characterized by inherent
imbalance, the feature of which can be theoretically calcu-
lated. Running on multicore systems, Syze is able to opti-
mize the utilization of CPU resources by shortening the
longest thread and alleviating thread contention. As a pen-
alty, Syze places additional burdens on the cache and mem-
ory. Fortunately, the performance boost from balanced
workloads far exceeds the cost from the memory-cache hier-
archy. In consequence, Syze delivers substantial speedup
over fine-tuned contemporary frameworks.

REFERENCES

[1] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically efficient
parallel graph algorithms can be fast and scalable,” ACM Trans.
Parallel Comput., vol. 8, no. 1, pp. 1–70, 2021.

[2] X. Zhu, W. Han, and W. Chen, “GridGraph: Large-scale graph
processing on a single machine using 2-level hierarchical parti-
tioning,” in Proc. USENIX Annu. Tech. Conf., 2015, pp. 375–386.

[3] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale
graph computation on just a {PC},” in Proc. 10th USENIX Symp.
Oper. Syst. Des. Implementation, 2012, pp. 31–46.

[4] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework,” in Proc. 11th USENIX Symp. Oper. Syst. Des. Imple-
mentation, 2014, pp. 599–613.

[5] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-
centric distributed graph processing system,” in Proc. 12th USE-
NIX Symp. Oper. Syst. Des. Implementation, 2016, pp. 301–316.

[6] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim,
“Mosaic: Processing a trillion-edge graph on a single machine,” in
Proc. 12th Eur. Conf. Comput. Syst., 2017, pp. 527–543.

[7] K. Lakhotia, R. Kannan, S. Pati, and V. Prasanna, “Gpop: A scalable
cache-and memory-efficient framework for graph processing over
parts,”ACMTrans. Parallel Comput., vol. 7, no. 1, pp. 1–24, 2020.

[8] J. Malicevic, B. Lepers, and W. Zwaenepoel, “Everything you always
wanted to know about multicore graph processing but were afraid to
ask,” inProc. USENIXAnnu. Tech. Conf., 2017, pp. 631–643.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law rela-
tionships of the internet topology,” ACM SIGCOMM Comput.
Commun. Rev., vol. 29, no. 4, pp. 251–262, 1999.

[10] A. T. Stephen and O. Toubia, “Explaining the power-law degree
distribution in a social commerce network,” Soc. Netw., vol. 31,
no. 4, pp. 262–270, 2009.

[11] M. Brzezinski, “Power laws in citation distributions: Evidence
from scopus,” Scientometrics, vol. 103, no. 1, pp. 213–228, 2015.

[12] E. Almaas and A.-L. Barab�asi, “Power laws in biological
networks,” in Power Laws, Scale-Free Networks and Genome Biology,
Berlin, Germany: Springer, 2006, pp. 1–11.

[13] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proc. 18th ACM SIGPLAN
Symp. Princ. Pract. Parallel Program., 2013, pp. 135–146.

[14] K. Zhang, R. Chen, and H. Chen, “Numa-aware graph-structured
analytics,” in Proc. 20th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., 2015, pp. 183–193.

[15] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infra-
structure for graph analytics,” in Proc. Twenty-Fourth ACM Symp.
Oper. Syst. Princ., 2013, pp. 456–471.

[16] S. Grossman, H. Litz, and C. Kozyrakis, “Making pull-based
graph processing performant,” ACM SIGPLAN Notices, vol. 53,
no. 1, pp. 246–260, 2018.

[17] K. Lakhotia, R. Kannan, and V. Prasanna, “Accelerating pagerank
using partition-centric processing,” in Proc. USENIX Annu. Tech.
Conf., 2018, pp. 427–440.

[18] S. Beamer, K. Asanovi�c, and D. Patterson, “Reducing pagerank
communication via propagation blocking,” in Proc. IEEE Int. Par-
allel Distrib. Process. Symp., 2017, pp. 820–831.

[19] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaha-
ria, “Making caches work for graph analytics,” in Proc. IEEE Int.
Conf. Big Data, 2017, pp. 293–302.

[20] S. Zhou et al., “Design and implementation of parallel pagerank
on multicore platforms,” in Proc. IEEE High Perform. Extreme Com-
put. Conf., 2017, pp. 1–6.

[21] L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for
parallel graph algorithms using work-efficient bucketing,” in Proc.
29th ACMSymp. ParallelismAlgorithms Architect., 2017, pp. 293–304.

