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A B S T R A C T

Resistive random access memory (ReRAM) is a promising technology for AI Processing-in-Memory (PIM)
hardware because of its compatibility with CMOS, small footprint, and ability to complete matrix–vector
multiplication workloads inside the memory device itself. However, redundant computations are brought on
by duplicate weights and inputs when an MVM has to be split into smaller-granularity sequential sub-works in
the real world. Recent studies have proposed repetition-pruning to address this issue, but the buffer allocation
strategy for enhancing buffer device utilization remains understudied. In preliminary experiments observing
input patterns of neural layers with different datasets, the similarity of repetition allows us to transfer the buffer
allocation strategy obtained from a small dataset to the computation with a large dataset. Hence, this paper
proposes a practical compute-reuse mechanism for ReRAM-based PIM, called CRPIM, which replaces repetitive
computations with buffering and reading. Moreover, the subsequent buffer allocation problem is resolved at
both inter-layer and intra-layer levels. Our experimental results demonstrate that CRPIM significantly reduces
ReRAM cells and execution time while maintaining adequate buffer and energy overhead.
1. Introduction

Non-volatile memory (NVM) is prominent for addressing the ‘‘Mem-
ory Wall’’ problem and has been widely applied to Processing-in-
Memory (PIM). Resistive Random Access Memory (ReRAM) stands out
among PIM devices due to its compact size and lower energy con-
sumption. ReRAM crossbar arrays (XBAs) perform analog computation
of MVM with high parallelism. According to Kirchhoff’s law, currents
representing the computation results are generated simultaneously in
a ReRAM matrix, reducing the computational complexity from 𝑂(𝑛2)
to 𝑂(1). Memristor crossbar-based PIM has been adopted in many
fields, such as image recognition [1], graph processing [2,3], signal
processing [4], DNA alignment [5,6], and wave simulation [7].

Though many ReRAM-based DNN accelerators (e.g. [8,9]) have
been proposed, the real-world implementation confronts challenges
related to both temporal and spatial dimensions, affecting the device’s
resilience.

(1) ReRAM memory Space. Matrix–vector multiplication (MVM) on
ReRAM-based DNN accelerators relies on a foundation of massive
XBAs. For example, to support the full precision network of
ResNet-50 [10], more than 49,800 single-bit 128 × 128 XBAs are
required, yet recent advanced models are much larger.
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(2) Time consumption. Various technological constraints and prac-
tical non-idealities of ReRAM-based accelerators have been stud-
ied [11–13]. To ensure that the variation in calculation accuracy
is within a tolerable limit, one solution is to make MVM com-
putations be performed at a finer level known as an Operation
Unit (OU) [14,15]. However, performing MVM computation at
the OU level necessitates breaking down a single MVM operation
into OU-level sub-MVM operations (OU-MVMs), which increases
the overall computation time.

Various sparsity-aware methods have been devised to reduce the
requisite ReRAM cells. Structured specification methods generate group-
wise sparse models by nullifying all weights within specific groups.
Auto-Prune [16] learns a column-wise sparse model that is friendly to
pruning ReRAM cells. Approaches such as ReCom [17], SNrram [18],
and SRE [19] integrate structural sparsity and eliminate trivial columns
or XBAs. They reduce the proportion of ReRAM cells that store zeros,
resulting in more compact accelerators. For models that lack inher-
ent structural sparsity, contemporary research explores weight and
activation redundancy to condense XBAs. The MVM computation is
decomposed into smaller granularity, e.g., XBA-level, column-level, and
block-level. Repetition-aware methods remember the repeated patterns
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Fig. 1. Illustration of ReRAM-based (a) Dot-product of two vectors, (b) Matrix–Vector Multiplication.
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Table 1
Normalized input cycles and unit output sizes of the layers with the highest (top1 and
top2) and lowest (low1 and low2) cycle costs across four models.

Model Normalized input cycles/output size

top1 top2 low1 low2

ResNet-50 785-1 785-4 1-500 3-576
AlexNet 101-1 10-13.2 1-1624.9 1-722.2
VGG-16 1407-1 1407-21.3 1-59468 1-9709
GoogLeNet 785-1.3 257-3.1 1-333 3-216

of weights and inputs and bypass redundant computations, thereby
reducing time overhead. RePIM [20] suggests using indexing tables to
share computational outcomes among repetitive weights and inputs.
PattPIM [21] treats OU blocks as weight patterns and records repeated
instances in a table to decrease redundant storage and computations.

However, these studies rarely discuss the implementation and per-
formance aspects of the input-sharing scheme. Assume patterns are
input vectors for an OU block. The sharing process needs to record
unique pattern vectors and their associated outcomes, termed pat-
tern results. Storing all pattern results incurs a spatial complexity of
𝑂( 2

𝑏𝑙𝑜𝑔𝑙
𝑙 𝐻𝑊 ). Here, 𝐻 and 𝑊 denote the height and width of the

eight matrix, while 𝑙 represents the length of an input pattern vector.
o perform full sharing (all pattern results are buffered), it consumes
ore memory for the indexing table than the weight matrix. In current

tudies, little correlation has been utilized between the overhead of
eural layers and the buffering strategy of repetitive patterns. Table 1
hows the summary of input cycles and output size of the layers
ith the highest 2 and lowest 2 cycle costs across models. The cost
f layers shows an imbalance distribution. The most time-consuming
ayers produce a rather small unit output, inspiring the buffer strategy
eaning towards the layers with fewer storage costs but higher time-
aving benefits. In other words, the buffer allocation strategy should
ake into account the inter-layer imbalance in computation demand.

In this paper, we propose CRPIM, a practical compute-reuse mecha-
ism exploring the repetitiveness of weights and inputs. CRPIM reduces
considerable amount of needed ReRAM cells and shrinks the compu-

ation time by buffering frequently used OU-MVM results. This study
lso balances the memory overhead other than ReRAM devices. Our
ontributions are as follows:

(1) We divide the input vectors into OU-inputs and analyze the
frequency distribution of input patterns. The preliminary experi-
ments reveal that certain input patterns are frequently repeated
while changing datasets, allowing us to replace the repetitive
computations with buffering and reading. We then define the
intra-layer and inter-layer buffer allocation problems subject to
2

the constraint of limited buffer size. We show that the latter
problem is a variation of the bounded knapsack problem, and a
dynamic programming approach is proposed.

(2) We propose a Compute-Reuse mechanism for weight patterns to
convert part of the computational work with repetitive weight
patterns into buffering and reading. Based on Input Compute-
Reuse (ICR) and Weight Compute-Reuse (WCR), we propose the
CRPIM and introduce the architecture design.

(3) We evaluate the performance of CRPIM with several popular DNN
models on the Imagenet dataset. The results show that though the
storage overhead of CRPIM is linear to weight size, it achieves up
to 2.63× speedups and an average of 37.9% ReRAM compression
rate compared to the recent ReRAM-based accelerators. Its energy
consumption is on par with SRE for most models.

2. Preliminaries and motivation

2.1. ReRAM crossbar-based DNN accelerator

ReRAM, a non-volatile memory device, owns the advantages of low
power, compact size, and compatibility with complementary metal–
oxide–semiconductor (CMOS) technology. ReRAM crossbar arrays
(XBAs) arrange ReRAM cells as a matrix, which can perform dot-
product operations and store data simultaneously. As depicted in
Fig. 1(a), when ReRAM cells are configured in a 1D array, voltages
function as inputs, and each cell conductance represents a weight value.
The resulting currents converge to yield the analog outcome of the dot
product between two vectors, i.e., the sum of the currents, denoted by
𝐼 =

∑

𝑉𝑖 ⋅ 𝐺𝑖. Notably, the generation and summation of currents are
ompleted within a single cycle. By arranging ReRAM cells in a 2D
rray, as shown in Fig. 1(b), summed currents in all columns reach
he ends simultaneously. Consequently, the computational complexity
f matrix–vector multiplication (MVM) operations is reduced from
(𝑛2) to 𝑂(1). Because MVMs account for the bulk of computational
emands in neural networks, many DNN accelerators utilize XBAs as
VM processing units.

ISAAC [9] is a pipeline-aware yet over-idealized CNN accelerator
ased on ReRAM that ignores the influence of non-ideal electrical
roperties on computation. DL-RSIM [14] simulates the error rate of
ractical ReRAM-based DNN accelerators, illustrating the necessity of
plitting MVM into multiple operation units (OUs). SRE [19] employs
Us in accelerator design, limiting the number of activated word-

ines and bitlines to the OU size. Some studies use single-level-cell
SLC) ReRAM devices to improve error resilience. Bit-Transformer [22]
nd SoBS-X [23] suggest decomposing an N-bit fixed-point weight
atrix into 𝑁 bit-matrices and mapping 1-bit values with identical
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Fig. 2. Examples of splitting convolutional computations to OU computations and weight/input compression.
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bit-positions onto the same XBA. Fig. 2(a) presents an OU-based con-
volutional computation using bit-split ReRAM XBAs. The 2-bit filter
weights are mapped onto two XBAs, XBA-MSB and XBA-LSB, which
store the most significant bits and least significant bits, respectively. An
XBA is further logically divided into a collection of OUs in computation.
In each cycle, only one OU of wordlines and bitlines is activated. Sub-
sequently, Analog-to-Digital Converters (ADCs) obtain the accumulated
currents from sample-and-hold (𝑆&𝐻) circuits and convert them into
digital data. In Fig. 2(a), O1 and O2 are accumulated, then O3 and
O4 are accumulated. All XBAs perform computations simultaneously,
whose results are shifted and added to form the MVM output. However,
ReRAM device overhead is a concern for DNN models. For the full-
precision ResNet-50 model, which comprises 25.6 million parameters,
accommodating all weight filters within (128×128) SLC crossbar arrays
necessitates in excess of 49,800 ReRAM crossbar arrays. Addition-
ally, executing MVMs in serial OU blocks diminishes the degree of
parallelism.

2.2. XBA pruning

Sparsity pruning is a common technique to reduce the XBA demand
for ReRAM-based accelerators. To perform XBA-grained computations,
PIM-Prune [24] iteratively removes less critical columns and rows from
a coarse-grained unit block, which is larger than the XBA, until the
pruned block can fit into an XBA. For OU-grained computations, a large
MVM is partitioned into multiple OU-MVMs. SRE [19] reduces ReRAM
cells by rearranging the rows and columns of the XBA and removing
zero or near-zero OU columns/rows. For instance, the first XBA in
Fig. 2(b) results from swapping the 2nd and 3rd columns of XB-LSB in
Fig. 2(a), while the second XBA is derived from interchanging its 2nd
and 3rd rows. The all-zero OU rows or columns are grouped together
and skipped.

Repetition sharing is another widely explored strategy to reduce
computational redundancy in large MVMs. RePIM [20] performs com-
putations only on unique OU-columns to save repetitive computations.
The third XBA in Fig. 2(b) shows that the repeated [0,1] on the first
OU-row are skipped so that the number of OU-MVM is reduced from
two to one.