[22] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?,” in Proc. 19th Int. Conf. World Wide
Web, 2010, pp. 591–600.

[23] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the
gpu,” in Proc. 21st ACM SIGPLAN Symp. Princ. Pract. Parallel Pro-
gram., 2016, pp. 1–12.

[24] ”Intel� VTuneTM profiler performance analysis cookbook,” , 2011.
Accessed: Apr. 22, 2021. [Online]. Available: https://software.
intel.com/content/www/us/en/develop/documentation/
vtune-cookbook/top/tuning-recipes/os-thread-migration.html

[25] “Intel 64 and ia-32 architectures optimization reference manual,”
2012, 2012. Accessed: Jan. 7, 2023. [Online]. Available: https://
www.intel.com/content/dam/doc/manual/64-ia-32-architectur
es-optimization-manual.pdf

[26] W. Magro, P. Petersen, and S. Shah, “Hyper-threading technology:
Impact on compute-intensive workloads,” Intel Technol. J., vol. 6,
no. 1, pp. 1–9, 2002.

[27] R. A. Tau Leng, J. Hsieh, V. Mashayekhi, and R. Rooholamini,
“An empirical study of hyper-threading in high performance
computing clusters,” Linux HPC Revolution, vol. 45, 2002.

[28] N. H. Qun et al., “Hyper-threading technology: Not a good choice
for speeding up cpu-bound code,” in Proc. 3rd Int. Conf. Electron.
Des., 2016, pp. 578–581.

[29] D. Buono et al., “Optimizing sparse matrix-vector multiplication
for large-scale data analytics,” in Proc. Int. Conf. Supercomput.,
2016, pp. 1–12.

[30] S. Schelter and J. Kunegis, “Tracking the trackers: A large-scale
analysis of embedded web trackers,” in Proc. 10th Int. AAAI Conf.
Web Soc. Media, 2016, pp. 679–682.

[31] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B.
Bhattacharjee, “Measurement and analysis of online social
networks,” in Proc. 7th ACM SIGCOMM Conf. Internet Meas.,
2007, pp. 29–42.

[32] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives, “DBpedia: A nucleus for a web of open data,” in Proc. Int.
Semantic Web Conf., 2007, pp. 722–735.

[33] M. Cha,H.Haddadi, F. Benevenuto, andK. P. Gummadi, “Measuring
user influence in twitter: The million follower fallacy,” in Proc. 4th Int.
AAAI Conf.Weblogs Soc.Media, 2010, pp. 10–17.

[34] S. Beamer, K. Asanovi�c, and D. Patterson, “The gap benchmark
suite,” 2015, arXiv:1508.03619.

[35] J. Kunegis, “Konect: The koblenz network collection,” in Proc.
22nd Int. Conf. World Wide Web, 2013, pp. 1343–1350.

[36] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the cilk-5 multithreaded language,” in Proc. ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 1998, pp. 212–223.

[37] “perf: Linux profiling with performance counters,” 2022.
Accessed Jan. 7, 2023. [Online]. Available: https://perf.wiki.
kernel.org/index.php/Main_Page

[38] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight perfor-
mance-oriented tool suite for x86 multicore environments,” in Proc.
39th Int. Conf. Parallel Process.Workshops, 2010, pp. 207–216.

[39] “OpenCilk,” Accessed: Sep. 21, 2021, 2011. [Online]. Available:
https://cilkplus.github.io/

966 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/tuning-recipes/os-thread-migration.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/tuning-recipes/os-thread-migration.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/tuning-recipes/os-thread-migration.html
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://cilkplus.github.io/

[40] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the web,” Stanford InfoLab,
Stanford, CA, USA, Tech. Rep. 442, 1999.

[41] N. Sundaram et al., “Graphmat: High performance graph analyt-
ics made productive,” 2015, arXiv:1503.07241.

[42] G.Malewicz et al., “Pregel: A system for large-scale graph processing,”
inProc. ACMSIGMODInt. Conf.Manage. Data, 2010, pp. 135–146.

[43] C. Martella, R. Shaposhnik, D. Logothetis, and S. Harenberg, Prac-
tical Graph Analytics With Apache Giraph, vol. 1, Berlin, Germany:
Springer, 2015.

[44] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthuk-
rishnan, “One trillion edges: Graph processing at facebook-scale,”
Proc. VLDB Endowment, vol. 8, no. 12, pp. 1804–1815, 2015.

[45] J. Sun, H. Vandierendonck, and D. S. Nikolopoulos, “Graphgrind:
Addressing load imbalance of graph partitioning,” in Proc. Int.
Conf. Supercomput., 2017, pp. 1–10.

[46] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-cen-
tric graph processing using streaming partitions,” in Proc. 24th
ACM Symp. Oper. Syst. Princ., 2013, pp. 472–488.

[47] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From,” think like a vertex” to” think like a graph,”” Proc. VLDB
Endowment, vol. 7, no. 3, pp. 193–204, 2013.

[48] Y. Simmhan et al., “Goffish: A sub-graph centric framework for
large-scale graph analytics,” in Proc. Eur. Conf. Parallel Process.,
2014, pp. 451–462.

[49] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric
framework for distributed computation on real-world graphs,”
Proc. VLDB Endowment, vol. 7, no. 14, pp. 1981–1992, 2014.

[50] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-marl: A dsl
for easy and efficient graph analysis,” in Proc. 17th Int. Conf. Archi-
tect. Support Program. Lang. Oper. Syst., 2012, pp. 349–362.

[51] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amara-
singhe, “Graphit: A high-performance graph DSL,” Proc. ACM
Programm. Lang., vol. 2, no. OOPSLA, pp. 1–30, 2018.

[52] R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Differentiated
graph computation and partitioning on skewed graphs,” in Proc.
10th Eur. Conf. Comput. Syst., 2015, pp. 1–15.

[53] M. Zhang, Y. Wu, K. Chen, X. Qian, X. Li, and W. Zheng, “Exploring
the hidden dimension in graph processing,” in Proc. 12th USENIX
Symp.Oper. Syst. Des. Implementation, 2016, pp. 285–300.

[54] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed graph-parallel computation on natural
graphs,” in Proc. 10th USENIX Symp. Oper. Syst. Des. Implementa-
tion, 2012, pp. 17–30.

[55] M. H. Mofrad, R. Melhem, Y. Ahmad, and M. Hammoud,
“Graphite: A NUMA-aware HPC system for graph analytics
based on a new MPI* X parallelism model,” Proc. VLDB Endow-
ment, vol. 13, no. 6, pp. 783–797, 2020.

[56] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz,
“Recent advances in graph partitioning,” in Algorithm Engineering,
Berlin, Germany: Springer, 2016, pp. 117–158.

[57] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme
for irregular graphs,” J. Parallel Distrib. Comput., vol. 48, no. 1,
pp. 96–129, 1998.

[58] H. Meyerhenke, P. Sanders, and C. Schulz, “Partitioning complex
networks via size-constrained clustering,” in Proc. Int. Symp. Exp.
Algorithms, 2014, pp. 351–363.

[59] G. M. Slota, K. Madduri, and S. Rajamanickam, “PuLP: Scalable
multi-objective multi-constraint partitioning for small-world
networks,” in Proc. IEEE Int. Conf. Big Data, 2014, pp. 481–490.

[60] G. Karypis and V. Kumar, “Parallel multilevel series k-way parti-
tioning scheme for irregular graphs,” SIAM Rev., vol. 41, no. 2,
pp. 278–300, 1999.

[61] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph parti-
tioning for complex networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 9, pp. 2625–2638, Sep. 2017.

[62] G. M. Slota, C. Root, K. Devine, K. Madduri, and S. Rajama-
nickam, “Scalable, multi-constraint, complex-objective graph par-
titioning,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 12,
pp. 2789–2801, Dec. 2020.

YuAng Chen received the BS degree in elec-
tronic science and technology from the Huazhong
University of Science and Technology, in 2015,
and the dual MS degrees in embedded system
from the Eindhoven University of Technology and
Technische Universit€at Berlin, in 2018. Currently,
he is working toward the PhD degree in computer
science with the Chinese University of Hong
Kong, Shenzhen. His research interests cover
computer system & architecture, high perfor-
mance computing and graph analytics.

Yeh-Ching Chung received the BS degree in
computer science from Chung Yuan Christian
University, in 1983, and the MS and PhD degrees
in computer and information science from Syra-
cuse University, in 1988 and 1992, respectively.
Currently, he is a professor with the Chinese Uni-
versity of Hong Kong, Shenzhen. His research
interests include parallel and distributed process-
ing, cloud computing, Big Data, and embedded
system.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CHEN AND CHUNG: UNEQUALCACHING STRATEGY FOR SHARED-MEMORYGRAPH ANALYTICS 967

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on February 21,2023 at 21:04:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