2.3. Input activation pruning

In addition to weights, input activations are also highly compress-
ible due to their sparsity and repetitions. In the field of ASIC design,
Bit-Serial Cache [25] introduces a cache-assisted Processing Engine
3

n

(PE) architecture to buffer the partial results produced by repeated
input activations. In the ReRAM-based accelerator area, SRE avoids
wasting clock cycles on inactive inputs by using dynamic OU formation
and skipping zeros and repetitive inputs. RePIM [20] shares computa-
tion results among repetitive inputs to reduce redundant computations.
Fig. 2(b) shows an example that SRE compresses an MVM from 16
OU operations to 6 by forming OUs dynamically. In the example, four
newly formed all-zero vectors are skipped, and the earlier input vector
[1,1] is reused for one time. Fig. 2(c) shows the repetitive input-sharing
method in RePIM, where only the unique input patterns are kept for
OU-MVM. The 12 MVM operations are replaced by 3 unique MVMs and
7 data-sharing operations. Repetition pruning in SRE and RePIM greatly
reduces the computations with redundant input. However, given that
the MVM result of each unique input pattern occupies 𝑂( 𝑙𝑜𝑔𝑏𝑙 𝐻𝑊 ) of
space, full sharing – where all pattern results are stored in buffers –
results in a spatial complexity of 𝑂( 𝑙𝑜𝑔𝑏𝑙 𝐻𝑊 2𝑙), with 𝑙 equal to 𝐻𝑂𝑈 .

he storage overhead becomes untenable, particularly for neural layers
ith large feature maps. Moreover, the objective of achieving full

haring exacerbates this challenge. Therefore, it is crucial to investi-
ate methods for maximizing the pruning effect with limited buffer
esources.

.4. Motivation

Previously mentioned weight or input pruning methods have done
ittle to explore the concentrated distribution of inputs. We conduct the
irst pre-experiment to investigate the distribution of input patterns. Let
U be a (8 × 8) block and define input patterns as elements within

he power set of an 𝐻𝑂𝑈 -bit binary vector space, where 𝐻𝑂𝑈 is the
eight of an OU block. We unfold the input feature map into multiple
ycles of 1-bit input vectors and further divide them into multiple
U-rows. We take 1024 images as the batch size for inference and

andomly select an OU-row to observe the OU-inputs composition for
ll layers. Fig. 3 shows the composition of OU-inputs for Alexnet [26],
oogleNet [27], ResNet-50 [10], and VGG-16 [28]. OU-inputs exhibit
ver 36% sparsity in three of four models. The remaining non-zero OU-
nputs are distributed unevenly across the 255 patterns, with at least
2% concentrated in 32 patterns. Such concentrated characteristics
hared by the four models provide the potential for OU-input pruning.

We further conduct pre-experiments to determine whether the fre-
uent input patterns are still prevalent when changing the dataset.
n other words, the pre-experiment explores whether the centralized
istribution of input patterns overlaps across different datasets. Two

on-overlapping datasets are independently and randomly selected
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Fig. 3. Composition of OU-inputs in (a) Alexnet, (b) GoogLeNet, (c)ResNet-50, (d) VGG-16.
Fig. 4. Intersection Ratio of Input Patterns with different top-k and learning data sizes.

from the ImageNet dataset, named learning and testing data. We collect
the k (k ranging from 4 to 16) most frequent input patterns from the
two datasets. The intersection ratio, i.e., the overlap of the two top-k
pattern sets as a proportion of k is calculated for all layers. We maintain
a fixed testing data size (tsize) and adjust the learning data size (lsize)
from 𝑡𝑠𝑖𝑧𝑒

256 to 𝑡𝑠𝑖𝑧𝑒
32 . Fig. 4 illustrates the impact on the average pattern

intersection ratio for varying lsize and k values. In the context of limited
learning data, specifically when the learning size (lsize) is set to 𝑡𝑠𝑖𝑧𝑒

256 ,
it can be noted that the top four patterns continue to demonstrate
an intersection ratio exceeding 30% for all models. For each model,
a consistent increase in the ratio is observed as lsize expands, with
the value of k remaining fixed. However, as k grows, the intersection
ratio tends to reach the maximum when k approaches 12. This finding
inspires us to derive a buffer strategy from the learning dataset that
is also applicable to the testing dataset, allowing for buffering a small
fraction of computation results to eliminate the majority of repetitive
computations.

3. Compute-reuse scheme

In this section, we present the overview of the compute-reuse
scheme and show the details of ICR scheme for input patterns and the
WCR scheme for weight patterns.

3.1. Overview of compute-reuse scheme

Based on the above observations, we propose a buffering-based
compute-reuse framework named CRPIM, where we divide the process
of computing MVMs into two modules: Input Compute-Reuse (ICR)
scheme and Weight Compute-Reuse (WCR) scheme. As depicted in
Fig. 5, input vectors initially go through the ICR part, where an offline-
learned pattern buffer strategy categorizes the vectors into buffered
and unbuffered patterns. For buffered patterns, the results are directly
retrieved from buffers, bypassing the need to conduct computation.
Unbuffered patterns, on the other hand, are processed by the WCR
scheme. In WCR, input vectors first compute MVM with all weight
patterns, and the pattern results are then used to construct the complete
MVM outputs. The detailed discussion regarding the strategy of pattern
buffer allocation and WCR scheme will be introduced in Sections 3.2
and 3.3.
4

3.2. Compute-reuse for input patterns

We first utilize the time and space demand among neural layers and
consider the proportional strategy. Fig. 6 illustrates the size distribution
of input and output data among neural layers in the ResNet-50 model.
From the first to the last layer, the output size of a unit input cycle
has a growing trend, inversely correlating with the diminishing scale of
input data. Since the size of a unit output is a constant multiple of the
size of the weight matrix, the proportional strategy assigns buffers to
each layer in line with the growth of the weight size of the layer. The
strategy generally guarantees that layers with more input cycles and
less unit overhead obtain computation results mainly by reading the
buffer, while layers with fewer cycles and more unit overhead obtain
results mainly by regular computation. However, it ignores the fact
that two layers with similar shapes may also differ significantly in the
degree of input repetition, which results in the objective of reducing
buffer overhead not being fully explored. Therefore, we propose a
buffer allocation strategy tailored to repetitive input patterns at each
layer, which will be introduced from the intra-layer part and inter-layer
part.

First, we consider the scenario within a layer. Given that MVMs are
serially performed in OU-level for each XBA, we map each 𝐻OU ×𝑊𝑀
OU-row to an individual XBA. Thereby, the parallelism among OU-
rows is maximized. Even though 20.7% layers of GoogleNet have too
few columns in the weight matrix to make one OU-row completely
occupy an XBA, these weights contribute only 2.4% of GoogleNet’s
overall weight composition. As all OU-rows perform MVMs in parallel,
the efficiency of one neural layer is primarily determined by the most
time-consuming OU-row. In other words, the ‘‘cask effect’’ influences
the intra-layer buffer allocation policy. The worst performer among all
OU-rows, i.e., the row that saves the least amount of computation, acts
as the overall performance metric.

The computational savings for the 𝑖th OU-row with 𝑏𝑖 buffer as-
signed is calculated as the sum of the top 𝑏𝑖 terms of the frequency
distribution 𝑓𝑖 of input vectors, i.e., 𝑠𝑖 =

∑𝑏𝑖
𝑗=1 𝑓𝑖,𝑗 . Since the time

consumption of a neural network layer is dominated by the OU-row
that takes the longest time, the optimization problem for minimizing
the time consumption of a layer is equivalent to maximizing the mini-
mum saving among all OU-rows, with the limitation of buffer size. The
formal problem formulation is expressed as the following Problem 1. By
solving this optimization problem, we can determine the optimal buffer
allocation strategy that achieves maximum computational savings for
the entire neural network layer.

𝑚𝑎𝑥
𝑏

𝑚𝑖𝑛
𝑖

∑

𝑓𝑖,𝑏𝑖 s.t.
⎧

⎪

⎨

⎪

⎩

1 ≤ 𝑖 ≤ ⌈

𝐻𝑀
𝐻𝑂𝑈

⌉

0 ≤ 𝑏𝑖 ≤ 256
∑

𝑏𝑖 ≤ 𝐵

(1)

Algorithm 1 shows the solution to the intra-layer allocation prob-
lem. The inputs include the information on each layer, which is prepro-
cessed before the algorithm. With the OU-input streams for OU-rows,
the frequency of pattern k, 𝑓𝑘 can be counted easily. We sort patterns
according to 𝑓𝑖 in descending order so that 𝑓𝑖 represents the most
achievable saving when allocating the 𝑖th unit buffer to the layer.
The profit p in Algorithm 1 stores the sorted frequencies, and maxQ
represents the buffer size allocated to the layer. The algorithm follows
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Fig. 5. The overview of Compute-Reuse Scheme for MVM.
Fig. 6. The Distribution of Output and Input Data Overhead Among Neural Layers in ResNet-50.
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a progressive strategy that allocates one unit buffer to the OU-row with
the least saved computations each time. After each unit allocation, the
marginal profit is updated for the selected OU-row.
Algorithm 1: Intra-Layer Buffer Allocation
Input : #Layers N, Layers L with: Max quantity maxQ and Profit p
Output: Layers L

1 /* Part 1:solve P1 for all layers */
2 for i = 0 to N-1 do
3 Initialize L[i].p as an all-zero list
4 for j = 1 to L[i].maxQ do
5 Collect current profit of OU-rows to pc
6 Collect marginal profit of OU-rows to pm
7 𝑟 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑝𝑐)
8 𝐿[𝑖].𝑝[𝑗] ← 𝑝𝑚[𝑟] + 𝐿[𝑖].𝑝[𝑗]
9 Update marginal profit pm[r]
0 return L

Solving Problem 1 yields computational savings for one layer with
iven buffer sizes. We extend it to inter-layer allocation, which is
ransformed into a variant of the bounded knapsack problem when the
otal buffer capacity is considered as the knapsack size. Specifically,
uffering a unit result of each layer is regarded as a commodity, where
he computational savings and the required buffer size of each unit
uffering serve as the profit (p) and weight (w) of the commodity,
espectively. A commodity can be chosen repeatedly, and the profit
s a function of the number of the commodity. Therefore, the inter-
ayer buffer allocation problem (Problem 2) is a variant of the bounded
napsack problem with a maximum quantity constraint and unfixed
ommodity values, which can be expressed as follows:

𝑎𝑥
∑

𝑗
𝑃𝑗 [𝐵𝑗] s.t., 𝐵𝑗 ≥ 0

∑

𝑗
𝐵𝑗 ⋅𝑊𝑗 ≤ 𝐵 (2)

here 𝑃𝑗 [𝑏] denotes the gain of the 𝑗th layer at a given b. 𝐵𝑗 represents
he number of unit buffers allocated to the 𝑗th layer, each capable of
uffering a pattern result. 𝑊𝑗 is the buffer space required to buffer a
ingle pattern result for the 𝑗th layer. The sum of the buffer sizes of all
ayers is constrained by B. We can solve the bounded knapsack problem
y using dynamic programming. Let Pmax(i, w) represent the maximal
vailable profit with the first i commodities and w units of capacity and
𝑖[𝑘] be the cumulative profits of commodity i at the quantity k, and 𝑥𝑖
e the maximal quantity of commodity i. The recurrence for searching
5

or the maximum profit is:

𝑚𝑎𝑥(𝑖, 𝑤) = 𝑚𝑎𝑥(𝑃𝑚𝑎𝑥(𝑖 − 1, 𝑤 − 𝑘 ⋅𝑤𝑖) + 𝑃𝑖[𝑘])

𝑘 ∈ [0, 𝑚𝑖𝑛(𝑥𝑖, ⌊
𝑤
𝑤𝑖

⌋)] (3)

The optimality of the strategy in Eq. (3) can be proved by induction
on i. Let Opt(i,w) be the optimal profit for Problem 2 with the first i
items and w units of capacity. We claim 𝑃𝑚𝑎𝑥(𝑖, 𝑤) ≤ 𝑂𝑝𝑡(𝑖, 𝑤). Step1.
Let i = 0. We cannot make any profit when 0 items are available. So,
𝑃𝑚𝑎𝑥(0, 𝑤) = 0 = 𝑂𝑝𝑡(0, 𝑤). Step2. Let 𝑖 = 𝑘 > 0 Assume that the
optimality holds for 𝑖 = 𝑘 > 0, i.e., 𝑃𝑚𝑎𝑥(𝑘,𝑤) = 𝑂𝑝𝑡(𝑘,𝑤). Step3.
uppose 𝑂𝑝𝑡(𝑘 + 1, 𝑤) selects the quantity 𝑛′ for the item k+1. The
ollowing Eqs. (4) and (5) show that 𝑃𝑚𝑎𝑥(𝑘 + 1, 𝑤) = 𝑂𝑝𝑡(𝑘 + 1, 𝑤),
.e., the solution generated by (3) can generate optimal profit.

𝑝𝑡(𝑘 + 1, 𝑤) = 𝑂𝑝𝑡(𝑘,𝑤 − 𝑛′ ⋅𝑤𝑘+1) + 𝑃𝑘+1[𝑛′] (4)

𝑃𝑚𝑎𝑥(𝑘 + 1, 𝑤)

= 𝑚𝑎𝑥
0≤𝑛<⌊ 𝑤

𝑤𝑘+1
⌋

𝑃𝑚𝑎𝑥(𝑘,𝑤 − 𝑛 ⋅𝑤𝑘+1) + 𝑃𝑘+1[𝑛]

≥ 𝑃𝑚𝑎𝑥(𝑘,𝑤 − 𝑛′ ⋅𝑤𝑘+1) + 𝑃𝑘+1[𝑛′]

≥ 𝑂𝑝𝑡(𝑘,𝑤 − 𝑛 ⋅𝑤𝑘+1) + 𝑃𝑘+1[𝑛′]

= 𝑂𝑝𝑡(𝑘 + 1, 𝑤)

(5)

Algorithm 2 presents the pseudo-code of the solution-searching
ethod. The profit information of the 𝑖𝑡ℎ layer, obtained by solving
roblem 1, is stored as a list member of the 𝐿[𝑖], where 𝐿 is an array of
he layer structure. 𝑁 represents the number of layers. Since the length

of an input vector is fixed to 𝐻𝑂𝑈 , the buffer space required by a pattern
result exhibits a linear relationship with the width of the weight matrix
(𝑊𝑀 ) pertaining to the respective layer. Therefore, 𝐿[𝑖].𝑤 is determined
by the configuration of the model. As there is no profit gain when all
patterns of all OU inputs are buffered, each layer has an attribute 𝑚𝑎𝑥𝑄
to represent the maximum number of this ‘‘commodity’’. We define 𝑚 as
a 2-D table, where 𝑚[𝑖, 𝑤] records the maximum profit obtained when
the total capacity is 𝑤 and only the first 𝑖 commodities are available.
olving Problem 2 is equivalent to obtaining table 𝑚 from bottom to

top. The first row of 𝑚 is initialized to all zero (Line 3), as no profit is
produced in the absence of available commodities. During the iteration,
for each (𝑖, 𝑤) pair, the algorithm tries all possible quantities for the
𝑖𝑡ℎ commodity, following the strategy in (3) (Line 5–11). The global
optimal profit is ultimately stored in 𝑚[𝑁,𝑊 ]. The top-down retrieval
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starts from the tail of 𝑚. For the 𝑖𝑡ℎ commodity, once a quantity 𝑘 is
a feasible intermediate node to the optimal solution (Line 17), it is
recorded in 𝑅 (Line 18). Then, the iteration jumps to the next layer,
𝐿𝑖−1, until 𝑅[0] is filled.

The solution-searching method in Algorithm 2 traverses at most
1
2𝑁𝑊 (𝑊 + 1) possible allocation strategies to obtain the maximal
computation saving, where 𝑁 is the number of layers, and W is the total
capacity. Therefore, the time complexity of Algorithm 2 is 𝑂(𝑁𝑊 2).
ince Algorithm 1 has a time complexity of 𝑂(𝑁𝑊 ), the overall time

complexity for solving the whole buffer allocation problem is 𝑂(𝑁𝑊 2).
lease note that 𝐿[𝑖].𝑤 and 𝑊 are normalized in order to reduce the
earch space. Moreover, the allocation strategies for neural layers are
roduced beforehand and remain static during the inference stage. In
ther words, the one-time learned allocation strategy can be applied
o many-time inference. The time overhead of learning the allocation
trategy is spread over many inference tasks.
Algorithm 2: Inter-Layer Buffer Allocation
Input : Capacity W, #Layers N, Layers L with: Weight w, Max

quantity maxQ and Profit p
Output: Achievable max profit maxP, solution R

1 /* Part 2: solve P2 */
2 Init m, R: 2D and 1D array with size [𝑁,𝑊 ] and 𝑁
3 Set all m[0,w] to 0
4 for i = 1 to N do
5 for w = 1 to W do
6 m[i,w] ← −∞
7 Q ← 𝑚𝑖𝑛(𝐿[𝑖 − 1].𝑚𝑎𝑥𝑄, ⌊ 𝑤

𝐿[𝑖−1].𝑤 ⌋)
8 for k = 0 to Q do
9 𝑞 ← 𝑚[𝑖 − 1, 𝑤 − 𝑘𝐿[𝑖 − 1].𝑤] + 𝐿[𝑖 − 1].𝑝[𝑘]
10 if 𝑞 > 𝑚[𝑖, 𝑤] then
11 𝑚[𝑖, 𝑤] ← 𝑞
2 /* Part 3: get one allocation */
3 𝑖 ← 𝑁 − 1;𝑤 ← 𝑊
4 while 𝑖 ≥ 0 do
5 𝑄 ← 𝑚𝑖𝑛(𝐿[𝑖].𝑚𝑎𝑥𝑄, ⌊ 𝑤

𝐿[𝑖].𝑤 ⌋)
6 for n = 0 to Q do
17 if 𝑚[𝑖 + 1][𝑤] − 𝐿[𝑖].𝑝[𝑛] = 𝑚[𝑖][𝑤 − 𝑛 ⋅ 𝐿[𝑖].𝑤] then
18 𝑅[𝑖 + 1] ← 𝑛 /* Record quantity */
19 𝑖 ← 𝑖 − 1;𝑤 ← 𝑤 − 𝑛 ⋅ 𝐿[𝑖].𝑤; break
0 return m[N][W], R

3.3. Compute-reuse for weight patterns

ICR centers on the MVMs between OU-inputs and OU-rows, while
WCR focuses on the sub-MVMs between OU-inputs and OUs. In the
offline stage, solving Problem 2 determines the input patterns to be
buffered for all OU-rows of all neural layers. ICR passes them to the
WCR part to perform computations only once and stores the results in
the pattern buffer. In the formal computation stage, the buffered input
vectors are forwarded to the pattern buffer to fetch the pattern results,
and the others are passed to the WCR part.

Fig. 5 shows that when WCR receives an input vector, it first
computes MVMs with weight patterns only and then constructs the
complete MVM results with pattern results. WCR contains Pattern
matrices, Pattern Buffers, and Column Index Tables to support the
process. Instead of storing the whole weight matrix for a neural layer,
WCR stores a set of identical pattern matrices where all weight pattern
vectors are included. Pattern Buffer stores the results of dot-products of
the input vector and all weight pattern vectors. Because of the use of
single-bit ReRAM cells and the OU configuration, Pattern Buffer size
is linear to the 2𝐻𝑂𝑈 possible states. Column Index Table stores the
pattern indexes of all OU-columns. An example of transforming the
original MVM into WCR is shown in Fig. 7. The conventional bit-split
6

mapping approach requires four SLC XBAs of size 4 × 8 to store the 4-bit
Fig. 7. Convert a regular MVM operation to a WCR process, which is supported by
pattern matrices, pattern buffers, and column index tables.

4 × 8 weight matrix. Since an OU column of size 2 has four possible
states, namely (0,0), (0,1), (1,0), and (1,1), the pattern matrix 𝑀𝑝𝑎𝑡𝑡
is of size 2 × 4. Given that the input vector can be split into 2 OU-
inputs and the bit precision is 4, 2 Pattern Matrices, 2 Pattern Buffers,
and 4 Column Index Tables are needed. Note that the two identical
pattern matrices receive different input vectors at the same time and
are, therefore, mapped to different XBAs to improve parallelism.

Fig. 8 illustrates the weight compute-read procedure. The pattern
array stores the patt-MVM results, and the relative pattern arrays’ ad-
dress port sequentially receives the target index from the column index
tables, which then retrieves the relevant vector–vector multiplication
results and writes them to the accumulator to produce the final result.
In this example, the bit-matrix M has dimensions of 4 × 8, the input
vector V is of size 4, and OU has dimensions of 2 × 2. OU1 and
OU2 hold all the OU-patterns, i.e., [(0,0), (0,1)], [(1,0), (1,1)]. The
input vector [1,0,1,1] is split into OU-rows (1,0) and (1,1) and copied
into 4-cycle input vectors, i.e., [(1,0), (1,0), (1,1), (1,1)]. The MVMs
of 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 with the input (1,0) and (1,1) are completed in the first
and last 2 cycles, respectively. The obtained pattern-MVM results are
stored in PR1 and PR2. For instance, PR1 stores the pattern results
(patt0:0, patt1:0, patt2:1, patt3:1), and the index vector of the first
OU-row is [3,2,0,1,3,0,0,2]. The readout vector, [1,1,0,0,1,0,0,1], is
the MVM result of M[0:1,:] with input (1,0). Similarly, the MVM of
M[2:3,:] with input (1,1) yields [0,2,1,0,2,1,1,2]. The accumulation
vector, [1,3,1,0,3,1,1,3], represents the full MVM result of M with V.

4. CRPIM architecture and design

This section provides a comprehensive overview of the architec-
ture designed to support the sharing process, which efficiently prunes
repetitive weights and inputs.

4.1. Architecture overview

Fig. 9 illustrates the architecture of the proposed CRPIM acceler-
ator, which consists of multiple Processing Engines (PE) and a global
controller issuing control signals to all PEs. Each PE is further divided
into three parts: Input Compute-Reuse (ICR), Weight Compute-Reuse
(WCR), and peripherals. Within a PE, a dispatcher divides the stored
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Fig. 8. Example of the process of reading the pattern results.

Fig. 9. CRPIM architecture. Each PE contains: Meta Table and Pattern Buffer for ICR,
CUs for WCR, and peripherals.

input feature map (FM) in the input buffer and routes input vectors to
the ICR’s meta table. If input vectors are registered, the Matrix–Vector
Multiplication (MVM) results are fetched from the pattern buffer; if
not, they are derived from the WCR component. The results are further
processed by pooling unit and activation unit and the final result will
be stored in output buffer.

The ICR part comprises a meta table, demux, decoder and pattern
buffer. The meta table records information of the 2𝐻𝑂𝑈 input patterns.
Each entry in the meta table contains a flag bit to identify whether the
7

corresponding computation result is buffered or not, an index to point
out the starting position in pattern buffer and the number of blocks
occupied by the corresponding output. The demux receives the flag and
determines where to obtain the result. For those buffered, the decoder
forwards the decoded starting address and the size to read to the pattern
buffer. Then the read result is forwarded to output buffer. The WCR part
is composed of multiple Compute Units (CUs), each of which contains
input and output registers (IR and OR), shift & add (S&A), accumulators
and pattern buffers. Input registers receive the assigned input vectors, a
group of crossbar arrays (XBAs), The shifted and summed MVM results
are accumulated by accumulators and then stored in OR.

A WCR-PE is a group of WCR-CUs, each containing an input buffer
to store the assigned input vectors, 𝑛 crossbar arrays to perform bit-level
MVMs, and a pattern buffer to collect the pattern results. In the crossbar
arrays, 1-bit weight patterns are stored repetitively so that multiple
input vectors can compute their pattern results in parallel. The pattern
results are then copied to the pattern registers in WCR-PEs, and the
sequence of weight indexes is forwarded to the Pattern Reader (PR) to
read out the buffered pattern results. Note that since a bit-level MVM is
one partial result of a complete MVM operation of an 𝑀-bit matrix with
an 𝑁-bit input vector, S&As and accumulators are required in WCR-PEs
to construct the full result.

5. Evaluation

5.1. Experimental setup

Based on MNSIM [29], we implement a prototype of CRPIM and
evaluate its performance. The latency delay of the on-chip SRAM buffer,
i.e., the meta table, input register (IR), output register (OR), and
pattern buffer are modeled using CACTI [30] at the 32-nm process. The
hardware configuration is set referring to the parameters of ISAAC and
SRE, except that ReRAM crossbars adopt Single-Level-Cell devices. The
hardware configuration is set to meet the requirements of the bench-
mark DNN models. Table 2 summarizes the hardware configuration of
the architecture. The hardware configuration is as follows: There are
512 PEs per chip, each PE has 16 CUs, and each CU groups 8 SLC
crossbar arrays. The crossbar arrays in CUs are of size 128 × 128, where
ach cell stores 1 bit. MVMs proceed at the OU granularity of size (8×8).

Meta tables and pattern buffers in ICR are assembled in the on-chip
buffer of PE, and the pattern buffer in WCR is 8 KB for each CU.

Task and Models: The goal of CRPIM is to reduce redundant compu-
tations and decrease ReRAM device overhead in DNN tasks. We choose
the Imagenet classification task as the benchmark task as Imagenet is
a large-scale and diverse dataset [31], involving a number of computa-
tions and intermediate inputs. We select four representative DNN mod-
els, including Alexnet [26], GoogleNet [27], ResNet-50 [10], and VGG-
16 [28], to evaluate the performance. Model weights are quantized
with 8-bit using a post-training quantization algorithm [32], which
quantizes pre-trained models without retraining while maintaining the
inference accuracy.

Baselines and Evaluation Metrics: In this study, we compare the per-
ormance of CRPIM against two state-of-the-art weight/input pruning
pproaches for ReRAM-based DNN accelerators. For weight pruning,
e select the pattern-based pruning technique PattPIM [21]. We choose
RE [19], and RePIM [20] as the baseline methods for joint exploitation
f activation and weight pruning. We vary the dataset size in the
earning stage and the buffer size in the running stage to explore the
xpandability of CRPIM. We consider four evaluation metrics: time
peedup, crossbar pruning ratio, buffer storage, and energy consump-
ion. To maintain consistency in the evaluation and minimize the
mpact of non-ideal limitations of ReRAM devices on computation
ccuracy, we adopt an 8 × 8 OU design for all the evaluated methods.
e compare the results of the two buffer allocation approaches with
ePIM and SRE in terms of speedup and hardware overhead, with OU
izes set to 8 × 8.
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Table 2
Hardware Configuration.
PE configuration (1 GHz, 32 nm process, 512 PE in total)

Component Spec Power

Sigmoid Number: 2 0.52 mW
Pooling Number: 1 0.4 mW
On-chip buffer Size: 256 KB; banks: 8

bus width: 512 bits
197.7 mW

CU configuration (16 CUs per PE)

Memristor Array Number: 8; size: 128 × 128
bits-per-cell: 1 bit; OU-size: 8 × 8

2.4 mW

DAC Number: 128 × 128; Resolution: 1 bit 7.9 mW
ADC Number: 16; Resolution: 4 bit 11.2 mW
S+A Number: 4 0.2 mW
S+H 8 × 128 10 uW
OR size: 256B 0.23 mW
IR size: 2 KB 1.24 mW
Pattern buffer size: 8 KB 4.51 mW
Fig. 10. Intersection ratio of solutions for different buffer sizes and learning dataset sizes.
Fig. 11. Performance speedup of different approaches.
5.2. Experimental results

(1) Accuracy and Speedup: Our repetition pruning approaches buffer
requently repeated computations for fast reading and hence cause no
oss of model information. The accuracy drop is consistent with the
dopted post-training quantization technique [32]. It achieves around
.5% loss of top-1 accuracy when quantizing the four models with
bits per weight. In the time consumption tests, we observe the

erformance of various models under different learning data sizes and
uffer sizes. Fig. 11 presents the execution time of the proposed CRPIM
nd baseline methods using the same benchmark group. Note that
he buffer size in Fig. 11 denotes the average number of unit pattern
esults that can be stored in the buffer per OU-row. It can be seen
hat all four models exhibit sensitivity to data size during the learning
tage. As depicted in Fig. 10, a larger learning space results in more
hared solutions. GoogLeNet and ResNet-50 demonstrate insensitivity
o changes in buffer size (bsize), particularly when bsize exceeds 4,
ue to limitations in buffer hardware, such as access latency. Overall,
8

with 𝑙𝑠𝑖𝑧𝑒 = 𝑡𝑠𝑖𝑧𝑒
16 , CRPIM can achieve at most 2.63× speedup compared

with RePIM. The execution time reduction mainly comes from two
benefits (1) Replacing massive computations of repetitive inputs with
reading the pattern buffer greatly reduces the number of required
computational cycles. (2) Input repetition reuse exhibits orthogonality
to weight repetition reuse with respect to time-saving. ICR exclusively
targets the concentration of input activations, thereby not exerting any
influence on the weights. This distinctive focus makes ICR and WCR
independent and complementary strategies to each other in the realm
of time efficiency.

(2) ReRAM reduction: Fig. 12 presents the demand for ReRAM
crossbar array from CRPIM and SRE, which is normalized to the original
weights quantized to 8-bit precision. When compared to the original
weights and SRE, CRPIM produces an average ReRAM compression rate
of 11.9% and 37.9%, respectively. This is achieved because WCR part
only performs the pattern computations in the WCR-PEs, and the size
of a pattern computation does not vary with the matrix shape or input
size. The difference in ReRAM cell reduction between these models falls
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Fig. 12. ReRAM compression rate of CRPIM and SRE normalized to baseline.

Fig. 13. Storage overhead for WCR and ICR on different models.

on the shapes of their flattened weight matrices. A model with many
tall weight matrices has a high demand for pattern computation units
because the computation result for a weight pattern can only be shared
with the OU-columns in the same OU-rows. For example, a 64 × 1024
weight matrix and a 1024 × 64 one contain the same amount of weight
values, but the former one yields a higher compression ratio on ReRAM
cells, i.e., each weight pattern can be used by more weight columns.

(3) Buffer and energy overhead: The primary storage overhead of
CRPIM predominantly consists of the pattern buffer and output buffer,
as the size of the index table is comparatively negligible. Fig. 13
illustrates the storage overhead of the four models and their respective
compositions with a fixed buffer size of 16. The space requirement of
the ICR pattern buffer is contingent upon the number of pattern results
to be buffered and the size of an individual result. For each pattern
result, the storage is linearly proportional to the size of the correspond-
ing weight matrix. Consequently, the ICR pattern buffer’s size grows
with the model’s size, as the output buffer does. As the speedup of
AlexNet exhibits a slower growth trend with increasing bsize, and its
weight matrix occupies a substantial space, the required buffer storage
is the largest among the four models. Nevertheless, as observed in
Fig. 11, AlexNet is sensitive to the size of the learning data. Therefore,
one can increase the lsize to achieve a trade-off with a smaller buffer
size. Additionally, it is given that a buffer size exceeding 4 units of
pattern result does not contribute to the performance improvement of
VGG-16. In summary, scenarios with restricted buffer resources can be
compensated for by increasing the learning data size during strategy
formation to suspend performance degradation.

The energy consumption (Fig. 14) of our scheme outperforms the
conventional computation but is behind the SRE on VGG-16. This
is mainly because, though many parts of repeated computations are
avoided successfully, buffer reading is still energy-consuming. How-
ever, the above overhead is deemed acceptable when contrasted with
the advantages realized through speed optimization. The trade-off,
therefore, skews favorably towards enhanced processing speed, as the
9

Fig. 14. Energy saving on different models.

modest increase in storage and energy demand is offset by substantial
acceleration benefits.

6. Related work

This paper introduces a compute-reuse scheme for ReRAM-based
DNN inference to improve the role of pattern buffers in sharing pattern
results. To the best of our knowledge, this is the first work that explores
the buffer allocation strategy intra- and inter-layers. In this section,
we discuss recent works related to pruning computations by utilizing
sparsity and repetition in inputs and weights.

6.1. Exploiting sparsity in ReRAM-based DNN

Leveraging the sparsity to prune insignificant computations and
to reduce the storage overhead has been thoroughly studied in the
development of ReRAM-based DNN Inference Engines [19,22,23,33–
36]. For example, Yang et al. [19] designed SRE that exploits weight
and input sparsity in the pruning strategy. SRE leverages row-wise
weight compression combined with dynamic OU formation in order
to create more all-zero OU-rows in weight matrices and OU-columns
in inputs. Shin et al. [34] propose a filter reordering scheme tailored
for unstructured pruning in highly sparse DNNs. The scheme optimizes
the OU utilization to reduce hardware overhead and introduces a re-
covery scheme restoring uncompressed zero weights to balance model
accuracy with resource utilization. Liu et al. [33] proposed a ReRAM-
based architecture named ERA-BS, focusing on bit-level sparsity in
weights and activation. Particularly, ERA-BS includes a bit-flip scheme
for weights, which sacrifices little accuracy for fine-grained sparsity.
PQ-PIM [36] and APQ [35] propose fusion frameworks for pruning
and quantization. They automatically determine the quantization bit-
width and prune the unimportant weights but influence the model
performance in an acceptable range. CRPIM shares similarities with
ERA-BS and SRE in recognizing and pruning invalid columns and rows
in weights and inputs. However, beyond adopting sparsity pruning,
CRPIM places more emphasis on utilizing repetitions for pruning rather
than aiming to recognize more insignificant weights and inputs.

6.2. Exploiting repetition in ReRAM-based DNN

Accelerating DNNs by exploiting repetition has drawn wide atten-
tion [25,37–43]. Moreover, utilizing repetition to improve the per-
formance of ReRAM-based DNN engines has also been studied [20,
21,44,45]. Tsai et al. [20] proposed RePIM to boost performance by
capitalizing on the repetitive nature of inputs and weights at the OU
grain. RePIM introduces indexing methodologies for sharing repetitive
weights and inputs, where unique patterns and sharing indexes are
recorded. Chen et al. [44] introduce H-RIS aiming to achieve an optimal
balance between energy consumption and accuracy for repetitive input
sharing schemes. They conduct energy evaluation on buffers used
in input sharing and identify an energy-efficient sharing ratio that
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minimizes energy costs while ensuring computational accuracy. Shen
et al. [45] propose a pruning method named PRAP-PIM, tailored for
repetitive weight patterns. It introduces reusing similar weight patterns
that satisfy a linear relationship instead of identical matching. H-RIS
and PRAP-PIM both focus on the repetition of either weights or inputs,
and both aim to achieve a higher pruning rate with minimal sacrifice
to accuracy. Similar to RePIM, CRPIM encompasses pruning based on
the repetition of both weights and inputs, and it does not harm model
accuracy.

7. Conclusion

In this paper, we first conduct pre-experiments to show the similar-
ity in input patterns among different datasets of the DNN computation
on ReRAM-based PIM machines. Then, we propose a compute-reuse
scheme called CRPIM to replace massive computations on repeated
input/weight patterns with buffer reading. In CRPIM, we propose the
intra-layer and inter-layer buffer allocation problem, and the latter
is proved to be equivalent to a variant of the Knapsack problem.
Moreover, we explore the duplicate input/weight patterns in OU-based
architecture and propose an efficient compute-reuse scheme. Our eval-
uation shows that CRPIM achieves up to 2.63× speedups and an average
of 37.9% ReRAM compression rate over the state-of-the-art practi-
cal ReRAM-based accelerator while keeping the storage and energy
overhead reasonable.
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